WSIA - WSRP Interface Specification
Version 1.0
6/4/2002

WSIA - WSRP Interface Specification
Version 0.1.2
Revision History

Please use change marks if adding comments to this document.

	Date
	Version
	Description
	Author

	6/03/2002
	0.1
	Initial Draft
	Rich Thompson

	6/04/2002
	0.1.1
	Worked in some additional WSRP requirements
	Carsten Leue

	6/05/2002
	
	Added exemplary section to overview
	Rich Thompson

	6/06/2002
	
	Added request data to getFragment and invokeAction
	Carsten Leue

	6/06/2002
	0.1.2
	Added cloneEntities() & descriptive text
	Rich Thompson

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

41.
Introduction

42.
Overview

52.1.
Exemplary Scenarios

83.
General Interface Design Issues

83.1.
Security

83.2.
Batch Processing

83.3.
Data Objects

94.
Life Cycle States

9Assumptions:

9State 0: Producer Service Unknown

9State 1: Producer Service Known

9State 2: Producer Service Active

95.
Lifecycle Interfaces

95.1.
Types of Stateful Information

105.2.
Information Passing Mechanisms

105.3.
Operations

10Registering the Consumer with the Producer

146.
Presentation and Action Routing

167.
Updating State

188.
Description

209.
Appendix A – Data Structures.

209.1.
Security on Data Objects

Error! Bookmark not defined.10.
WSRP Interfaces

Error! Bookmark not defined.Creating templates and instances

2511.
WSRP Protocol

2511.1.
URL Encoding

2511.2.
Namespace Encoding

2511.3.
Markup Fragments

2511.4.
Metadata

2512.
Security

2513.
Samples

2513.1.
Sample WSRP Client

2513.2.
Sample WSRP Server

2514.
Acronyms

1. Introduction

This specification provides an straw man interface for the joint WSIA/WSRP interfaces. It is based on the embedded use case requirements gathered in the WSIA committee and the requirements gathered by the WSRP committee and on the concrete proposals to both committees. Many of these operations take arrays of parameters as a means of enabling efficient interactions between Consumers and Producers. Examples where these can be important include serializing a Consumer’s state for use in initializing a copy with its own unique set of interactions with Producers.

2. Overview

Both Web Services for Interactive Applications (WSIA) and Web Services for Remote Portals (WSRP) are standards for visual, user-facing web services components. Both WSRP and the embedded use case of WSIA focus on plug-and-play services that enable Producer independent intermediary web applications (such as portals) that aggregate content or applications from different sources. As such, this specification is designed to enable businesses to provide content or applications in a form that does not require any manual content or application specific adaptation by consuming intermediary applications. This specification allows Producers to determine how their content and applications are visualized for end-users and to which degree adaptation, transcoding, translation etc may be allowed.

Producer services MAY be published into public or corporate service directories (such as UDDI) where they can be discovered by intermediary applications. Web application deployment vendors can wrap and adapt their middleware for publishing as compliant services. Vendors of intermediary applications can enable their products as Consumers of these services.

Consumers can easily integrate content and applications from many internal and external Producers. The administrator of the Consumer simply picks the Producers and integrates them; no programmers are required to tie new content and applications into a page of the resulting web application.

To accomplish these goals, this standard defines a web services interface description using WSDL and all the semantics and behavior that Producer web services and Consumer applications must comply with in order to be pluggable. In addition the standard details on how information describing the service can be acquired: as meta-information that has to be provided when publishing services into UDDI directories or via self-explanatory services.

The standard accounts for the fact that Producer services may be implemented on very different platforms, be it as a Java/J2EE
 based web service, a web service implemented on Microsoft's .NET
 platform or a portlet published directly by a portal. Special attention has been taken to ensure this language independence. The standard enables use of generic adapter code to plug any Producer service into intermediary applications rather than requiring specific proxy code.

These services are built on standard technologies including SOAP
, UDDI
, and WSDL
.

2.1. Exemplary Scenarios

This specification needs to support Consumers and Producers of various levels of sophistication interacting with one another. Examples include:

· SimpleProducer: Does not support registration or persistence. May only expose 1 type of entity.

· SophisticatedProducer: Requires Consumers to register and the returned reference is all future interactions. Publishes a refined WSDL that declares propertyTypes for interacting with the base service. Supports a number of entities, some of which publish a refined WSDL that declare supported markupTypes and propertyTypes for interacting with the entity.

· SimpleConsumer: Does not persist any registration/entity information. Has explicit declarations for binding to and interacting with Producer services.

· SophisticatedConsumer: Supports persisting Producer, Consumer and End-User related data. Supports Single SignOn for its End-Users (may require End-User to trust Consumer with sign-on data). May support discovery of new Producers by either Administrators and/or End-Users.

How do these varying levels of sophistication interact?

In the diagrammatic representation below, the variations for the simple Producer and Consumer reduce to removal of all the persistent calls. This implies the Consumer does not support the concept of a Page Designer (page designs are effectively declared in code … possibly declarative code). For a SophisticatedConsumer to use a SimpleProducer, the detection of what the Producer is willing to persist results in the Consumer persisting everything. All the steps related to creating / updating persistent entities get dropped for the case of a SimpleConsumer interacting with a SophisticatedProducer. In addition, the SimpleConsumer should release the consumerHandle at the end of the interaction since it does not support persisting it and failing to release it would result in dead handles continuing to consume resources at the Producer.

	Producer
	
	Consumer
	
	End-User

	
	
	A new Producer service is located and selected for use
	
	

	Validate info, generate new Handle
	
registerConsumer(…)
	
	
	

	
	
consumerHandle

	Persistently store consumerHandle for use with this Producer service.
	
	

	
	
getServiceDocument(consumerHandle)
	Page Designer requests the creation of a new Template, selecting this Producer service.
	
	

	
	
WSDL service document for the Producer Service

	Extract supported entities from WSDL service document and display to Page Designer.
	
	

	Note: If the Producer does not support persistence, this call would be virtualized at the Consumer using a transient entity at the Producer
	
createPersistentEntity(consumerHandle, entityName, entityProperties)
	Page Designer selects desired entity and specifies base set of properties.
	
	

	Persistently store properties, generate Handle
	
entityHandle

	Persistently store entityHandle for use as a ‘templateHandle’. Consumer inspects Producer’s WSDL to determine which properties were persisted. Rest of Page Designer’s setting are persisted at the Consumer.
	
	

	
	
getServiceDocument(templateHandle)
	
	
	

	
	
WSDL service document for interacting with the entity

	Display entity specific properties to Page Designer for updates.
	
	

	Update property values for the persistent entity
	
setProperties(templateHandle, null, properties)
	Page Designer modifies some properties on the Template. Consumer detects which properties will not be stored persistently at the Producer and stores them locally.
	
	

	Persistently store properties, generate Handle
	
createPersistentEntity(templateHandle, null, properties)
	Page Designer places the Template on a page, potentially setting some properties.

	
	

	
	
entityHandle

	Persistently store as ‘InstanceHandle’ for use on this page. Again, some properties may need to be stored at the Consumer.
	
	

	
	
	
	
	

	Note: This is primarily for performance reasons or when the Producer does not support persistent entities
	
createTransientEntity(instanceHandle, null, propertiesStoredAtConsumer)
	Page deployed
	
	

	
	
entityHandle
	Store in runtime as ‘TransientHandle’
	
	

	
	
	
	
	

	
	
createSession(consumerHandle, sessionProperties)
	Construct page:

 - if needed construct sessions

 - get the output of Producer and aggregate the page
	
http Get()
	End-User loads page

	
	
sessionID

	Associate the sessions with the user (eg. store in http session object)
	
	

	
	
getFragments(transientHandle, sessionID, null, modeData, null, null)
	
	
	

	
	
document fragments

	Return aggregated page to End-User (may need to rewrite URLs first)
	
page

	End-User interacts (eg. enters some data, presses submit)

	Producer service routes the action invocation to the correct entity. Internal state is updated.
	
performAction(transientHandle, sessionID, actionName, actionData, modeData, entityProperties, sessionProperties)
	Compute the correct Producer for this action, parse post into a SOAP message
	
http Post()
	

	
	
document fragments, state changes, possibly implicit lifecycle handles/IDs

	Page is updated to incorporate new fragments in place of previous version. More advanced Consumers may reflect state changes to other Producers and gather their updates.
	
New page

	Interaction loops back 2 steps as necessary.

	
	
	
	
	

	Producer state updated to reflect authentication state of the User. Resources are cleaned up … session might be invalidated.
	
setProperties(instanceHandle, sessionID, entityProperties)
	Consumer invalidates authentication state of the user and notifies Producers of change in authentication state.
	
http Post()
	End-User logs off the Consumer

	
	
	
	
	

3. General Interface Design Issues

The major design goals of this specification are simplicity, extensibility and efficiency.

3.1. Security
To ensure security during the transfer of data the Producer may expose its entry point via SSL with appropriate indications in its WSDL bindings.

It is also possible to define security on a per-property level. Producers indicate the security standards they support so that Consumers may determine the common set of security algorithms. For more details see Appendix A. [RT: probably will want a separate Appendix that focuses on security issues]

3.2. Batch Processing

This specification defines an interface and protocol that runs in a web environment. Special care has been taken in the design phase to ensure logical actions can be mapped efficiently to interface invocations. Frequently in a web environment the most time consuming step of invoking an operation is the network overhead of the call itself, the size of the payload has a secondary impact. The interface has therefore to be designed primarily to minimize the number of invocations needed to perform a logical operation.

Batch processing is an easy way to minimize roundtrips: instead addressing individual entities with a single invocation the interface allows addressing sets (vectors) of common types. The Producer can then decide how to most efficiently process the whole set in a single roundtrip (e.g. by exploiting server side parallelism).

As a result the operations defined here often take parameter lists rather than single parameters.

3.3. Data Objects

It is often necessary to pass data to operations. Wherever possible this specification will define typed data objects as the transport mechanism of such data. Untyped property lists are defined for vendor or application specific data extensions. Producers employing these extensions SHOULD provide typing information for the extended data items. This allows Consumers to provide type checking outside of the normal checking done by the typical interface layers. See Appendix A for more details on data objects.

4. Life Cycle States

Assumptions:

In general the Producer may be a service exposing for one or more entities that generate output and handle actions resulting from interactions with that output. How these entities are implemented and managed is not defined by this specification, though it is anticipated that the model of how requests are conveyed to the entities by the service will be strongly influenced by this specification.

State 0: Producer Service Unknown

The Consumer has no knowledge that a Producer service exists. From this state the Consumer transitions to the Known state via discovery; namely by learning the location of the Producer service.

State 1: Producer Service Known

In this state the Consumer knows the location of the Producer service. From this state the Consumer can transition back to the Unknown state, but typically, transitions to the Active state through a process called registration. Additionally, this is the state at which the Consumer MAY request a Producer service to describe itself. This later ability is present in all states other than Unknown.

State 2: Producer Service Active

Most of the interesting things happen while the Producer service is in the Active state. This is where both page designers and users can interact with the Producer service.

5. Lifecycle Interfaces

5.1. Types of Stateful Information

Because WSIA - WSRP are connectionless interfaces (as all SOAP interfaces are), the Producer must be able to return information to the Consumer, with the understanding that this information will be sent back to it. Two types of stateful information exist:

1. User related: Stateful information whose scope is the user. A reference to this information is returned by the Producer which it expects to get it back in all operations that occur within this user’s session. This specification refers to this type of information as a Session and the opaque reference as a sessionID.

Example: The page the user is viewing. The row in the table the user scrolled to. In essence, any information stored in App Server “session” objects.

2. Producer specific: Information that a Producer uses to reconnect a Consumer to a known state. This may vary from a set of data to a reference to a particular ‘object’ the Producer service endpoint is managing in addition to a set of data for that object’s use. The Producer may be willing to persist some subset of this stateful information and should indicate what belongs to that subset. The Consumer may exert control over the use of this stateful information such that it is scoped to the page, the user, the Consumer or to a persistent model. This specification refers to this type of information as an Entity and the opaque reference as an entityHandle.

Note that the above indicates neither the mechanism nor the amount of information to be passed between Producer and Consumer.

5.2. Information Passing Mechanisms

All information passing enabled by this specification is between exactly one Producer and one Consumer. Any sharing of information within a particular Producer service is outside the scope of this specification. If the Consumer wants the information to be shared by multiple Producer services, the Consumer must “mediate” this sharing (again, using means that are outside the scope of this specification). Because of this, the mechanism used this specification involves specific operations for Consumers to explicit request the creation of a type of stateful information. The Producer will return an opaque reference (ie. a string) which it is capable of using to look up the stateful information on future invocations. This opaque reference is then used through the rest of the interface to refer to that particular set of stateful information. An example of such an operation is createSession(). In order to enable Consumers to mediate the sharing of stateful information, the Consumer indicates it is interested in state changes and Producers then include the changes to their stateful properties in the items returned from invocations.

5.3. Operations

Registering the Consumer with the Producer

Registration describes the transition between Producer state 1 (known) and state 2 (active), the consumer actively establishes a relationship between the Consumer and the Producer. This establishes a relationship that will be referenced for subsequent invocations the Consumer makes of the Producer service within this relationship. Both Consumer and Producer are free to end this relationship at any time. The Consumer MAY end the relationship via an explicit call to releaseHandles() method, whereas the Producer MAY end the registration by invalidating the registration identifier.

consumerHandle = registerConsumer(oldConsumerHandle, consumerProperties);

This operation provides means for the Consumer to establish a relationship with a Producer where:

Question: [CL] should we pass the old consumer handle explicitly to allow an update of the registration settings or should we use the setProperties method to do so. The drawback of the setProperties method is that the parameters are no longer explicit. [RT] A third choice would be an additional operation; “updateConsumer”.
· oldConsumerHandle An already existing registration handle or null. If no registration handle is present the Producer will create a new one based on the security and identity settings in the Consumer data object. If there is already exists a registration the Producer updates the registration information. [R353]

· consumerProperties provides the means for the Consumer to supply the data required for registration. This data structure is defined in Appendix A.

The returned consumerHandle (an opaque xsd:string) is used in all subsequent invocations to reference this registration. If the Producer does not support registration, it returns a null handle. It is then valid to pass such a null handle to calls to subsequent methods that require a consumerHandle. If the registration fails for other reasons (e.g. authentication)
a fault message MUST be thrown indicating this to the Consumer.

After releasing the consumerHandle all transient and persistent entity handles created within the context of the consumerHandle become invalid. [R500][R501][R503]

The Consumer must persistently store the consumerHandle. If the Consumer cannot persist the handle it must release the consumerHandle using the releaseHandles() method.

One Consumer can register itself multiple times with potentially different settings (eg. security settings) resulting in multiple consumerHandles. [R351]

sessionID = createSession(consumerHandle, sessionProperties);

This operation provides means for the Consumer to explicitly request the Producer to create a user session.

· consumerHandle permits the Producer to scope the new session to the Consumer if it so desires.

· sessionProperties allows the Consumer to immediately modify the state of the newly created session. This data structure is defined in Appendix A. For performance reasons this information SHOULD contain all data that is not request specific (e.g. user identity, user credentials, …)

The returned sessionID (an opaque xsd:string) MUST be used any subsequent invocation which refers to the state of this user session. In general, sessions will be timed out by Producers and therefore an explicit destroy operation is not required. However the Consumer may use the releaseHandles() method to explicitly inform the Producer it is now safe to destroy the session. One of the implications of this is that the sessionID type SHOULD be a specialization of the generic Handle type. At minimum, the Producer MUST be able to accept sessionIDs in the array passed to releaseHandles().

entityHandle[] = createPersistentEntities(handle[],

 entityName[],

 entityProperties[]);

This operation provides means for the Consumer to request the creation of a set of persistent entities the Producer has indicated it supports where:

· handle[] is an array of references to existing entities or a Consumer registration, each of which is used as the starting state for a newly created entity. Each referenced entity (or registration) is defined as the parent of the newly created entity such that releasing the handle (effectively destroying the reference) for a parent entity also releases the handle for the new entity (example: releasing the consumer handle releases all child handles). In addition, any changes to stateful information in the parent entity that are not overridden by the new entity MAY be reflected by the new entity as well (implementation choice as to whether the new entity copies all values from its parent or “looks up” those values when necessary).

· entityName[] is an array of type names used to select from the set of entities the Producer has indicated it supports.

· entityProperties[] allows the Consumer to immediately modify the state of each newly created entity. This data structure is defined in Appendix A.

Each returned entityHandle (each an opaque xsd:string) is available for use in subsequent invocations to identify an entity. The order of the handles returned by this method must match the order of the input entity handles. If the Producer does not support persistently creating entities, a fault message MUST be thrown indicating this to the Consumer (see fault messages in Appendix B). If the creation of one or more persistent entities failed the method returns null in the appropriate position of the output array.
[RT: Note that we have not included a template Entity type. I would favor not having these explicit for the Producer (ie separate types), but rather support a mode in which the entity offers design time assistance to Consumers]
entityHandle[] = createTransientEntities(handle[],

 entityName[],

 entityProperties[]);

This operation provides means for the Consumer to request the creation of a set of transient entities the Producer has indicated it supports where:

· handle[] is an array of references used as the starting state for a new entity. Each referenced entity (or Consumer registration) will be the parent of the newly created entity such that releasing the handle (effectively destroying the reference) for a parent entity also releases the handle for the new entity. In addition, any changes to stateful information in the parent entity that are not overridden by the new entity MAY be reflected by the new entity as well (implementation choice as to whether the new entity copies all values from its parent or “looks up” those values when necessary).

· entityName[] is an array of type names used to select from the set of entities the Producer has indicated it supports.

· entityProperties[] allows the Consumer to immediately modify the state of each newly created entity. This data structure is defined in Appendix A.

Each returned entityHandle (an opaque xsd:string) is available for use in subsequent invocations to identify an entity. An entityHandle can be a null string, indicating that the requested entity is stateless (see later).

entityHandles[] cloneEntities(entityHandles[]);

This operation permits a Consumer to create entities that are siblings rather than children of the supplied entities. Each of the new entities is initialized by cloning the current state of respective supplied entities.

releasedHandles[] releaseHandles(handles[]);

This operation provides a means for the Consumer to request a Producer release a set of handles, in which case the Producer may dispose of the resources for each referenced entity and invalidate the handle.

· handles[] is an array of references the Consumer will no longer use and is therefore requesting the Producer to invalidate.

Each returned releasedHandle refers to a handle that is no longer available to service requests. The Producer should be aware that in some cases the Consumer may not invoke releaseHandles() (for example, if the Consumer application is abruptly terminated) and should implement a destruction mechanism for transient resources based on a timeout. The Producer MUST handle cases where the Consumer has included a handle in the passed array that was released during the processing of another handle within the array without generating an error.

For efficiency reasons the interface method takes a list of handles to be destroyed and returns a list of handles that have actually been destroyed. This list may be smaller than the input list in which case some handles could not be released (e.g. because they are invalid). The list may also be larger than the input list due to the implicit deletion of subordinate entities (e.g. releasing a registration handle leads to the releasing of all associated entity handles). To make sure that all handles that have been passed as parameters have been released the Consumer must check if the output set includes all handles from the input set. Processing the array of handles MUST NOT generate an error unless the Consumer does not have the authority to release handles included in the list (this statement does not exclude the possibility of general runtime errors that may occur on any SOAP invocation).

6. Presentation and Action Routing

(entityHandle, sessionID, entityProperties, sessionProperties, documentFragments)[] = getFragment(entityHandle[],

sessionID[],

requestData,

modeData[],

entityProperties[],

sessionProperties[])

This operation allows a Consumer to request document fragments corresponding to the current state of the referenced entities. It is assumed that the document fragments are structured in a way that facilitates integration into a larger document and composition with other document fragments into a larger document.

· entityHandles[] is an array of references to entities the Consumer is requesting to generate document fragments.

· sessionID[] is an array of references to sessions the Consumer is associating with a corresponding entity (eg. 3rd session is associated with the 3rd entity) for this request to generate document fragments. Passing null for a sessionID permits the Producer to generate and return a session for future invocations.

· requestData represents per-request information, e.g. markup type, user locale, mode, character-set, etc. This information is not supposed to be persisted at the producer. For more details see Appendix A.

· entityProperties[] is an array of property updates that the Producer MUST apply prior to generating the document fragments.

· sessionProperties[] is an array of property updates that the Producer MUST apply prior to generating the document fragments.

In addition, implicit lifecycle of both sessions and entities are enabled through the returned values. Any implicitly created entity will be equivalent to the Consumer having called cloneEntities() and then passing the returned entityHandle to this invocation. Implicitly created sessions are equivalent to one returned from calling createSession() with the consumerHandle parent of the supplied entityHandle and the supplied sessionProperties. An example of where this is useful for sessions is when the Consumer has no existent user session it knows should be used, but the Producer wants one back on future invocations. An example of this for entities is when the Consumer passes a handle to a persistent entity which the Producer has loaded and is now supplying a handle to a transient entity that MUST be used on future invocations (may improve performance or may now reflect transient state in addition to the persistent state).

Note: The mechanism with which the document fragments are created to facilitate composition into a larger document is being discussed in the markup subcommittee. The supplied entityHandle[] and sessionID[] are how the Consumer indicates which sets of stateful information the Producer is to use in generating the fragments. By supplying these as an array, current output MAY be requested from all entities at a single Producer service in a single invocation.

If the Consumer has indicated it is interested in property updates (via its sendPropertyUpdates flag), this operation SHOULD return any properties modified as a result of processing the invocation.

[RT]Note: Not entirely sure how the uniqueToken / controllerURL play in as parameters rather than via properties or other mechanisms … needs more discussion. These were taken out of the above for now, but the discussion left below until the subcommittees get a chance to discuss these.

All “multi-page” user actions that require routing through the Consumer should point to the provided controllerUrl, replacing the string (actionName) with an opaque URL-encoded action string (see below).

The uniqueToken is generated by the Consumer and passed to the producer in order to “namespace” [mm1 identify? Or provide context to?] the global objects in the fragment (e.g. XML Ids, JavaScript functions and variables). The uniqueToken must begin with an alpha (Latin!) character and include only alphanumeric characters.

Note: The uniqueToken (and many other arguments) can be passed as a standard property and not as an argument. What is the guideline for deciding between the two? These guidelines should be decided in the WSDL Sub-committee.

[TS] I propose the guideline be that per-request arguments (arguments that could not also be provided in a prior setProperties() call) must be in the parameters. The arguments that affect the entity (which may also be provided in a prior setProperties call) may be in property values.

[TS] This means entity handle and session id need to be explicit parameters (you could not reasonably provide them in a prior setProperties() call) and uniqueToken, and controllerURL may theoretically be standard properties.

(entityHandle, sessionID, entityProperties, sessionProperties, documentFragments) = performAction(
entityHandle,

sessionID,

actionName,

actionData,

modeData,

entityProperties,

sessionProperties)

This operation allows the Consumer to route an action to the Producer where the opaque (xsd:string) actionName indicates to the Producer the action to invoke.

The entityHandle / sessionID indicate to the Producer the stateful information relevant to processing this invocation much as the discussion above. Also, entityProperties and sessionProperties are applied against that state exactly as discussed above.

The parameter actionData is a data structure resulting from parsing the name/value pairs submitted by the user when generating the action (i.e., the HTTP entity).

[TS] Would this actionData be used to e.g. hold files/form data posted from forms in the markup generated in the previous getFragment call ?

[RT] That would agree with my understanding … It may hold other data as well.

This operation may return documentFragments (otherwise, null is returned). In such a case, it is required that the semantics be identical to a separate invocation of getFragment() immediately following (ie. no intervening state changes) the invocation of performAction().

This operation may return a new entityHandles and/or sessionIDs exactly as described for getFragment().

If the Consumer has indicated it is interested in property updates (via its sendPropertyUpdates flag), this operation SHOULD return any properties modified as a result of processing the invocation.

Note: Browser operations like “Refresh” and opening a bookmark generate weird scenarios in which the Consumer will (if not careful) generate performAction twice with the same action. Is this allowed? What is it’s meaning? If so, how will the Consumer know not to re-performAction?

[TS] The consumer must assure that for each action link the action is called at most once. For example, the consumer can add local action ids to links during rewriting and hold the currently acceptable local action ids in the HttpSession (for logged in users) or Web Application Context (for anonymous users without a session). When the userclicks on a link/submit button that triggers an action, the portal receives it, looks up the remote producer action ID under the local action ID, invalidates all local action Ids in the current scope and fires the action to the producer.

[MM]: Use conditions or constraints as a mechanism, or are they tagged as executed during a given session?

7. Updating State

The following operations are applicable only to stateful Producers, namely: Producers that returned a non-null response in the createTransientEntity operation.

(entityProperties, sessionProperties)

= setProperties(entityHandle,

sessionID,

entityProperties,

sessionProperties);

This operation allows the Consumer to update the state of the entityHandle/sessionID managed by the Producer.

If the Consumer has indicated it is interested in property updates (via its sendPropertyUpdates flag), the operation returns properties reflecting its stateful changes. Each of the returned properties may be a superset and/or a subset of the supplied properties.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to store property values as part of its state.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support setProperties invocations. Does the fact that this operation is optional mean that the Consumer must sometimes execute different code for stateless and stateful services as stateless services will require that any and all property settings are sent on every invocation. This needs further discussion.

[RT] Another possibility is that the entity’s metadata declares no properties and while this operation exists, it always returns null.

[MM] See previous comments on conditions or constraints, and lifecycle.

(entityProperties, sessionProperties)

= getProperties(entityHandle,

 sessionID,

 entityPropertyNames,

 sessionPropertyNames);

This operation allows the Consumer to get the value of properties referenced by the entityHandle/sessionID.

The Consumer may specify the list of Properties for which property values are required. Otherwise, the complete list of relevant property values is returned.

This operation is optional and may not exist in the Web Service signature – in which case the Producer implicitly refuses to return property values.

A property name may include names in XPath syntax, which enables the Producer to treat its property set as a document.

Note: Should this operation be optional? It is defined to be optional to accommodate stateless Producers which cannot support getProperties invocations. Having this operation is optional means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed by this subcommittee.

[RT] Should this operation “come and go” with setProperties()
8. Description

Note: Does WSIL obviate the need for these operations?

[TS] I think there at least is significant overlap

[RT] The case for the Producer service (null handle) has a complete overlap with WSIL. I guess we could define an extensibility element for use with a service element that references an entity the Producer’s WSDL has declared support for. I’m not sure anyone is anticipating more dynamic WSDL generation (eg. If an Administrator has restricted access when using the passed handle, should the returned WSDL reflect this restriction).
serviceDescription = getServiceDescription(handle);

This operation provides the means to request the specific WSDL Service description document for the bound service. While this may often be located through a UDDI search, this operation provides a well-defined means for locating the WSDL for this particular service regardless of how it was located. For Producers managing access to a set of dissimilar entities, this operation MUST return the appropriate WSDL document for interacting through the supplied handle. In all cases, passing a null handle returns the WSDL for the base Producer service appropriate for an unregistered Consumer. [R300] [R301][R303].

 [RT]:The following has been unchanged, so don’t read anything into the use of ‘Template’ or ‘Instance’. Once the concepts have been nailed down and we debate the need / approach, the details of this operation (if needed at all) should be straight forward.

retValue = hasCapability(capability);

capability = {“canCreateTemplates”, “canCreateTemplatesFromInstances”, “setAndGetProperties”, “XPathInPropertyNames”}

The ability to check which capabilities can be invoked on the Web Service. While this sometimes may be directly inferred from the WSDL, it is difficult, while the information provided is needed by the Consumer for correct interaction with the Producer. In some cases, like xpathInGetProperties, this is not inferred from the WSDL.[mm1: What about “enabled” and “available” – qualifications on service.]

Note: If the service provides access to a heterogenous set of objects, this operation may need to take an entityHandle.

Note: The WSXL proposal defined this by using WSDL portTypes. The correct method for capability/interface description should be defined by the WSDL subcommittee. The fact that there exist optional capabilities means that the Consumer must sometimes generate different code for stateless and stateful services. This needs to be further discussed (by this committee? By the WSDL committee?)

Note: Is this operation needed … would this information be available through the WSDL document? If this is done via WSDL, would this require unique proxies?

[CL]: this method is obsolete if we use WSIL to let the service describe its different interfaces. Consumers would then code a distinct proxy for each interface and attach these proxies only if the interface is supported. Of course the capabilities (interfaces) must be defined on a per-portlet basis not a per service basis.

propertySchema = getPropertySchema(handle);

The list of Properties supported by the Producer is defined as part of the Producer meta-data. The Property List is defined using an associated XML Schema document. For Producers managing access to a set of dissimilar entities, this operation MUST return the schema for the properties referenced by the supplied handle. In all cases, passing a null handle returns the property schema for the base Producer service that is appropriate for an unregistered Consumer.

Allowed schema documents for Properties must be of a specific structure to facilitate easy management by Consumer tools. The schema must represent a list of name/value pairs, each of which can be of an arbitrary type. Each Property is also associated with a URI that defines its category.

[mm]: If the properties can be extended, you could use what I have seen before – abstract types and/or elements. In the case you describe an element that has a name but the context of that object is defined by the business relationship (and the namespace). For example, additionalProperty is defined dynamically by the context of the interaction. I have also seen, using XML schema, where the “list” is bounded by namespace.

9. Appendix A – Data Structures.

It is often necessary to pass data to operations. Wherever possible this specification defines a typed data object as the transport mechanism for such data. Extensibility elements are also provided for vendor or application specific data extensions.

In order to allow extensibility of any data object we define a base class for all data objects that simply includes an untyped property list and a security modifier.

Optional parameters are marked with [O], required parameters with [R]

9.1. Security on Data Objects

WSRP-WSIA defines security on a per-property level (or per data-object) level.

The defined data structures passed in messages to operations are:

Property
:

[R] String

name

[O] String

value

Members:
name
Name of the property, must not be null

value
Any representation of the property’s value. The interpreter is responsible for determining the correct value type.

DataObject:

[O] Property[]
extensionProperties;

Members:
properties[]
List of WSRP-WSIA properties. The list is open ended and may be null. There is no guarantee that the names of the properties included in this list are unique. [R357][R360]

consumerProperties extends DataObject

[R] Property
(name = consumerName)

[O] Property
(name = consumerVendor)

[O] String
authenticationMethod

[O] String
authenticationCredential

[O] String
securityMethod

[O] String
securityCredential

[O] boolean
sendPropertyUpdates
[O] String[]
authenticationMethods

[O] String[]
securityMethods

Members:
consumerName
Globally unique name that identifies the consumer. [R355]

consumerVendor
Name and version of the portal vendor. [R356]

authenticationMethod
Authentication mechanism that corresponds to one of the authentication mechanisms from the list in describeService.
(e.g. public key, basic auth, no auth, etc, needs to be defined in more detail in the security part).

authenticationCredential
A token that has been acquired during the establishment of the business relationship and that corresponds to the authentication mechanism. The concrete form of these credentials is defined on a per-algorithm basis in the security subsection.

securityMethod
Authentication mechanism that corresponds to one of the authentication mechanisms from the list in describeService.
(e.g. public key, basic auth, no auth, etc, needs to be defined in more detail in the security part).

securityCredential
A token that has been acquired during the establishment of the business relationship and that corresponds to the authentication mechanism. The concrete form of these credentials is defined on a per-algorithm basis in the security subsection.

sendPropertyUpdates
This boolean allows a Consumer to indicate that it is interested in PropertyUpdates. When set to true, the Producer SHOULD include its set of modified properties in any return messages that permit their inclusion.

sessionProperties extends DataObject

[O] Property
(name = userName)

[O] Property
(name = userCredential)

[O] Property[]
(name = userRole)

Members:
userName
Distingushed name of the user

userCredential
Credentials that correspond to the user name. The producer can use both to login the user in the scope of this session.

userRole[]
Roles the user is currently in

modeData extends DataObject

[O] Integer currentMode

[O] Integer previousMode

[O] Integer windowState

Members:
currentMode
The mode the entity should render its output for (e.g. view, edit, config, help, design, preview). See definition of these constants elsewhere in this appendix.

previousMode
The previous mode (if any) the entity rendered its output for.

windowState
The state of this entity’s virtual window relative to other entities on the aggregated page (e.g. normal, minimized, maximized). See definition of these constants elsewhere in this appendix.
RequestData extends DataObject

[O] String

characterSet
// might go to the session

[O] String

markupType
// might go to the session

[O] String

locale

// might go to the session

[O] Boolean

secureClientCommuncations

[O] Property[]
mimeHeaders

[O] Property[]
clientParameters

[O] ClientData
clientData

Members:
characterSet
characterset used for encoding (e.g. UTF8, maybe different from the character set used for the transport.

markupType
Markup type to generate (e.g. HTML, XHTML, cHTML).

locale
Locale to generate the markup in.

secureClientCommunications
Is the client-Consumer connection secured?

mimeHeaders
Mime headers of the initial request.

clientParameters
Request parameters of the initial request. Name/value pairs from a client post are parsed into this list of properties.

clientData
Data defining the current client.

ActionData extends RequestData

[O] String

uploadData

Members:
uploadData
data blob if a file is to be uploaded

EntityProperties extends DataObject

ServiceDescription extends DataObject

[R] DocFragment
wsilURL

[O] String[]

authenticationMethods

[O] String[]

securityMethods

[O] URL[]

consumerServices

[O] EntityType[]

entities

EntityType extends DataObject

[R] String

name

[O] URL

wsdlURL

[O] String[]

locales

[O] String[]

readableDescription // per locale

[O] String[]

titles // per locale

[O] String[]

roles

[O] String[]

keywords

[O] String[]

markupTypes // XHTML, WML, VoiceML, …

[O] Integer[]

modes

[O] Integer[]

viewStates

[O] boolean

cacheability

Members:
wsdlURL
The URL for the WSDL description of this entity.

name
The name for the entity (e.g. “Stock Quote”). This is the name passed into either of the createEntities() operations.

locales[]
The list of locales supported by the entitiy.

readableDescription[]
Descriptions of the entity for all supported locales. This SHOULD be displayed on selection dialogs, etc.

titles[]
Title for the entity for all supported locales.

roles[]
List of roles the entity can manage. Note: This support MAY be provided by the Producer service on behalf of the entity. The entity can freely define any role it wants, however there exists a set of predefined roles in this appendix. [R416]

keywords[]
Key words describing the entity which can be used for search, etc.

markupTypes[]
The different markup languages supported by the entity, e.g. HTML, XHTML, WML, VoiceXML, cHTML, …

modes[]
The modes that are supported by the entity (e.g. view, edit, config, help, design, preview). Mode constants are defined elsewhere in this appendix.

viewStates[]
The viewStates that are supported by the entity (eg. minimized, normal, maximized, …). These constants are is defined elsewhere in this appendix.

cacheability
Information on how caching may be applied, including expiry times and indication on whether content is personal or shared.[RT: Either this needs to become a structure of its own or the description changed to indicate it only reflects whether the document fragments may be cached at all]

 (The complete list will have to be worked out by the markup subcommittee and will have to be in sync with the description that goes to UDDI directories).

MetaData

These can be placed in the WSDL description of the service/entity using the tag <wsia:metadata>. Child elements MAY include:

<wsia:entityProperty>
This element MAY be included 0 or more times, once for each entityProperty being specified. The attribute “name” is required and specifies the name for this property. The optional attribute “type” specifies the type for this property with a default value of xsd:string. The boolean attribute “willPersist” is optional and has a default value of “false”. The optional attribute “minimumSecurity” specifies which of the securityMethods of the Producer service is the minimum required when transferring this property and has no default value (eg. no security required).

<wsia:sessionProperty>
This element MAY be included 0 or more times, once for each sessionProperty being specified. The attribute “name” is required and specifies the name for this property. The optional attribute “type” specifies the type for this property with a default value of xsd:string. The optional attribute “minimumSecurity” specifies which of the securityMethods of the Producer service is the minimum required when transferring this property and has no default value (eg. no security required).

[RT: Do the metadata items from the structures above want to also be explicit element types here?]

Roles

	User
	Need some semantic definitions!

	Administrator
	

	PageDesigner
	

	
	

Constants

	0
	VIEW_MODE

	1
	EDIT_MODE

	2
	CONFIG_MODE

	3
	HELP_MODE

	4
	DESIGN_MODE

	5
	PREVIEW_MODE

	
	

	0
	VIEW_NORMAL

	1
	VIEW _MINIMIZED

	2
	VIEW_MAXIMIZED

	
	

	
	

	
	

	
	

10. Appendix B – Security Concerns.

For a good summary of security concerns, reader is referred to the Security and Privacy Considerations document produced by the XML-Based Security Services Oasis TC. The following summary may also be useful.

10.1. Authentication

Authentication is the ability of a party to a transaction to determine the identity of the other party in the transaction. In general this may be accomplished either at a transport level using SSL/TLS or IPSEC or at a document level using XML Digital Signatures

10.2. Confidentiality

Confidentiality means the contents of a message may only be by the desired recipients of the message and not others who may happen to receive it. This may be accomplished to a certain extent using transport layers such as SSL/TLS, but in general the message must then be readable at the Consumer in order to properly route it to the correct Producer. Message level confidentiality may be achieved using XML Encryption. Properly done, this CAN provide client-Producer confidentiality.
10.3. Integrity

Integrity means that the contents of a message have not been altered by any unauthorized parties during transmission. In a two party transaction, this means that the message was not altered between the time it left the sender and the time it arrived at the receiver. In a transaction where the message is also processed by one or more intermediaries as part of an overall business process, integrity means that no alterations were made to the message other than those specifically intended as part of the business process. Integrity can be assured through the use of secure transport when no intermediaries are involved. XMLDigital signatures on the message documents provide a means of verifying integrity when intermediaries are involved.

10.4. Message Replay

Message replay is a very basic form of a Denial-of-Service attack. The key to its success is when the cost to process a message is larger than the cost to send the message. The original message may have been a properly secured (eg. encrypted and signed) message that has been intercepted and is being sent to the Producer repeatedly. Producers concerned with this type of attack may want to consider an incrementing counter that can be checked prior to processing the content of a message. Note that transport layer security measures MAY be slightly better than message level techniques at denying message replay attacks.

10.5. Missing Message

This is related to the ability of a party on the network to intercept and delete a message (either request or response). Client code may attempt to recover from such an attack by detecting that no response was received for a request. Reliable transport mechanisms such as HTTPR may also be employed to mitigate these attacks.

11. WSRP Protocol

11.1. URL Encoding

11.2. Namespace Encoding

11.3. Markup Fragments

11.4. Metadata

12. Security

WSRP-based systems will be exposed to many of the same security issues that today’s web services-based systems are facing; see Appendix B for a summary description of some of the most commonly discussed security concerns. It is the goal within WSRP to leverage existing standards efforts focusing on web services security as much as possible, and to identify solutions that provide the broadest possible interoperability based on widely used infrastructure components.
Existing approaches and standards for addressing security issues can be divided into two primary categories: transport-level mechanisms and document-level mechanisms. The table below gives a summary of the standards in each area that are most relevant to WSRP, and the types of security issues each helps to address. It is important to note that the mechanisms described by these standards are typically used in combination in order to provide needed protection against the variety of possible security threats.
	Applicable Standard
	Security issue(s)

	Transport
	

	SSL/TLS(RFC2246)
	authentication, confidentiality, integrity;

	client certificates(x.509v3)
	authentication

	HTTP-Basic
	authentication(basic)

	Document
	

	WS-Security
	authentication, confidentiality, integrity

	XML-Signature
	integrity, authentication

	XML Encryption
	confidentiality, integrity

	SAML
	authentication, integrity, access control

12.1. Security and Lifecycle States
Section 4 of this document describes lifecycle states for WSRP services. Security mechanisms overlay these states as follows:

State 0: Unknown: no security mechanisms are involved at this point

State 1: Known: in this state, two security-related transactions MAY occur:

· A Consumer MAY obtain the service description. The service description includes information about the security mechanisms the Consumer needs to support in order to interact with the Producer. This information includes types of authentication tokens, signature algorithms, and encryption algorithms that are employed by the Producer. More details on these are given later in this section.
· A business relationship is established between the Producer and Consumer organizations. During the establishment of this business relationship, the Producer organization provides the Consumer organization with a unique Consumer name and credential (password or certificate). This exchange takes place outside the scope of the WSRP protocol. This credential is used for subsequent transactions in the Active state.

State 2: Active: Consumer registers and makes service requests. Security mechanisms used in this state MAY include:
· Transport-layer authentication of Consumer by Producer

· Transport-layer encryption of messages transmitted between producer and consumer(no intermediaries)
· Document-level authentication of Consumer by Producer using token in the SOAP header.
· Request messages digitally signed by the Consumer, validated by Producer
· Response messages digitally signed by Producer, validated by Consumer
MC: is the above going to be a common scenario? If this is supported, then registration must support ability for Consumer to identify to the Producer the signature algorithms it supports.
CL: agree, a corresponding field is added to the consumerDataObject
· Parameter or personal data contained in request messages encrypted by the Consumer, unencrypted by the Producer
· Markup contained in response messages encrypted by the Producer, unencrypted by the Consumer
MC: Issue: if this above usage is supported, the registration operation will need to support the ability for the Consumer to identify to the Producer the encryption/decryption algorithms it supports.
CL: agree, a corresponding field is added to the consumerDataObject
The service description includes the necessary information to employ these mechanisms.
12.2. Transport-based Mechanisms

While SOAP messages(and by extension the WSRP protocol) may be carried over a variety of transport mechanisms, HTTP over SSL/TLS provides a high degree of interoperability as well as security and therefore will be given special consideration in this specification.

SSL/TLS
WSDL defines transport binding extensions which specify how SOAP messages are carried over HTTP, and the soap:address element defines the location of the service. An https address MAY be specified to indicate use of a secure connection. The underlying handshake protocol SSL/TLS executes handles server certificate exchange and is transparent to the WSRP protocol and service description.
SSL/TLS with Client Certificates

 Client certificates MAY be used with WSRP services. When a Producer requires a client certificate to establish an SSL/TLS connection, the handshake protocol SSL/TLS executes explicitly includes a server request for the client certificate. Client certificates are obtained during the establishment of business relationship between producer and consumer, and are deployed for use by the container hosting the Consumer application. This is transparent to the WSRP protocol and service description.
Note that client certificates MAY also be used in document-level mechanisms, for example with digital signatures. The use of that mechanism is discussed below.
HTTP Basic Authentication

Producers MAY authenticate Consumers via HTTP Basic authentication. When used with SSL/TLS, HTTP Basic provides an authentication solution that is protected from malicious tampering. To use HTTP Basic authentication, the Consumer’s WSRP proxy component needs to include user/password in the HTTP request header with all service requests. The user/password values are obtained during the establishment of business relationship between Producer and Consumer.
[CL: can this be done easily using standard SOAP stacks? The HTTP request is normally issued by the SOAP implementation.]
The Consumer is responsible for managing HTTP Basic auth credentials and the relationship between a set of auth credentials and a WSRP service. This mechanism is transparent to the WSRP protocol and service description.
Other Transport Mechanisms
While WSRP transactions may be executed over other transport mechanisms, the security implications of such configurations are beyond the scope of this document.
MC: question/issue: don’t currently have metadata for Producer to direct Consumer to use SSL/TLS for Consumer<-> client connections. Though this can’t be enforceable, it’s still probably a good idea to have in the service metadata. Need to further explore implications of this on the Consumer.
12.3. Document-based Mechanisms
Current Standards
WSRP Services MAY use document-based techniques for achieving security objectives. The current document-based standards which are most applicable to WSRP are:

1. XML-Signature provides a standard method to create a digital signature over contents of an XML document and to include an XML representation of that signature in the document. In the case of WSRP, the document of interest is a SOAP message containing a WSRP request or response.
2. XML Encryption provides a standard method to encrypt elements or element data within an XML document, and to include an XML representation of the encrypted data within the document(again, a WSRP SOAP message).
3. WS-Security provides the following:

a. A mechanism for including security information in the header of a SOAP message which can be targeted at a specific receiver. This is important for supporting WSRP scenarios where intermediaries are involved.
b. specific security token element definitions(UsernameToken, Binary tokens, token references)

c. ‘profile’ for applying XML-Signature and XML Encryption to SOAP messages
These standards predominantly involve the attachment of additional security-related elements to the header of WSRP SOAP messages and therefore do not directly interact with the WSRP protocol itself. While XML Encryption replaces data objects passed over the WSRP protocol with encrypted versions of those data objects, it does not have a direct impact on the protocol and only requires that the message recipient decrypt the data before it can be processed. Recommendations/constraints are given below which are aimed at maximizing the use of existing SOAP infrastructure, simplifying the use of these mechanisms, and therefore encouraging more rapid adoption of WSRP.
In order for these standards to be used with WSRP, the following are required:

- the Producer and Consumer MUST be capable of processing WS-Security elements in SOAP headers

- the Producer MUST describe the information it expects the Consumer to place in the security header
[CL: how?]
- the Producer MUST describe the data objects it expects to be encrypted
[CL: how? Should this be on a per request basis or part of the metadata? There are maybe applicable standards upcoming.]
- the Producer MUST describe the algorithms it supports for signature and encryption
[CL: is it sufficient to do this during the registration step as proposed by this spec?]
- the Producer and Consumer MUST have a common set of algorithms/capabilities for exchanging signed & encrypted data that complies with XML-Signature and XML Encryption.
Since there are no current standards for describing the above types of policy information, WSRP defines basic extensions to WSDL that will capture this information and in some cases constrain the use of these mechanisms. In the event that a standard emerges for this need, WSRP will consider it for adoption.
Service Description Extensions
The following describes service-level capabilities which MAY be included as part of the WSRP service description:
- <Signature> element: since there are many possibilities for signing elements of a WSRP message and due to the lack of a standard description mechanism, the use of this mechanism is limited to signing of the Body element of the WSRP SOAP message. When a service specifies <signature> in its service description, a Consumer MUST include a XML-Signature compliant digital signature in a <wsse:security> block in the SOAP header of a WSRP service request.
- <SignatureAlgorithms> lists signature algorithms supported by the Service. XML-Signature provides identifier URIs for required/recommended algorithms. The Consumer may select from this list of algorithms to create the signature.
- <EncryptionAlgorithms> lists encryption algorithms supported by the Service. XML Encryption provides identifier URIs for required/recommended algorithms. The Consumer selects from this list when encrypting property/parameter data.
[CL: do you see this as part of the metadata, aka extension to the service’s WSDL file or as part of the data object that is returned from the self description methods? Or both?]
MC: Issue: how does producer declare or constrain key requirements? Or is that even necessary? As long as the signer provides suitable key info or reference with the signature, is anything more required? I.e. signer may include and reference a certificate for the key, with no required directive from the service description.
MC: question: outside the context of support for digital signatures and encrypted parameter data, what support for the other WS-Security tokens is required and how to describe? (i.e. UsernameToken, BinarySecurityToken, etc…
MC: is this going to be overly constraining? Other approaches that would allow greater flexibility?

MC: issue: need to examine scenario where Producer signs Response back to the Consumer..
The following describes property/parameter-level capabilities which MAY be included as part of the WSRP service description
- @Encrypt: this is an optional attribute that may be attached to the property(entityProperty or sessionProperty) metadata element. When this attribute is present, Consumer MUST encrypt the element data for the given property. In addition, the Consumer MUST include the encryption method in the encrypted data element so that the Producer will know how to decrypt the data.
[CL: is there the assumption that all properties will have to be defined in the metadata?]
MC: issue: similar key issue here as with signatures

MC: question: any issues to discuss regarding interaction between encryption processing and signature processing?
MC: issue: need to examine scenario where producer encrypts response markup…
12.4. Access control
Roles

WSRP Standard Role Definitions

Custom Role Definitions
12.5. User profiles
13. Samples

13.1. Sample WSRP Client

13.2. Sample WSRP Server

14. Acronyms

� � HYPERLINK "http://java.sun.com/j2ee/" ��http://java.sun.com/j2ee/�

� � HYPERLINK "http://www.microsoft.com/net/" ��http://www.microsoft.com/net/�

� � HYPERLINK "http://www.w3.org/TR/SOAP/" ��http://www.w3.org/TR/SOAP/�

� � HYPERLINK "http://www.uddi.org/specification.html" ��http://www.uddi.org/specification.html�

� � HYPERLINK "http://www.w3.org/TR/wsdl" ��http://www.w3.org/TR/wsdl�

� � HYPERLINK "http://lcweb.loc.gov/standards/iso639-2/langcodes.html" ��http://lcweb.loc.gov/standards/iso639-2/langcodes.html�

�May return null

�Why is is required to pass a list of entities here? Couln’t the consumer just do the mapping? This would reduce the ambiguity in the entity-session mapping in the getFragment call.

�The property values are request based and do not necessarly correspond to properties that can be persisted.

�The form data should be part of the request parameters.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Sessions are orthogonal to entities, properties are attributes of entities, so the session is not required here.

�Do we really need security on a per-property level? I would assume that security based on sets of properties was sufficient.

�We need to discuss security in more detail to make sure that we stay in sync with other standards

�Alternatively we could omit the security dependency here and define it only on the DataObject level

�Only one method is required here (the consumer just registers once).

�Methods added in response to Mark's comment

Page 31 of 31

