WSRP WSDP Report

Draft 0.1

WSRP WSDL sub group

Andre.Kramer@eu.citrix.com

17th Jan 2002

Introduction

The WSRP Specification Lead/Editor and the (ad hoc) WSRP Technical Committee WSDL sub-group have realized the pre-1.0 WSRP specification [WSRP], as a SOAP [SOAP] Web Service, using the WSDL 1.0 [WSDL] language for Web Service description and W3C’s XML Schema [Schema], as supported by some common Web Service stacks.

This non-normative note describes the approach taken, lessons learned, and issues found with current Web Service stacks, experience which, we hope, will help other implementers of the WSRP specifications, as well as provide insight on how the 1.0 WSRP Web Service description may evolve.

Philosophy followed

Our Web service description aims for both maximum interoperability and strict expression of specification interface type. The WSRP specification is factored into four operational interfaces, with supporting structural types.

These are modeled in W3C’s XML Schema, within, or included from within, WSDL <types/> declarations [WSRP_v1_Types.xsd and WSRP_v1_Interfaces.wsdl]. Concrete bindings are provided for SOAP over http [WSRP_v1_Binding.wsdl]. This allows interoperable WSRP services to be constructed using the well-known port names introduced (e.g. bind:WSRP_v1_Markup_Binding_SOAP)
.

The chosen style of interface description is document / literal (see the WSDL 1.0 spec for details). Not only does this style fit naturally with our markup-oriented service
, leveraging XML Schema (in preference to the legacy SOAP Section 5 encoding style) helps facilitate both interoperability and extensibility. This aligns with the best practice of the WS-I’s (www.ws-i.org) Basic Profile [WS-I], which documents interoperability recommendations that we have followed as closely as possible.

The WSDL was tested against Apache’s Axis [AXIS], Microsoft’s Visual Studio .NET [.NET] and Sun Microsystems JAXRPC Reference Implementation [JAXRPC]
. Only basic interoperability was validated (and only on an informal basis) between the Axis and .NET Web service stacks.

Under the above approach, we have encountered several areas of concern, to the WSRP WSDL implementer, which we work through individually below. An appendix lists some of the many plain bugs that we encountered in our Web stacks. The WSDL described currently works as is for .NET

, but requires support for the xml:lang attribute which is missing in Axis 1.0 (the author can provide a hack / work around for his open Apache Axis bug).

We strongly encourage all WSRP developers to use the WSDL and leverage XML Schema based Web tool chains, rather than hand coding SOAP messages, even if the current tools are somewhat lacking
, as this is the best road to higher performance, scalable, robust, interoperable Web Services.

Extensibility

An advantage of document / literal style is that additional XML document elements can be allowed for in schema types using “xs:any”. However, the JAXRPC RI failed to (de)serialize elements containing schema “any”s to Java types (i.e. produced XML nodes rather than schema specific Java classes). Also, whether or not additional elements are only for vendor extensibility or for (future) protocol extensibility had not been completely resolved. The >1.0 WSDL wraps vendor extensions up as an <extensions/> element. These can have multiple occurrences and may contain any XML elements (as long as these are from another namespace):

<complexType name="Extension">

<sequence>

<any namespace="##other" />

</sequence>

</complexType>

<element name="extensions" type="Extension" minOccurs="0" maxOccurs="unbounded" />

Note that, since minOccurs=”0” makes such extensions completely optional; thus requiring no on-wire representation, there is (virtually) no cost when such optional elements are not used. A lot of the protocol encoding makes use of such minOccurs=”0” elements. Nillable (nillable=”true”) elements, actually sent on the wire with an xsi:nil=”1” attribute, are only used in optional (positional) request / reply message parts and where the semantics actually require a “null” value for a protocol field
.

The WSDL introduces three new namespaces for WSRP:

urn:oasis:names:tc:wsrp:v1:types XML Schema types

urn:oasis:names:tc:wsrp:v1:intf message and port types

urn:oasis:names:tc:wsrp:v1:bind bindings for SOAP

Vendors may use the StringArray and NamedStringArray complex types for their extensions, but are encouraged to define their own, properly namespaced, schema. In any case, the current Web Stacks return “xs:any” sequences as arrays of (DOM or DOM-like) XML Node objects, requiring extensions to be marshaled by custom code.
Schema Types, type extension and restrictions

Early Axis stacks had problems returning polymorphic derived types and, as explained later, .NET requires the XmlInclude attributes for alternative argument & return types. Also, the <choice/> content model is not well supported currently. These severely limited the potential power of XML Schema typing.

JAXRPC RI even had problems with simple derive by extension schema types. This prevented expression of type commonality, for example for the related request/reply messages in the Markup interface factor.

JAXRPC RI also had an issue with simple string type restriction. This prevented the WSDL from specifying the limit bounds (xsd:minLength and xsd:maxLength) on our key or identity types: xsd:string is used instead of Handle, Key, ID restrictions.

Type Checking

Both Axis and .NET standard (de)serializers do not currently completely enforce XML Schema. Non-optional elements or attributes can be omitted without the sending or receiving stacks complaining. Therefore, use="required” on attributes and minOccurs=”1” on elements, currently are only a specification help, for the WSRP developer, and must be verified manually
.

Transport Issues

Current Web stacks need to have http cookie [COOKIES] support explicitly enabled. This is required for ServiceDescription.requiresInitCookie<>”none” but we strongly advice cookies to always be enabled, so that (other) transport level cookies can be utilized by WSRP producers (e.g. for Portlet session performance or single sign in purposes). Call setMaintainSession(true) on Axis stubs or use a .NET System.Net.CookieContainer object.

Axis 1.0 shares cookies between stubs. One simple work around is to modify the Axis stub, containing initCookie(), setting up a new Service object:

super.service = new org.apache.axis.client.Service();

Most stacks use UTF-8 for SOAP message character encoding. This impacts the char set of our markup “payload”. [The authors (possibly controversial) advice is to aim to use UTF-8 for all markup (and localized strings) or to fall back to encoding the markup (or any other strings) as xsd:base64Binary or (in future) as an attachment if a different character set can not be avoided.]

The SOAPAction values in our bindings are not to be viewed as a protocol requirement. Implementations SHOULD assert them in requests but MUST NOT rely on SOAPAction http headers being present.
Faults

We found that the Web Stacks did not offer much in the way of value-added support for Exception handling. SOAP fault codes and fault details have to be set up by hand. Some stacks map SOAP faults to unchecked language exceptions. Extra application level data could not easily be passed by exception. This resulted in at least one error return type being defined (complexType DestroyFailed).

Attachments

A simple SOAP protocol extension to tunnel binary data without base64 encoding would greatly improve performance. As a superset of this idea, various Attachment mechanisms have been proposed by the Web Service community to add (possibly multiple) binary (MIME) files/documents to SOAP messages. These can carry markup (binary and non-XML mime types) or be used to upload (multiple) binary files.

Axis supports both SOAP messages with (MIME) Attachments [SOAPwithAttchments] and [DIME/WS-Attachment]; while .NET (with Web Service Enhancements 1.0) only supports DIME; and JAXRPC implementations are only required to support SOAP with Attachments. We have not fully tested these where interoperability is possible.

WSRP Producer attachment support needs to be advertised (e.g. as extra port names) but can be activated at runtime (for .NET DIME support could even be discoverable at registration time; Axis?). DIME should be useable with no impact on the WSDL
.

Schema Introspection

Not only did we encounter problems with imports of standard built-in schema definitions (Axis 1.0: - see commented imports in WSDL), as well as with xml:lang and xsi:schemaLocation attributes, the current generation of Web Stacks can not handle reflective references to xsd:schema (useful in complexType ModelDescription). .NET even requires an XmlInclude attribute on Web Service methods to prime serialization for unexpected types. While, not strictly required for 1.0, this lack of schema introspection ability causes us concern with extensible property description of rich types in the >1.0 future.

Appendix – Bug Parade

Here, we list some of the minor problems with Web Stacks encountered that are plainly bugs and which did not get fixed by Web stack releases, so continue to pollute our WSDL in the 1.0 timeframe or impact WSRP implementations based on these Web Stacks. They are culled from the WSRP WSDL sub group’s WSDL working issues list:

Axis 1.0 can operate in two code generation modes, either passing operation parts as method arguments (default) or passing the whole request as a single argument (the --noWrapped or –W command line flag to wsdl2java selects this mode). The default mode currently has interoperability problems with minOccurs/nillable elements and, in our view, is inappropriate for document/literal style. We recommend -W be used with wsdl2java.

Axis times out as the default maximum wsdl2java compilation time limit is too low (there should not be any limit in the first place). Use --timeout to increase the default.

Axis does not generate any code for default values (both elements and attributes defaults are missing). If the default value in the WSDL is not a Java default value (e.g. 0 for int; false for boolean) then the marshaling classes that are generated need to be modified to establish the correct defaults (rather than punting the problem up to the WSRP service developer).

The Axis client code opens a new http connection per SOAP request. This is not considered adequate for a production system.

.NET can not handle XML Schema <include/>s from the IDE. Use wsdl.exe to build the .NET Web Service Client. Believed to be fixed in a future version.

.NET wsdl.exe does not like the WSRP_v1_Types.xsd to be given as an input on the command line. Don’t add .xsd files that have a targetNamespace as command line arguments.

JAXRPC prevented the following XSD types being employed: xsd:anyURI, xsd:date. We use xsd:string and xsd:dateTime respectively for 1.0.

The JSR-101 is also somewhat overly strict on number and naming of message parts for document/literal style.

JAXRPC Reference Implementation showed other significant problems (such as incomplete server side fault handling for document/literal style) that we understand are being corrected by Sun.

[WSRP] http://www.oasis-open.org/committees/wsrp/documents/wsia_wsrp_interface_spec_v0.85.pdf
[WSDL] http://www.w3.org/TR/wsdl#_wsdl
[SOAP] http://www.w3.org/TR/SOAP/
[Schema] http://www.w3.org/XML/Schema
[WS-I] http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm
[AXIS] http://xml.apache.org/axis/index.html
[.NET] http://www.microsoft.com/net/
[JAXRPC] http://www.jcp.org/en/jsr/detail?id=101
[Using WSDL in a UDDI Registry, version 1.08, OASIS UDDI Spec TC. 2002]

[COOKIES] http://www.ietf.org/rfc/rfc2109.txt
[SOAPwithAttachments] http://www.w3.org/TR/SOAP-attachments
[DIME/WS-Attachment] http://www.ietf.org/internet-drafts/draft-nielsen-dime-soap-01.txt
[WSRP_v1_Types.xsd] WSRP structures

[WSRP_v1_Interfaces.wsdl] WSRP request and reply message elements

[WSRP_v1_Binding.wsdl] WSRP SOAP binding

� As SOAP access endpoints, for both http and https, using WSDL <service/> elements or following recommended UDDI usage conventions [Using WSDL in a UDDI Registry, version 1.08, OASIS UDDI Spec TC. 2002]. In the author’s view, service endpoint (i.e. URLs for SOAP calls) discovery is not currently well supported, e.g. consider parsing any service wsdl document looking for WSRP port types in service elements.

� In a future post-HTML4.0 world, operations will be able to include, properly namespaced XML markup directly in service requests and responses.

� Axis’s wsdl2java and .NET’s wsdl.exe were among the WSDL processors / code generators used.

� It may not be usable as is from the Visual Studio IDE as a Web Reference, but will work with wsdl.exe. [Problem with locating the .xsd doc referenced by a XML Schema <import/> or <include/>.]

� At least that was the case for .NET, until the <element ref="xsd:schema" minOccurs="0" /> construct was uncommented, at the last minute, thus ensuring the WSDL works for none of the tested Web Stacks.

� The WSRP Primer follows a different approach for pedagogical reasons.

� Though not causing an interoperability problem, using both minOccurs=”0” and nillable=”true” is best avoided.

� The intf namespace does not make it into the wire. Internal to our wsdl only.

� Hardly a good starting point for robust and secure, typed Web Services.

� Currently only draft proposals for WSDL extensions for WS-Attachments exist.

