I had been asked to sketch a possible way proposals 2 & 4 could flow through the chain Producer -> Consumer -> End-User -> Consumer -> Producer to help people see the proposals more concretely. None of the choices for how things are represented here are meant to reflect a choice the subcommittee has made, just a possible means by which things could work.

------- Possible impacts of the 2 proposals for Action type URLs --------

Proposal #2: All portlets use a predefined prefix, which is part of the specification, to do the URL boundary demarcation. The aggregator then parses the markup looking for the well known prefix.

	Entity's URL
	{StartToken}{urlType = action}{actionName}{EndToken}

	Consumer rewrites URL
	Stores Entity's URL & generates url to reference the action

	End-User browser sees
	http://Consumer.com?WSIA_urlref=5

	Post to Consumer
	Consumer does a lookup and calls Producer

	Soap invocation to Producer
	Producer.performAction(entityHandle, ..., actionName, ...)

Proposal #4: The Consumer sends URL info to use to the remote portlet, allowing it to do correct URL writing itself. The markup sent back to the Consumer is then ready for immediate inclusion in the page, with no parsing necessary.

Using Eilon's templating suggestion:

	Consumer sets Entity property
	ActionURL = http://Consumer.com?WSIA_entity=7,WSIA_actionName={actionName}{params}

	Entity's URL
	http://Consumer.com?WSIA_entity=7,WSIA_actionName=DoTransaction,parm1=foo

	Consumer passes URL as is
	

	End-User browser sees
	http://Consumer.com?WSIA_entity=7,WSIA_actionName=DoTransaction,parm1=foo

	Post to Consumer
	Consumer does a lookup of the entity and calls

	Soap invocation to Producer
	Producer.performAction(entityHandle, ..., DoTransaction, ...)

------- Possible impacts of the 2 proposals for Proxy type URLs --------

Proposal #2: All portlets use a predefined prefix, which is part of the specification, to do the URL boundary demarcation. The aggregator then parses the markup looking for the well known prefix.

	Entity's URL
	{StartToken}{urlType = proxy} {images/ok.gif}{EndToken}

	Consumer rewrites URL

 Case 1
	The Consumer acts as a proxy.

Stores Entity's URL & generates url to reference the resource. The base URL for the resource has been discovered from metadata or the self description.

	End-User browser sees
	http://Consumer. ProxyServer.com?WSIA_resourceref=12

	Request from Client
	Consumer does a lookup and serves the resource.

	
	

	Consumer rewrites URL

 Case 2
	The Consumer does not act as a proxy.

Prefixes the URL with the service's base URL (see above).

	End-User browser sees
	http://Producer.com/images/ok.gif

	Request from Client
	The client directly accesses the resource

Proposal #4: The Consumer sends URL info to use to the remote portlet, allowing it to do correct URL writing itself. The markup sent back to the Consumer is then ready for immediate inclusion in the page, with no parsing necessary.

	Consumer sets Entity property
	ActionURL = http://Consumer.com?WSIA_entity=7,WSIA_proxy={resource}

	Entity's URL
	http://Consumer.com?WSIA_entity=7,WSIA_proxy=images/ok.gif

	Consumer passes URL as is
	

	End-User browser sees
	http://Consumer.com?WSIA_entity=7,WSIA_proxy=images/ok.gif

	Request from Client
	Consumer uses the entity reference to lookup

Producer, builds the correct URL & serves the resource.

