WSIA/WSRP Joint Interfaces Specification

OASIS WSIA/WSRP Joint Interfaces/Metadata Subcommittee

Last updated: 2002-05-28 DRAFT 0.44

1. Introduction

This specification provides an informal straw man interface for the joint WSIA/WSRP interfaces subcommittee. It is based on the embedded use case requirements gathered in the WSIA and WSRP committees and on the concrete proposals to both committees.

The interface provided here is a broad sketch, as a starting point for discussions, and is probably full of inconsistencies, awkwardness, and plain bugs. Open issues like stateless vs. stateful Web Services, optionality of operations, transient and persistent state, and the general flow of the invocations are discussed briefly but not dealt with in depth.

2. Lifecycle Interfaces

Requirements for Lifecycle

Requirement: enable Producers to access internal information of a certain scope and lifetime (e.g. information relevant between pages of the same session, or information relevant between sessions).

Because WSIA/WSRP are connectionless interfaces (as all SOAP interfaces are), the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it. Two types of stateful information exist:

Types of Stateful Information
1. User related: Stateful information whose scope is the user. A reference to this information is returned by the Producer which it expects to get it back in all operations that occur within this user’s session.

Example: The page the user is in. The row in the table the user scrolled to. In essence, any information stored in App Server “session” objects.

2. Producer specific: Information that a Producer uses to reconnect a Consumer to a known state. This may vary from a set of data to a reference to a particular ‘object’ the Producer service endpoint is managing in addition to a set of data for that object’s use. The Producer may be willing to persist some subset of this stateful information and should indicate what belongs to that subset. The Consumer may exert control over the use of this stateful information such that it is scoped to the page, the user, the Consumer or to a persistent model.

Note that the above indicates neither the mechanism nor the amount of information to be passed between Producer and Consumer.

Terminology

A proposal for names for the above types of information:

1. Session

2. Entity

Information Passing Mechanisms

It was agreed that all information is always passed only between one Producer and one Consumer
, never directly between Producers. If the Consumer wants the information to be shared by multiple Producers, the Consumer must “mediate” this sharing. Because of this, the mechanism will boil down to one of the following:

1. A specific argument passed and returned by all operations (per type). For example:

a. createThingy
 will return an opaque reference (ie. a string), which will be sent in all operations.

OR
2. A pre-defined property (per type). For example:

a. Consumer will call getProperties(“wsrp-shared-per-container-info”) for the first portlet created in the scope. It will use the value for a setProperties() call for all portlets in that scope.

Note that it is not necessary for all types to have the same mechanism.

Amounts of Information
The amount of information that can be sent can be:

1. One information (per type). This would typically not be the information itself, but more of a “key”/”handle”/”opaque string” type of thing. For example:

a. createThingy will return a handle, or maybe all operations can return that handle (implicitly).

2. An arbitrary amount of information (this would be relevant only if we are talking about information passing mechanism #1). For example:

a. Metadata about the property will define its type, which the Consumer MUST pass use the setProperties/getProperties process outlined above.

Note again that the amount need not be the same for all types of information.

Operations

sessionID = createSession(entityHandle, propertyValues);

This operation provides means for the Consumer to explicitly request the Producer to create a user session.

The sessionID (an opaque xsd:string) may be used in subsequent getFragment()/performAction() invocations. In general sessions will be timed out by Producers and therefore an explicit destroy operation is not needed.

entityHandle = createEntity(bPersistent, entityHandle, entityType, propertyValues);

This operation provides means for the Consumer to create an entity the Producer has indicated it supports. The Boolean parameter bPersistent is an indication from the Consumer whether the entity should be persistent. The entityHandle parameter allows the state of another entity to be used as the starting state of the new entity. The entityType parameter must be selected from the set the Producer has indicated are entities it supports and provides the means for the Consumer to indicate the desired entity type when another entity is not used to initialize the state of the new entity. The passed propertyValues allow the Consumer to immediately modify the state of the created entity.

Note: Is there a need for transient Entities as distinct from user Sessions? What are some examples a Producer would store in a transient Entity rather than the session?

Note: Do Entities so created exist in an explicit hierarchy that reflects how they were created (ie. is the referenced Entity the parentEntity of the new Entity)?

The entityHandle (an opaque xsd:string) is used in all subsequent messages to identify this entity. The entityHandle can be a null string, indicating that the Producer is a stateless WSIA service (see later).

destroyEntity(entityHandle);

This operation provides a means for the Consumer to destroy the entity, in which case the Producer may dispose of the resources for that entity and invalidate the handle.

The Producer should be aware that in some cases the Consumer may not invoke destroyEntity (for example, if the Consumer application is abruptly terminated by the user) and should implement a destruction mechanism for transient Entities that is based on a timeout.

Note: Should these operations be optional for a stateless service? They can be, as stateless services will always return null. If they are, it will make things simpler for the Consumer (which will only have to call performAction).

[TS] I think for stateless services, it is not necessary to implement createEntity / destroyEntity – you can just as well directly call getFragment/performAction with a null entityHandle (ie. implicit lifecycle).

3. Presentation and Action Routing

(entityHandle, sessionID, documentFragments) =

 getFragment(entityHandle,

 sessionID,
 propertyValues,

 uniqueToken,
 controllerURL)

This operation returns a set of document fragments corresponding to the Producer’s current state. It is assumed that the document fragments are structured in a way that facilitates integration into a larger document and composition with other document fragments into a larger document.

In addition, implicit lifecycle of both sessions and entities are enabled through the returned values. An example of where this is useful for sessions is when the Consumer has no existent user session it knows should be used, but the Producer wants one back on future invocations. An example where this is useful for entities is when the Consumer passes in a handle to a persistent entity which the Producer has loaded and is now supplying a handle to a transient entity that it prefers to receive on future invocations for performance reasons.

Note: The mechanism with which the document fragments are created to facilitate composition into a larger document is being discussed in the markup subcommittee. The supplied entityHandle and sessionID are how the Consumer indicates which sets of stateful information the Producer is to use in generating the fragments.

The supplied propertyValues are to be applied to the current state prior to generating the fragments. This MUST be exactly equivalent to the Consumer executing a pair of invocations (setProperties() / getFragment()) where the propertyValues were passed to the setProperties() invocation rather than to getFragment()).

[RT]Note: Not entirely sure how the uniqueToken / controllerURL play in as parameters rather than via properties or other mechanisms … needs more discussion.

All “multi-page” user actions that require routing through the Consumer should point to the provided controllerUrl, replacing the string (actionName) with an opaque URL-encoded action string (see below).

The uniqueToken is generated by the Consumer and passed to the producer in order to “namespace” [mm1 identify? Or provide context to?] the global objects in the fragment (e.g. XML Ids, JavaScript functions and variables). The uniqueToken must begin with an alpha (Latin!) character and include only alphanumeric characters.

Note: The uniqueToken (and many other arguments) can be passed as a standard property and not as an argument. What is the guideline for deciding between the two? These guidelines should be decided in the WSDL Sub-committee.
[TS] I propose the guideline be that per-request arguments (arguments that could not also be provided in a prior setProperties() call) must be in the parameters. The arguments that affect the entity (which may also be provided in a prior setProperties call) may be in property values.

[TS] This means entity handle and session id need to be explicit parameters (you could not reasonably provide them in a prior setProperties() call) and uniqueToken, and controllerURL may theoretically be standard properties.

(entityHandle, sessionID, propertyValues, documentFragments) =

 performAction(entityHandle,

 sessionID,
 propertyValues,
 actionName,
 actionData,

 controllerURL,
 uniqueToken,
 propertyNames);

This operation allows the Consumer to route an action to the Producer where the opaque (xsd:string) actionName indicates to the Producer the action to invoke.

The entityHandle / sessionID indicate to the Producer the stateful information relevant to processing this invocation much as the discussion above. Also, propertyValues are applied against that state exactly as discussed above.

The parameter actionData is an opaque string submitted by the user when generating the action (i.e., the HTTP entity).

[TS] Would this actionData be used to e.g. hold files/form data posted from forms in the markup generated in the previous getFragment call ?

[RT] That would agree with my understanding.

This operation may return documentFragments (otherwise, null is returned). In such a case, it is required that the semantics be identical to a separate invocation of getFragment() immediately following (ie. no intervening state changes) the invocation of performAction().

This operation may return a new entityHandle and/or sessionID (otherwise, null is returned) exactly as described for getFragment().

This operation MUST return any propertyValues modified as a result of processing the invocation.

Note: Browser operations like “Refresh” and opening a bookmark generate weird scenarios in which the Consumer will (if not careful) generate performAction twice with the same action. Is this allowed? What is it’s meaning? If so, how will the Consumer know not to re-performAction?

[TS] The consumer must assure that for each action link the action is called at most once. For example, the consumer can add local action ids to links during rewriting and hold the currently acceptable local action ids in the HttpSession (for logged in users) or Web Application Context (for anonymous users without a session). When the userclicks on a link/submit button that triggers an action, the portal receives it, looks up the remote producer action ID under the local action ID, invalidates all local action Ids in the current scope and fires the action to the producer.

[MM]: Use conditions or constraints as a mechanism, or are they tagged as executed during a given session?

Use Case A – TBD

[TBD]

4. Updating State

The following operations are applicable only to stateful Producers, namely: Producers that returned a non-null response in the createInstance operation.

propertyValues = setProperties(entityHandle,

 sessionID,
 propertyValues);

This operation allows the Consumer to update the state of entity managed by the Producer.

The operation returns propertyValues describing the properties that were modified. The returned propertyValues may be a superset and/or a subset of the supplied propertyValues.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to store property values as part of its state.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support setProperties invocations. Does the fact that this operation is optional mean that the Consumer must sometimes execute different code for stateless and stateful services as stateless services will require that any and all property settings are sent on every invocation. This needs further discussion.

[MM] See previous comments on conditions or constraints, and lifecycle.

propertyValues = getProperties(entityHandle,
 sessionID,
 propertyNames);

This operation allows the Consumer to get the value of properties referenced by the entityHandle.

The Consumer may specify the list of Properties for which property values are required. Otherwise, the complete list of relevant property values is returned.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to return property values. [RT: comes and goes with setProperties()??]

A property name may include names in XPath syntax, which enables the Producer to treat its property set as a document.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support getProperties invocations. Having this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee.

[RT] Should this operation “come and go” with setProperties()
Use Case A – TBD

[TBD]

4. Description

Note: Does WSIL obviate the need for these operations?

[TS] I think there at least is significant overhead
serviceDocument = getServiceDocument(entityHandle);

This operation provides the means to request the specific WSDL Service description document for the bound service. While this may often be located through a UDDI search, this operation provides a well-defined means for locating the WSDL for this particular service regardless of how it was located. For Producers managing access to a set of dissimilar entities, this operation MUST return the appropriate WSDL document for interacting with the referenced entity. In all cases, passing a null entityHandle returns the WSDL for the base Producer service.

[RT]:The following has been unchanged, so don’t read anything into the use of ‘Template’ or ‘Instance’. Once the concepts have been nailed down and we debate the need / approach, the details of this operation should be straight forward.

retValue = hasCapability(capability);

capability = {“canCreateTemplates”, “canCreateTemplatesFromInstances”, “setAndGetProperties”, “XPathInPropertyNames”}

The ability to check which capabilities can be invoked on the Web Service. While this sometimes may be directly inferred from the WSDL, it is difficult, while the information provided is needed by the Consumer for correct interaction with the Producer. In some cases, like xpathInGetProperties, this is not inferred from the WSDL.[mm1: What about “enabled” and “available” – qualifications on service.]

Note: If the service provides access to a heterogenous set of objects, this operation may need to take an entityHandle.

Note: The WSXL proposal defined this by using WSDL portTypes. The correct method for capability/interface description should be defined by the WSDL subcommittee. The fact that there exist optional capabilities means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed (by this committee? By the WSDL committee?)

Note: Is this operation needed … would this information be available through the WSDL document? If this is done via WSDL, would this require unique proxies?

propertySchema = getPropertySchema(entityHandle);

The list of Properties supported by the Producer is defined as part of the Producer meta-data. The Property List is defined using an associated XML Schema document. For Producers managing access to a set of dissimilar entities, this operation MUST return the schema for the properties supported by the referenced entity. In all cases, passing a null entityHandle returns the property schema for the base Producer service.

Allowed schema documents for Properties must be of a specific structure to facilitate easy management by Consumer tools. The schema must represent a list of name/value pairs, each of which can be of an arbitrary type. Each Property is also associated with a URI that defines its category. [mm1: If the properties can be extended, you could use what I have seen before – abstract types and/or elements. In the case you describe an element that has a name but the context of that object is defined by the business relationship (and the namespace). For example, additionalProperty is defined dynamically by the context of the interaction. I have also seen, using XML schema, where the “list” is bounded by namespace.]
Use Case A – TBD

[TBD]

� Information concerning the interface. If portlets inside an app server/JVM want to share information/resources between them without the Consumer knowing about that, then this should not be reflected in the interface.

� Or whatever we choose to call the thing… (

OASIS WSIA/WSRP Joint Committee

Page 9 of 9

