Requirements from WSRP Producers and Consumers
Working Draft 0.1, 2 December 2002 

Document identifier:



WSRP_Requirements_0.1 (Word)

Location:

http://www.oasis-open.org/committees/wsia
http://www.oasis-open.org/committees/wsrp
Editors:

Gil Tayar, WebCollage <gil.tayar@webcollage.com>

Abstract
:

This document’s purpose is threefold:

· Describe Consumer and Producer scenarios.

· Describe what the Consumer and Producer are required to do in order to implement a successful WSRP implementation.

· Approach the spec from a more tutorial point of view by giving examples of all SOAP messages and by giving a step by step understanding of a Consumer and Producer. For conciseness sake, only the body of the SOAP message is given. Also, the data in the XML which is part of the example is in italics, while the information that is required and must be a part of a Producer or Consumer that implements the scenario is in a regular style.

Status:

This draft is an early version. Various concepts continue to be debated. Points needing clarification as this evolves into the final specification are much appreciated and may be emailed to Gil Tayar.

If you are on the wsia-wsrp@lists.oasis-open.org, wsia@lists.oasis-open.org or wsrp@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the wsia-comment@lists.oasis-open.org or wsrp-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to wsia-comment-request@lists.oasis-open.org or wsrp-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

The errata page for this specification is at 
http://www.oasis-open.org/committees/wsrp/requirements_v1_errata.html.

Copyright © 2002, 2003 The Organization for the Advancement of Structured Information Standards [OASIS]

Table Of Contents

41
Introduction


42
Minimal Producer


42.1
Operations


42.2
getServiceDescription


52.3
getMarkup


63
Minimal Consumer


63.1
Producer-Initialization Flow


73.2
End-User-Initialization Flow


73.3
First Page Composition Flow


83.3.1
secureClientCommunications


83.3.2
templates


93.3.3
Processing the markupResponse


93.3.4
Consideration on usesMethodGet


103.3.5
Processing “Resource” requests


103.4
Next Page Composition Flow


103.4.1
Processing the urlType


113.4.2
Invoking performBlockingInteraction


123.4.3
Invoking performInteraction


123.4.4
Continuing with the markup


133.5
Producer-Termination Flow


134
Producer with More Than One Entity


134.1
Operations


134.2
getServiceDescription


134.3
getMarkup


145
Consumer with Two Entities From Same Producer


145.1
Producer-Initialization Flow


155.2
End-User-Initialization Flow


155.3
First Page Composition Flow


165.3.1
secureClientCommunications


165.3.2
templates


175.3.3
Processing the markupResponse


175.3.4
Consideration on usesMethodGet


175.3.5
Processing “Resource” requests


175.4
Next Page Composition Flow


185.4.1
Invoking performBlockingInteraction


185.4.2
Invoking performInteraction


195.4.3
Continuing with the markup


195.5
Producer-Termination Flow


196
Producer Entity with More Than One Page – Producer URL Writing


196.1
Operations


196.2
getServiceDescription


196.3
getMarkup


217
Producer Entity with More Than One Page – Consumer URL Writing


217.1
Operations


217.2
getServiceDescription


217.3
getMarkup


228
Producer Entity with POST


238.1
Operations


238.2
getServiceDescription


238.3
getMarkup


248.4
performInteraction


259
Producer Entity with POST & Redirect


259.1
Operations


269.2
getServiceDescription


269.3
getMarkup


279.4
performBlockingInteraction


2810
Producer that Includes Resources to be Proxied


2811
Producer that Supports Registration


2812
Producer that Supports Entity Management


2813
Consumer that Supports Entity Management


2814
Producer that Supports More Modes


2815
Producer that Supports More Window States


2816
Consumer that Supports More Modes


2817
Consumer that Supports More Window States




1 Introduction

This document’s purpose is threefold:

· Describe Consumer and Producer scenarios.

· Describe what the Consumer and Producer are required to do in order to implement a successful WSRP implementation.

· Approach the spec from a more tutorial point of view by giving examples of all SOAP messages and by giving a step by step understanding of a Consumer and Producer. For conciseness sake, only the body of the SOAP message is given. Also, the data in the XML which is part of the example is in italics, while the information that is required and must be a part of a Producer or Consumer that implements the scenario is in a regular style.

The document consists of a list of scenarios. Each scenario is described, and its sub-sections describe what the Producer or Consumer need (or can) do to implement the scenario. If a sentence or paragraph are a requirement from the spec, the requirement is highlighted in this format [requirement]. [I will cross-reference the requirements to the spec when the spec is a bit more stabilized]

The scenarios are not meant to be full, but rather to be modular scenarios which real implementer can mix and match to create their own scenarios. Because of their modularity they tend to be minimal.

Most scenarios are based on two basic scenarios – the Minimal Producer scenario and the Minimal Consumer scenario, which enables their description to include only the changes.

2 Minimal Producer

In this scenario, the Producer consists of one Producer_Offered_Entity entity, which shows just one single-HTML-page Producer with no links, in the locale en.

in the example, the entity’s handle is “theOnlyEntity”

In order to successfully implement WSRP, the Producer must expose a SOAP endpoint which implements certain operations. These operations are described below.

2.1 Operations

The Producer implements the following operations [the Producer MUST implement them]:

· getServiceDescription

· getMarkup
· performInteraction: the implementation can be an empty implementation which fails.

· performBlockingInteraction: the implementation can be an empty implementation which fails.

· initCookie: the implementation can be an empty implementation which returns “void”.

2.2 getServiceDescription
The Producer ignores registrationContext, desiredLocales, sendAllLocales.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities> [while not required, is essential for the Consumer to send meta-data to consumer]


<entityHandle>theOnlyEntity</entityHandle> [required]



<markupTypes> [required]




<markupType>text/html</markupType> [required]



<locales>en</locales> [required]



<modes>view</modes> [required]



<windowStates>normal</windowStates> [required]


</markupTypes>


</offeredEntities>

</getServiceDescriptionResponse>

2.3 getMarkup
The Producer ignores the following:

· registrationContext: no registration needed.

· entityContext, including:

· entityHandle: The producer only supports one entity, and assumes the Consumer sent the correct handle [it is not a requirement for the Producer to check this].

· entityState: there is no persistent state for this one entity.
· runtimeContext, including:
· entityInstanceID: The producer does not need a unique ID.

· sessionHandle: the Producer does not need session support.
· userContext: the Producer does not deal with users.

· markupParams, including:

· markupCharacterSet: the Producer returns the allowed UTF-8 character set. A minimal Producer should always return UTF-8, as all Consumers support this character set.

· mode: the Producer only supported mode is “view”, and assumes that the Consumer sent that mode [which is a requirement for the Consumer]. 

· windowState: the Producer only supported windows state is “normal”, and assumes that the Consumer sent that window state [which is a requirement for the Consumer].

· navigationalState: Because the Producer has only one page, there is no meaning to navigationalState.
For example, the Producer returns the following XML:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font"><p>Hello, world!</p></div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

3 Minimal Consumer

In this scenario, a Consumer wants to embed a specific entity of a specific Producer. The Consumer knows the Producer endpoints. The Consumer wants to embed this entity in locale en.

In the example, the entity used is the Minimal Producer’s theOneEntity entity.

The Consumer does not know anything about this entity’s metadata, and wants to support it no matter what metadata values the service description or entity description have.

3.1 Producer-Initialization Flow

One time only, whenever the Consumer decides to use the Producer’s entity, the Consumer invokes the getServiceDescription operations to read the following flags:

· requiresRegistration & registrationPropertyDescription

· requiresInitCookie
· offeredEntity[entityHandle="entityHandle"]/

· markupTypes[markupType="text/html"]: to check whether HTML is supported.

· locales[.~="en"]: to check whether the “en” local is supported.
· groupID

· needSecureCommunication

· usesMethodGet

· doesUrlTemplateProcessing

If requiresRegistration is true, the Consumer registers at the Producer, using the register operation [MUST].

For example, the Consumer sends the following XML:

<register


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<consumerName>aConsumer</consumerName> [required]


<consumerAgent>homegrownXML.1.0</consumerAgent> [required. Required format of agent]
</register>

If the operation fails, the Consumer ends processing [MUST]. Otherwise the Consumer stores the registrationContext returned from the operation for later incorporation into the other operations [MUST] 

See Producer that Supports Registration for an example of a response to this operation.

3.2 End-User-Initialization Flow

If requiresInitCookie is “perUser” or “perGroup”, and the Consumer and Producer are communicating via HTTP, the Consumer invokes the initCookie operation once for each end user, and stores the returned cookies (returned in the Set-Cookie headers) for later incorporation into the other operations from the same end-user [MUST]. (see End-User-Initialization Flow in the Consumer with Two Entities From Same Producer scenario to understand the difference between “perUser” and “perGroup”) 
For example, the Consumer sends the following XML:

<initCookie


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<registrationContext>



the context returned from the register operation, or nothing if no registration


</registrationContext> [required if requiresRegistration is true
]

</initCookie>

If the operation fails, end processing [MUST]. Otherwise continue as usual.

3.3 First Page Composition Flow

To compose the markup of the first page of the Consumer, the Consumer retrieves the first page’s markup using the getMarkup operation.

For example, the Consumer sends the following XML:

<getMarkup


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<registrationContext>



the context returned from the register operation, or nothing if no registration


</registrationContext> [required if requiresRegistration is true]


<entityContext>



<entityHandle>theOnlyEntity</entityHandle> [required]


<entityState></entityState> [required]


</entityContext>


<runtimeContext />


<userContext>



<userContextID /> [required but can be empty]


</userContext>


<markupParams>



<clientData>




<userAgent>





Mozilla/4.5 (Macintosh; U; PPC)




</userAgent> [required]


</clientData>



<secureClientCommunications>




false [see below]


</secureClientCommunications> [required]


<userAuthentication>false</userAuthentication> [required
]


<locale>en</locale> [required]


<markupCharacterSet>UTF-8</markupCharacterSet> [required]


<markupType>text/html</markupType> [required]


<mode>view</mode> [required]


<windowState>normal</windowState> [required]


<navigationalState>???
</navigationalState> [required?
]



<templates>




[see below]



</templates> [required if doesUrlTemplateProcessing is true or namespacing is required]

</markupParams>


</getMarkup>

3.3.1 secureClientCommunications
If needSecureCommunication is true, then the Consumer must receive the markup via a secure connection (e.g. use SSL when using HTTP)
, and if sending it back to the End User, must send it back via a secure connection.
3.3.2 templates
If doesUrlTemplateProcessing is true, the Consumer supplies templates to enable Producer URL-writing [MUST].

If the Consumer wants to avoid the Producer “impinging” on markup Ids and JavaScript names, it should also send a unique NameSpacePrefix
.

For example, the Consumer sends the following XML:


<templates>



<DefaultTemplate>




http://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}



</DefaultTemplate> [required only if not all the other non-secure templates are defined]



<SecureDefaultTemplate>




https://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}



</SecureDefaultTemplate> [required only if not all the other secure templates are defined]


<NameSpacePrefix>FJH1</NameSpacePrefix>


</templates>
3.3.3 Processing the markupResponse
3.3.3.1 Processing markupResponse/sessionContext
If the markupResponse contains a session context, then the Consumer stores this information so that later markup interface operations to this entity send it. [Although this is not a MUST, failure to do so may in subsequent operations “likely not generate a markup fragment meeting End User requirements” (section 5.1.1 in the v0.85 spec)
]. In general, the session between a Consumer and an entity at the Producer maps to a client session with the Consumer.

3.3.3.2 Processing markupResponse/markupContext
The Consumer processes two fields – markup and requiresUrlRewriting
 [If the Consumers wants to use markup it MUST NOT ignore requiresUrlRewriting].

If requiresUrlRewriting is true, the Consumer rewrites the Markup according to the algorithm in section 9.2.1 of the v0.85 spec. [MUST]
For example, if the markup included the string “wsrp-rewrite?Render&wsrp-navigationalState=2&wsrp-mode=view&wsrp-windowState=normal/wsrp-rewrite” (see getMarkup in Producer Entity with More Than One Page – Consumer URL Writing for this string in the proper context), then the Consumer would replace it with the following URL: 

http://consumer.com/containerpage?ut=Render&ns=2&m=view&ws=normal
3.3.3.3 Inserting the markup in the Consumer page

After processing the markup, the Consumer inserts it into the Consumer page, allowing for the fact that they may have different character sets.

3.3.4 Consideration on usesMethodGet
If usesMethodGet is true, and the Consumer wishes to support such a Producer, the interaction URL-s resulting from the templates or the Consumer-URL rewrites and that are embedded in an HTML <form method=”get”>’s action attribute
 must take into consideration that most browsers strip the query part from the URL [MUST]. Two practical ways of doing this:

· All interaction URL-s embedded in the HTML will contain no query part, but rather embed the interaction parameters as part of the path.

For example, the templates of such URL-s will look like the following (note the replacement of “?” by “;”):

<DefaultTemplate>


http://consumer.com/containerpage;ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}

</DefaultTemplate>
· The Consumer will parse the HTML, remove the URL parameters in the URL-s of <form method=”get”>’s action attributes, and replace them with hidden fields with the corresponding name and values of the removed URL parameters.

3.3.5 Processing “Resource” requests

The Producer may have generated markup that instructs the End user agent to send “Resource” requests to the Consumer. If the Producer used Producer URL-writing, then the Producer did so by inserting the RenderTemplate or SecureRenderTemplate into the markup, and if the Producer used Consumer URL-writing, then the Producer did so by using a urlType with a value of “Resource”.

The Consumer should
, upon receiving a request to the “Resource” URL (usually an HTTP GET), return the resource defined by requesting the resource defined in wsrp-url and returning it, just like an HTTP reverse proxy (a.k.a. HTTP gateway) would.

3.4 Next Page Composition Flow

Although not required, the Consumer typically writes all “interaction URL-s” in the markup so that they link back to the Consumer, while passing back the “interaction parameters” (e.g. wsrp-navigationalState, wsrp-url) specified by the Producer. The flow which composes the markup of the next page of the Consumer is similar to the flow of the first page, except that the Consumer processes the interaction parameters passed in the interaction URL:

· The Consumer processes the urlType in order to determine whether to invoke performBlockingInteraction before returning any markup to the end user is needed, or whether to invoke performInteraction before invoking getMarkup is needed. This is described in detail in Processing the urlType.

· The Consumer processes the wsrp-mode and wsrp-windowState interaction parameters to determine whether a mode and/or window state change is requested by the Producer. The Consumer usually requests these requests unless it has an overriding reason not to (e.g. access control). The Consumer passes the new mode and window state to the invocations of getMarkup, performInteraction, performBlockingInteraction for this next page.

· The Consumer processes the wsrp-navigationalState interaction parameter. The Consumer passes its value to the invocations of getMarkup, performInteraction, performBlockingInteraction for this next page.

3.4.1 Processing the urlType
The urlType enables the Producer to indicate to the Consumer which operations are to be invoked on the next invocation. Note that instead of passing back the urlType interaction parameter in the interaction URL, the Consumer can choose to use different URL-s altogether. In Producer URL-writing, this is accomplished by giving different URL-s in the various templates, and in Consumer URL-writing this is accomplished by writing different URL-s depending on the value of the urlType. As these methods are operationally identical to passing the urlType interaction parameter, this document will continue to refer to “the value of urlType” even though in some cases the urlType is not transferred.

Depending on the value of urlType, the Consumer does the following
:

· BlockingAction: The Consumer invokes performBlockingInteraction. The Consumer invokes this operation before returning any markup to the end user and before invoking getMarkup.

· Action: The Consumer invokes performInteraction. The Consumer invokes the operation before invoking getMarkup.

· Render: The Consumer invokes getMarkup as usual.

3.4.2 Invoking performBlockingInteraction
Invoking performBlockingInteraction is similar to invoking getMarkup. The same registrationContext, entityContext, runtimeContext, userContext, and markupParams need to be passed to it, allowing for the fact that new window state, mode, and navigational state need to be passed, as described above. Additionally, this operation requires an additional parameter – interactionParams.

For example, the Consumer sends the following InteractionParams when it receives a POST to its interaction URL-s:

<interactionParams>


<entityStateChange>Fault</entityStateChange> [required]


<validNewModes>view</validNewModes>


<validNewWindowStates>normal</validNewWindowStates>


<uploadContext>[see below]



<uploadData>name=Gil+Tayar&age=18</uploadData>



<mimeType>application/x-www-form-urlencoded</uploadData>


</uploadContext> 

</interactionParams >
3.4.2.1 entityStateChange
A minimal Consumer will set the entityStateChange field to “Fault” to disable the ability of the Producer to change its state, and handling this state change is not a minimal requirement. The Producer should not fault since “view” mode should not generate state changes
.

3.4.2.2 uploadContext
If the user agent reached the interaction URL with data (e.g. with an HTTP POST), the Consumer should send this data to the Producer, while indicating the mime type of the data. [Although this is not a MUST, failure to send this data when user agent sends it to the Consumer may result in not generating markup fragments meeting End User requirements
]
3.4.2.3 Processing the performBlockingInteraction response

The Consumer processes redirectURL. If this field exists in the response, it indicates that the Producer would like the Consumer to redirect the end user to the URL defined in redirectURL. The Consumer should honor this request
. If redirectURL exists, all other fields are ignored [MUST].

If no redirectUrl field exists, the updateResponse field is processed:

· navigationalState: this field indicates that the Producer wishes to (again) change it’s navigationalState. The Consumer stores this information so that future invocations of getMarkup for this page should use this value [MUST]. A good way of doing this is to store the information in the Consumer URL, so that if the end user bookmarks this URL, it will return the Producer to the correct state. Storing the information in the URL necessitates the Consumer to redirect the user agent back to a Consumer URL which includes the new navigational state.
· sessionContext: the Consumer stores this information so that later markup interface operations to this entity send it.

· entityContext: this field will only appear if entityStateChange is “OK” or “Clone”
, so a minimal Consumer can safely ignore this field.
· newWindowState/newMode: these fields indicate that the Producer wishes to change its window state and/or mode. If the Consumer honors this request, then the Consumer stores this information so that future invocations of getMarkup for this page should use this value [MUST]. A good way of doing this is to store the information in the Consumer URL, so that if the end user bookmarks this URL, it will return the Producer to the correct state. Storing the information in the URL necessitates the Consumer to redirect the user agent back to a Consumer URL which includes the new window state and mode.
· markupContext: the Producer can choose to return markup with this operation. The Consumer can use this markupContext instead of invoking getMarkup afterwards, or it can choose to ignore this markup and invoke getMarkup again instead.
3.4.3 Invoking performInteraction
The Consumer invokes performInteraction the same way it invokes performBlockingInteraction, and processes the response in the same way, except for the fact that the response does not include redirectURL, navigationalState, newWindowState, newMode. Because these are not included, the Consumer can invoke this operation after markup has been returned to the End user, as the Consumer need not because of this operation.

3.4.4 Continuing with the markup

Handling the getMarkup is optional if the Producer returned markup in performInteraction or performBlockingInteraction. Otherwise the getMarkup occurs just as defined above, with the addition of the correct window state, mode, navigationalState, and sessionContext.

3.5 Producer-Termination Flow

If the Consumer invoked the register operation at the beginning of its relationship with the Producer, then the Consumer invokes the deregister operator at the end of its relationship with the Producer [MUST], sending the registrationContext it received when it registered.

The relationship is considered ended when the invocation is successful. [MUST] This means that the Consumer continues to invoke the deregister operation until successful.

4 Producer with More Than One Entity

This scenario is based on the Minimal Producer scenario. In this scenario, the Producer exposes more than one entity. The scenario will describe only the changes from the base scenario.

The example exposes two entities – theFirstEntity and theSecondEntity.

4.1 Operations

The Producer still implements the same operations as the base operation.

4.2 getServiceDescription
The getServiceDescription operation will now returning the description of the two entities.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities



<entityHandle>theFirstEntity</entityHandle


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>


</offeredEntities>


<offeredEntities>



<entityHandle>theSecondEntity</entityHandle>


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>


</offeredEntities>

</getServiceDescriptionResponse>

4.3 getMarkup
In this scenario, the Producer does not ignore the entityContext, instead it looks at the entityHandle to determine which markup to return.

For example, if the entityHandle is theFirstEntity, the Producer returns the following XML:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font"><p>Hello, world!</p></div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

while if the entityHandle is theSecondEntity, it returns the following XML:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font"><p>Goodbye, world!</p></div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

5 Consumer with Two Entities From Same Producer

This scenario is based on the Minimal Consumer scenario and the Producer with More Than One Entity scenario. In this scenario, the Consumer embeds the two entities from the Producer.

Just like in Minimal Consumer, the Consumer does not assume anything about the Producer’s or entities’ meta-data.

The scenario will describe only the changes from the base scenario.

5.1 Producer-Initialization Flow

The same initialization is done, except that now the per-entity meta data is read for the two entities it intends to embed.

Note that invoking register is per-Producer, and not per-entity. Thus, in this scenario, register is invoked only once.

5.2 End-User-Initialization Flow

If requiresInitCookie is “perUser”  and the Consumer and Producer are communicating via HTTP, or if requiresInitCookie is “perGroup” and the groupID of all the entities it wishes to embed is the same groupID, then the Consumer invokes the initCookies exactly like in the base scenario.

If requiresInitCookie is “perGroup”, but the groupID of the two entities is different, then the Consumer invokes the initCookie operation twice (once for each group) for each end user, and stores the returned cookies (returned in the Set-Cookie headers) for later incorporation into the other operations from the same end-user and same group [MUST].

5.3 First Page Composition Flow

Like in the base scenario, the Consumer invokes getMarkup to retrieve the markup it wishes to incorporate into it’s page. This time, it invokes getMarkup twice – once for each entity. Note that the getMarkup-s can be invoked in parallel.

For example, the Consumer sends the following XML for the first getMarkup:

<getMarkup


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<registrationContext>



the context returned from the register operation, or nothing if no registration


</registrationContext>

<entityContext>



<entityHandle>theFirstEntity</entityHandle>


<entityState></entityState>

</entityContext>


<runtimeContext />


<userContext>



<userContextID />

</userContext>


<markupParams>



<clientData>




<userAgent>





Mozilla/4.5 (Macintosh; U; PPC)




</userAgent>



</clientData>



<secureClientCommunications>




false [see below]


</secureClientCommunications>



<userAuthentication>false</userAuthentication>



<locale>en</locale>



<markupCharacterSet>UTF-8</markupCharacterSet>



<markupType>text/html</markupType>



<mode>view</mode>



<windowState>normal</windowState>



<navigationalState>???</navigationalState>


<templates>




[see below]



</templates>


</markupParams>

</getMarkup>

The second getMarkup is identical except for the entityHandle which is theSecondEntity.

5.3.1 secureClientCommunications
If needSecureCommunication of an entity is true, then the Consumer must receive the markup via a secure connection (e.g. use SSL when using HTTP), and if sending it back to the End User, must send it back via a secure connection. Note that in the case of two entities, when sending the combined markup back to the end user, it is sufficient for one of the entities to declare that it needSecureCommunication for the returned markup to be returned securely.
5.3.2 templates
If doesUrlTemplateProcessing is true, the Consumer supplies templates to enable Producer URL-writing [MUST]. To enable the Consumer to differentiate between these interaction URL-s afterwards, the templates are usually different and indicate the entityHandle of the invoker of the interaction. The NameSpacePrefix should also be different.

For example, the Consumer sends the following XML to theFirstEntity:


<templates>



<DefaultTemplate>




http://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}&eh=theFirstEntity



</DefaultTemplate>


<SecureDefaultTemplate>




https://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}&eh=theFirstEntity



</SecureDefaultTemplate>



<NameSpacePrefix>FJH1</NameSpacePrefix>


</templates>
while it sends the following XML to theSecondEntity (the only difference is in the eh URL parameter and the NameSpacePrefix):


<templates>



<DefaultTemplate>




http://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}&eh=theSecondEntity



</DefaultTemplate>


<SecureDefaultTemplate>




https://consumer.com/containerpage?ut={urlType}&ns={wsrp-navigational-state}&m={wsrp-mode}&ws={wsrp-windowState}&res={wsrp-url}&eh=theSecondEntity



</SecureDefaultTemplate>



<NameSpacePrefix>FJH2</NameSpacePrefix>


</templates>
5.3.3 Processing the markupResponse

5.3.3.1 Processing markupResponse/sessionContext
The processing is exactly the same as in the base scenario, except that the processing is done once per entity and the sessionContext is stored per entity and generally (as in the base scenario) per client session.

5.3.3.2 Processing markupResponse/markupContext
The processing is exactly the same as in the base scenario, except that the processing is done once per entity.

5.3.3.3 Inserting the markup in the Consumer page

The processing is exactly the same as in the base scenario, except that the processing is done once per entity.

5.3.4 Consideration on usesMethodGet
The processing is exactly the same as in the base scenario, except that the processing is done once per entity.

5.3.5 Processing “Resource” requests

The processing is exactly the same as in the base scenario.

5.4 Next Page Composition Flow

Processing the next page is similar to the base scenario, except for the following differences:

· The interaction URL will indicate which entity the end user interacted with. A typical way to do this is to embed the entity handle in the interaction URL.

· When invoking the performBlockingInteraction, performInteraction, and/or getMarkup, the appropriate entityHandle are be sent.

· The Consumer will invoke performBlockingInteraction or performInteraction only on the entity the user interacted with
.

· For the other entities (and optionally for the entity the user interacted with, if the performInteraction/performBlockingInteraction did not return markup) the Consumer invokes their getMarkup as defined in the base scenario [SHOULD]. The getMarkup-s can be invoked in parallel if the Consumer wants to, except for the entity the user interacted with, whose getMarkup is invoked after the performInteraction/performBlockingInteraction [MUST
].

· If the interaction URL’s urlType indicates to the Consumer to invoke performBlockingInteraction, then the Consumer invokes it before invoking the getMarkup-s [MUST]. 
5.4.1 Invoking performBlockingInteraction
Invoking the performBlockingInteraction is similar to the base scenario, except that the Consumer must send the entityHandle of the entity which performed the interaction, and pass the correct sessionContext of the entity.

5.4.1.1 Processing the performBlockingInteraction response

Processing the response is a bit different than the base scenario, so it will be reconstructed here:

The Consumer processes redirectURL like in the base scenario.

If no redirectUrl field exists, the updateResponse field is processed:

· navigationalState: this field indicates that the entity wishes to (again) change it’s navigationalState. The Consumer stores this information so that future invocations of getMarkup for this page and entity should use this value [MUST]. Storing this information in the URL (as discussed in the base scenario) is still a good way to do this, although it should store the navigationalState in a URL parameter that is specific to that entity so that the navigationalState of each entity is independent. This approach will not scale to more than two or three entities, so a different approach is needed if the Consumer wishes to enable simultaneous navigation of more than three entities. An alternative approach would be to store this information in the Consumer’s end user session.
· sessionContext: the Consumer stores this information per entity and per user so that later markup interface operations to this entity send it.

· newWindowState/newMode: these fields indicate that the entity wishes to change its window state and/or mode. The Consumer stores this information so that future invocations of getMarkup for this page and entity should use this value [MUST]. Storing this information in the URL (as discussed in the base scenario) is still a good way to do this, although it should store the information in a URL parameter that is specific to that entity so that the information for each entity is independent. This approach will not scale to more than two or three entities, so a different approach is needed if the Consumer wishes to enable simultaneous navigation of more than three entities. An alternative approach would be to store this information in the Consumer’s end user session.
· markupContext: the Producer can choose to return markup with this operation. The Consumer can use this markupContext instead of invoking getMarkup afterwards, or it can choose to ignore this markup and invoke getMarkup again instead.
5.4.2 Invoking performInteraction
Invoking the performBlockingInteraction is similar to the base scenario, except that the Consumer must send the entityHandle of the entity which performed the interaction, and pass the correct sessionContext of the entity.

This operation can also be invoked in parallel to the getMarkup of the other entity (the entity that did not interact with the end user), although not in parallel with the getMarkup of the interacting entity.

5.4.3 Continuing with the markup

The Consumer invokes getMarkup for the first and second entity, passing the correct entityHandle, sessionContext, navigationalState, windowState, and mode. These can be invoked in parallel with each other.

Handling the getMarkup of the interacting entity is optional if the Producer returned markup in performInteraction or performBlockingInteraction.

5.5 Producer-Termination Flow

This is exactly like the process in the base scenario.

6 Producer Entity with More Than One Page – Producer URL Writing

This scenario is based on the Minimal Producer scenario, and enhances it by making the entity have two pages with links between one another. The Producer chooses to use Producer URL writing in its entity.

6.1 Operations

The Producer implements the same operations as the base scenario (i.e. only getServiceDescription and getMarkup).

6.2 getServiceDescription
Exactly like the base scenario, except that the entity’s doesUrlTemplateProcessing needs to be true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities>



<entityHandle>theOnlyEntity</entityHandle>


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>



<doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>


</offeredEntities>

</getServiceDescriptionResponse>

6.3 getMarkup
As getMarkup now needs to return two pages, it needs to receive this information. The Producer can send this information to itself in the navigationalState using the interaction parameter wsrp-navigationalState.

The Producer ignores the same parameters as in the base scenario, except for navigationalState. Based on the navigationalState it will know which page to display.

For example, the Producer decides that the navigationalState for the first page is simply the string “1” and for the second page it is the string “2”. This example also Assumes the Consumer URL templates are the ones in templates.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, world! This is the first page!</p>






<a href=" http://consumer.com/containerpage?ut=Render&ns=2&m=view&ws=normal&res=”>







click here for the second page






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

If the navigationalState sent by the Consumer is “2”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, world! This is the second page page!</p>






<a href=" http://consumer.com/containerpage?ut=Render&ns=1&m=view&ws=normal&res=”>







click here for the first page






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

7 Producer Entity with More Than One Page – Consumer URL Writing

This scenario is based on the Minimal Producer scenario, and enhances it by making the entity have two pages with links between one another. The Producer chooses to use Consumer URL writing in its entity.

7.1 Operations

The Producer implements the same operations as the base scenario (i.e. only getServiceDescription and getMarkup).

7.2 getServiceDescription
Exactly like the base scenario, except that the entity’s doesUrlTemplateProcessing needs to be true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities>



<entityHandle>theOnlyEntity</entityHandle>


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>



<doesUrlTemplateProcessing>false</doesUrlTemplateProcessing>


</offeredEntities>

</getServiceDescriptionResponse>

7.3 getMarkup
As getMarkup now needs to return two pages, it needs to receive this information. The Producer can send this information to itself in the navigationalState using the interaction parameter wsrp-navigationalState.

The Producer ignores the same parameters as in the base scenario, except for navigationalState. Based on the navigationalState it will know which page to display.

For example, the Producer decides that the navigationalState for the first page is simply the string “1” and for the second page it is the string “2”.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, world! This is the first page!</p>






<a href="wsrp-rewrite?Render&wsrp-navigationalState=2&wsrp-mode=view&wsrp-windowState=normal/wsrp-rewrite”>







click here for the second page






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>true</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

If the navigationalState sent by the Consumer is “2”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, world! This is the second page page!</p>






<a href="wsrp-rewrite?Render&wsrp-navigationalState=1&wsrp-mode=view&wsrp-windowState=normal/wsrp-rewrite”>







click here for the first page






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>true</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

8 Producer Entity with POST

This scenario is based on the Minimal Producer scenario, except that the end user can POST information in the first page, which the Producer processes to show a second page. Just like in Producer Entity with More Than One Page – Producer URL Writing, the Producer needs to differentiate between getMarkup for the first page, and getMarkup for the second page. And just like in that scenario, the tool for that is the navigationalState field in getMarkup and the interaction parameter wsrp-navigationalState.

Unlike that scenario, the second page’s getMarkup needs information – information that was posted from the first page. This information can be stored in two places –

· The Producer session. This makes the amount of information theoretically limitless, but makes the Producer stateful and session-based.

· the navigationalState. This enables the Producer to remain stateless, but limits the amount of information that can be stored.

This scenario will use the first method. A similar scenario, Producer Entity with POST & Redirect, will use the second method.

In the example, the first page queries for name and age of the user, which it posts to the second page, which displays them.

8.1 Operations

The Producer implements the following operations [the Producer MUST implement them]:

· getServiceDescription

· getMarkup
· performInteraction: because getting the POST information can only be done using performInteraction and performBlockingInteraction (via the uploadData field), the Producer chooses to use performInteraction because it doesn’t restrict the Consumer as much as performBlockingInteraction, and the Producer does not need the additional capabilities of performBlockingInteraction.

· performBlockingInteraction: the implementation can be an empty implementation which fails.

· initCookie: the implementation can be an empty implementation which returns “void”.

8.2 getServiceDescription
Exactly like the base scenario, except that the entity’s doesUrlTemplateProcessing needs to be true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities>



<entityHandle>theOnlyEntity</entityHandle>


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>



<doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>


</offeredEntities>

</getServiceDescriptionResponse>

8.3 getMarkup
The Producer ignores the same parameters as in the base scenario, except for navigationalState and sessionHandle. Based on the navigationalState it will know which page to display. The sessionHandle will point to the Producer session which holds the name and age inputted in the first page (see performInteraction to understand how the information got into the session).

For example, the Producer decides that the navigationalState for the first page is simply the string “1” and for the second “result” page it is the string “1result”. This example also assumes the Consumer URL templates are the ones in templates.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<p>Hello, world! This is the first page!</p>





<form action=" http://consumer.com/containerpage?ut=Action&ns=2&m=view&ws=normal&res=”>





<div class=”portlet-form???
”>Enter your name:</div>





<input class=”form-input-field” 

                               type=”input” id=”FJH1_Name”></input>





<div class=”portlet-form???”>Enter your age:</div>





<input class=”form-input-field” 

                               type=”input” id=”FJH1_Age”></input>





</form>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

If the navigationalState sent by the Consumer is “1result”, the following XML will be returned (assuming the information in the Producer was that the name is Gil Tayar and the age is 18
:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, Gil Tayar! What an age 18 is!</p>






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

Note the fact that even if this entity had used Consumer URL writing, the requiresUrlRewriting in the second XML would still have been false, because there are no links in that page page.

8.4 performInteraction
Because the first page includes a <form method=post>, and that POST data reaches the Consumer (through the mechanism of URL writing), the Producer can receive it only by implementing performInteraction or performBlockingInteraction. This Producer chooses to use performInteraction because it doesn’t restrict the Consumer as much as performBlockingInteraction, and the Producer does not need the additional capabilities of performBlockingInteraction (e.g. changing navigationalState because of the interaction).

The Producer ignores the same parameters as in the base scenario’s getMarkup. Note that it also ignores sessionHandle because it does not need to read information from the session in performInteraction, only to write information to it. Reading the information from the session is done in getMarkup.
The Producer ignores most of the fields in interactionParams too, except for the uploadContext which contains the POST-ed data.

For an example of such an uploadContext, see Invoking performBlockingInteraction in Minimal Consumer. Assuming such an uploadContext, the Producer returns the following XML (assuming it doesn’t return markup):

<interactionResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<sessionContext>



<sessionHandle>




a handle to the Producer session which includes the name and age sent in the uploadData. This is producer-implementation-dependent.



</sessionHandle>



<expires>3600</expires>


</sessionContext>

</interactionResponse>

9 Producer Entity with POST & Redirect

This scenario is based on Producer Entity with POST, except for the fact that it stores the information in the navigationalState and not in the session (see getMarkup in Producer Entity with POST for a description of the differences between the two methods).

This necessitates performInteraction to change the navigationalState, but because the this operation cannot change the navigationalState, the Producer uses performBlockingInteraction. This is very similar to existing Web applications redirecting as a result of a POST. In fact, if the Producer returns new navigationalState from a performBlockingInteraction operation, some Consumers will redirect the user agent to reflect the change in the navigationalState (see Processing the performBlockingInteraction response in Next Page Composition Flow of the Minimal Consumer scenario).

9.1 Operations

The Producer implements the following operations [the Producer MUST implement them]:

· getServiceDescription

· getMarkup
· performInteraction: the implementation can be an empty implementation which fails.

· performBlockingInteraction: because getting the POST information and returning a new navigationalState as a result can only be done using performBlockingInteraction the Producer chooses to implement this operation.

· initCookie: the implementation can be an empty implementation which returns “void”.

9.2 getServiceDescription
Exactly like the base scenario, except that the entity’s doesUrlTemplateProcessing needs to be true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities>



<entityHandle>theOnlyEntity</entityHandle>


<markupTypes>



<markupType>text/html</markupType>




<locales>en</locales>




<modes>view</modes>




<windowStates>normal</windowStates>



</markupTypes>



<doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>


</offeredEntities>

</getServiceDescriptionResponse>

9.3 getMarkup
Just like in Producer Entity with More Than One Page – Producer URL Writing, the Producer needs to differentiate between getMarkup for the first page, and getMarkup for the second page. And just like in that scenario, the tool for that is the navigationalState field in getMarkup and the interaction parameter wsrp-navigationalState.

Unlike that scenario, the second page’s getMarkup needs information – information that was posted from the first page. As discussed above, This information will be stored by performBlockInteraction in the navigationalState.
The Producer ignores the same parameters as in the base scenario, except for navigationalState. Based on the navigationalState it will know which page to display and what information to display in it.

For example, the Producer decides that the navigationalState for the first page is simply the string “1” and for the second “result” page it is the string “1result?name=name&age=age”. This example also assumes the Consumer URL templates are the ones in templates.

If the navigationalState sent by the Consumer is “1”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<p>Hello, world! This is the first page!</p>





<form action=" http://consumer.com/containerpage?ut=BlockingAction&ns=2&m=view&ws=normal&res=”>





<div class=”portlet-form???
”>Enter your name:</div>





<input class=”form-input-field” 

                               type=”input” id=”FJH1_Name”></input>





<div class=”portlet-form???”>Enter your age:</div>





<input class=”form-input-field” 

                               type=”input” id=”FJH1_Age”></input>





</form>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

If the navigationalState sent by the Consumer is “1result?name=Gil+Tayar&age=18
”, the following XML will be returned:

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font">






<p>Hello, Gil Tayar! What an age 18 is!</p>






</a>





</div>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>false</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

Note the fact that even if this entity had used Consumer URL writing, the requiresUrlRewriting in the second XML would still have been false, because there are no links in that page.

9.4 performBlockingInteraction
Because the first page includes a <form method=post>, and that POST data reaches the Consumer (through the mechanism of URL writing), the Producer can receive it only by implementing performInteraction or performBlockingInteraction. because getting the POST information and returning a new navigationalState as a result can only be done using performBlockingInteraction the Producer chooses to implement this operation.

The Producer ignores the same parameters as in the base scenario’s getMarkup. Note that it also ignores sessionHandle because it does not need to read information from the session in performInteraction, only to write information to it. Reading the information from the session is done in getMarkup.
The Producer ignores most of the information in interactionParams, except for the uploadContext which contains the POST-ed data.

For an example of such an uploadContext, see Invoking performBlockingInteraction in Minimal Consumer. Assuming such an uploadContext, the Producer returns the following XML (assuming it doesn’t return markup):

<blockingInteractionResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<updateResponse>



<navigationalState>




1result?name=Gil+Tayar&age=18



</navigationalState>


</updateResponse>

</interactionResponse>

10 Producer that Includes Resources to be Proxied

This scenario is based on Minimal Producer, but the single HTML page returned includes an image, which the Consumer has to proxy (as described in Processing “Resource” requests in the Minimal Consumer scenario). The Producer uses Producer URL writing.

10.1 Operations

· The Producer implements the same operations as in the basic scenario.

10.2 getServiceDescription
The getServiceDescription implementation is similar to the basic scenario’s, except that doesUrlTemplateProcessing is true.

For example, the Producer returns the following XML:

<getServiceDescriptionResponse 


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<offeredEntities> [while not required, is essential for the Consumer to send meta-data to consumer]


<entityHandle>theOnlyEntity</entityHandle> [required]



<markupTypes> [required]




<markupType>text/html</markupType> [required]



<locales>en</locales> [required]



<modes>view</modes> [required]



<windowStates>normal</windowStates> [required]


</markupTypes>



<doesUrlTemplateProcessing>true</doesUrlTemplateProcessing>


</offeredEntities>

</getServiceDescriptionResponse>

10.3 getMarkup
The Producer ignores the same parameters and fields as in the basic scenario. The only difference is in the markup returned.

For example, the Producer returns the following XML (assuming the Consumer sends the templates defined in templates in the Minimal Consumer scenario):

<getMarkupResponse


xmlns="http://www.oasis-open.org/committees/wsrp/v1/wsdl/types">


<markupContext>



<markup>




<![CDATA[





<div class="portlet-font"><p>Hello, world!</p></div>





<img src=” http://consumer.com/containerpage?ut=Resource&ns=&m=&ws=&res=http://producer.com/images/sayhello.jpg”></img>




]]>



</markup>



<locale>en</locale>



<markupType>text/html</markupType>



<requiresUrlRewriting>true</requiresUrlRewriting>


</markupContext>

</getMarkupResponse>

11 Producer that Supports More Modes

12 Producer that Supports More Window States

13 Consumer that Supports More Modes

14 Consumer that Supports More Window States

15 Producer that Supports Registration

16 Producer that Supports Entity Management

17 Consumer that Supports Entity Management





































� What it no requiresRegistration is false? Should the element be empty, or just not be there?


� There is nothing in the spec that says what entity state to send before invocation of an entity management operation.


� How does the Consumer know what to put here for the first page?


� What is the information I need to put in for the first page?


� Ambiguous requirement: Required by the spec, but not required by the WSDL.


� Can a SOAP endpoint have a secure and a non-secure endpoint? If not, how do we solve this?


� There is no SHOULD or MUST in the spec about this.


� The consumer is not really obligated to add the three above parameters to the template. Thus, the consumer is not obligated in the next page to send them to the getMarkup/perform*Interaction operations. I think a MUST should be added in the form: “if the Consumer wishes to preserve the flow of the entity application, it MUST use these parameters in the template, and MUST pass those parameters in the next invocation of the getMarkup/perform*Interaction operations.” If this sentence will not be there, then even if the Consumer does all the MUST-s, we won’t have a working Producer which embeds its UI flow inside the Consumer! This type of sentence should probably occur in a lot more places.


� I think this should be a MUST: “if the Consumer wishes to preserve the flow of the entity application, it MUST preserve the sessionContext and send it in subsequent invocations” 


� Are we uppercasing acronyms or not? In other words, is it requiresUrlRewriting or requiresURLRewriting.


� This is not defined as a MUST in the v0.85 spec. I think it should be.


� I believe this should be a MUST: “if the Consumer wants the markup to look good, the Consumer MUST…”


� Is the Consumer allowed to do otherwise? E.g., to invoke performInteraction on a Render urlType? The spec does not disallow it. It think it should.


� This field is optional, yet the semantics of what it means not to have this field are not defined.


� Should this be a MUST? I think it should.


� This is not in the spec, but I believe it should be.


� This should be a SHOULD, no?


� The wording in the spec says “MUST”, but not explicitly.


� This should be a MUST.


� This is not a MUST, but it MUST be!


� I’m not sure what the class for an input field label is.


� One can dream…


� I’m not sure what the class for an input field label is.


� One can dream…





�PAGE \# "'Page: '#'�'"  ��Woefully inadequate.


�PAGE \# "'Page: '#'�'"  ��Woefully inadequate.





Requirements from WSRP Producers and Consumers
1



