SISP(4UFWS)
Simple Interoperable/Interim Security Profile for User Facing Web Services

Andre Kramer, Citrix (R&D) Ltd.

12th July 2005 v0.1

Request for Comment Submission to the OASIS WSRP TC
 “How to do secure remote Portlets with WSRP?” is surely the most frequently asked question for WSRP 1.0 and will remain so in the 2.0 time frame, in the absence of a simple recipe for securing the protocol. A TC Tech(nical) Note is planned to fully address supporting the security use cases identified by the TC, using Web Service Security Standards, such as OASIS WSS and SAML. However, developers (or deployers) will still need to pick and choose and compose Web Service security mechanisms, so a complex interoperability problem remains. And security policy negotiation will not be available any time soon.

Having a baseline proposal that provides “one size, fits all, good enough” security for most user facing consumer / producer remote interactions, in the author’s opinion, would significantly help WSRP 2.0 adoption, by providing an out of the box solution that protocol developers and deployers can leverage, as well as to provide a baseline for evaluating more advanced / specialized solutions. We offer SISP for this purpose. Since SISP aims to be minimal in security mechanism, we do not provide exhaustive motivation and description, but just enough for security minded developers to get on with (we hope).

Motivation

The Internet is known to be a very dangerous place. WSRP 1.0 and 2.0 are highly complex. Web Service security protocols are newly baked and implementations even younger
. If security really matters (Stock trading Portlet rather than the classic non - real time Stock Ticker) the consumer / producer interactions are highly likely to be session based. i.e. so that a shared security context, user tracking and audit is possible. Recent Grid security implementation work (GT4’s GSI) has shown that message based signing and encryption carries a heavy performance penalty with current implementations. Emulating a secure session at the message level, in any case, requires something like “WS SecureConversation”, a Microsoft & IBM proposal, something which remains a future work to do for standardization (as does MTOM/XOP security).
Enter TLS (aka SSL 3.0), which can and is often used to secure Web service traffic at the “transport level”. TLS is a powerful sledge hammer that can provide mutual authentication, privacy and integrity. As is common, we can leave open (unspecified) the public key (certificate) management that is required to deploy SSL, except to say that SISP requires both server and client certificates to secure the WSRP consumer (client) to WSRP producer (server) link via TLS/SSL.
In addition to TLS/SSL and the point to point trust it enables, by mandating that consumers MUST use SSL with client certificates, SISP needs to provide some simple user identification and attribution, without stepping on the Web service security architect’s toes.
The Details

WSRP 1.0 already provides a means to publish a secure “SSL” binding (simply replace “http://” by “https://” in the example service WSDL). Hence SISP simply says that a user facing Web service producer SHOULD only publish a secure HTTPS SOAP endpoint and that a SISP consumer MUST only use that secured endpoint for user facing Web Service request/reply communication. The producer MUST offer a valid SSL server certificate and the client (consumer) MUST present a valid client certificate. SISP leaves “valid” as to be defined, but plenty of solutions exist in practice. SISP insists on a client certificate so that the producer can be assured of the authenticity of all user facing protocol requests made by the consumer and their payload. Note that, the client certificate identities the consumer (i.e. it’s organizational security domain) and not any end user (a consumer can always lie via SISP). That (determining real identity), as well as privacy (what user information a consumer is allowed to disclose) are outside the scope of SISP.
For WSRP, the above is enough to manage user facing interactions securely. The security related fields in the WSRP 1.0/2.0 protocol now make sense. These, it must be noted, are only concerned with the quality of protection afforded the end user agent to consumer interactions (likely to be a Web browser talking to a Web Server): PortletDescription.defaultMarkupSecure; PortletDescription.onlySecure; RuntimeContext.userAuthentication; Templates.secure*Template; MarkupParams.secureClientCommunicaton; encrypted navigational state and HTTPS URL re-write expressions (wsrp-secureURL); AccessDenied fault.
Since we argued for the existence of a session in order to support a security context, we will assume PortletDescription.userContextStoredInSession is true. This allows SISP to avoid unnecessarily re-sending security sensitive information (you are indeed luck – you will get to find out what that information is later on), which is highly desirable, even given the strong protection provided by TLS. The SISP security context rule is that any (say WSRP) request that does not have an established (WSRP) user facing session, or results from a session fault, SHOULD carry a SISP security context (see below – at least you now know that the security information relates to a so called “security context” – lucky you). The producer MUST receive and hold onto (i.e. associate with the, say WSRP, session that it establishes) the security context sent it (if any) by the consumer. The consumer’s client certificate (the private key) protects and vouches for the authenticity of the information in the SISP security context (yes, We’ll get to it soon), so that no additional signing is required (producers MAY ignore any such message level signatures).
The consumer’s client certificate should be proof enough for the producer to authorize WSRP management related operations, such as managing a registration, deleting portlets etc. It and the producer’s server certificate are the basis of a point to point trust relationship. But it may be possible for SISP to do even more for you!
SISP Context
A user name token MAY be included directly in the SOAP header, using the usual OASIS WSS wrapping. A plain text credential MAY be included as follows [1]:
<wsse:UsernameToken>

<wsse:Username>…</wsse:Username>

[<wsse:Password>…</wsse:Password>] <!-- [] means optional -->
</wsse:UsernameToken>

The intention being that this first part of the SISP context is naming a user, for purposes of login, on whose behalf the consumer is requesting user facing services from the producer. The question of what the security domain of the user name is and whether a (further) mapping is required are not determined by the token itself.

The second part of the SISP context both mediates the consumer’s intention for use of the above username token and also MAY assert specific attributes of the implied user identity. This is achieved by also sending an attribute statement in a SAML 2.0 assertion [2] in the SOAP header:
<saml:Assertion><saml:AttributeStatement>

<Attribute> …</Attribute> + <!-- + means one or more elements -->

</saml:AttributeStatement></saml:Assertion>
The attribute statement may only contain one or more <Attribute> elements (no encrypted attribute elements and the statement or assertion are not separately signed).
Any type of attribute can be included that relates to the user of the user facing Web Service. SISP4UFWS itself defines two user facing Web Service related attributes:

Name sisp:UsernameTokenUsage

Value ProducerLogin | PortletLogin | LegacyApplicationLogin | *
If this attribute is provided, the consumer is advising the producer on how it expects the supplied token to be used: to log the user into the producer or producer’s application group (c.f. PortletDescription.groupID); to log the user into a Portlet (user facing plug-in component); to log the user into a legacy application that is fronted by the user facing Web service. Other values (*) are allowed but have no SISP defined meaning.
Name sisp:UserCategory

Value xsd:string
This attribute may be asserted multiple times to enumerate the roles at the producer the user is blessed with by the consumer. For WSRP, these SHOULD be constrained to be values from PortletDescription.userCategories. SISP packages user role attributes, at the risk of duplication, in well-defined security elements for security processors to extract.
Evaluation

SISP is simple but powerful enough to bootstrap security for user facing services, while allowing a shared security context to be established for user facing Web Services such as WSRP. It allows for simple user log in and user attribute mediation. Either the producer or consumer may perform additional identity and/or credential mappings based on the communicated security context.
By design, SISP does not address single-sign-on or identity management
. The reader is pointed at [3] for an important evolving approach to identity based Web Services.

SISP processors obtain security information either from the validated SSL certificates, or extract the information from the SOAP header, by seeking XML elements from well established security standards. SISP processors are expected to return some SOAP fault if header processing fails.
Client certificates also help to mitigate potential problems of security element capture and replay, as well as those of commonly weak password. We strongly encourage SSL connection re-use and multiplexing, especially given the additional expense of client certificate validation.

We might be persuaded to add some more attributes to SISP – but let’s keep it simple, please. This version specifies a namespace for SISP as xmlns:sisp="urn:1e625260-f2db-11d9-8cd6-0800200c9a66" which could certainly be improved upon.
If you use or support this profile proposal, please say “I’m using SISP4UFWS or SISP4WSRP” but do not blame the author for any security problems or issues you encounter (FULL DISCLAIMER – USE AT YOUR OWN RISK).
Please remember that the “I” stands for interim as well as interoperable, so remember to check back as Web Service security and identity management matures.
[1] http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
[2] http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
[3] https://www.projectliberty.org/resources/whitepapers/Liberty_ID-WSF_Web_Services_Framework.pdf
Example (Non-normative)
<?xml version="1.0" encoding="utf-8" ?>

<SOAP:Envelope>
 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance";

 xmlns:wsse=”http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd”

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 xmlns:sisp="urn:1e625260-f2db-11d9-8cd6-0800200c9a66"
 xmlns:wsrp=” urn:oasis:names:tc:wsrp:v1:types" >

<SOAP:Header>
<wsse:UsernameToken>

<wsse:Username>fred@internet.net</wsse:Username>

<wsse:Password>xxxx</wsse:Password>

</wsse:UsernameToken>
<saml:Assertion Version="2.0" ID="a144e7f3-adad-584a-9549-924517abe943" IssueInstant="2005-14-07T09:05:00Z" Issuer="a WSRP consumer” >

<saml:AttributeStatement>
<saml:Attribute Name="sisp:UsernameTokenUsage"> <saml:AttributeValue> LegacyApplicationLogin </saml:AttributeValue> </saml:Attribute>
<saml:Attribute Name="sisp:UserCategory"> <saml:AttributeValue> engineer </saml:AttributeValue> </saml:Attribute>

<saml:Attribute Name="sisp:UserCategory"> <saml:AttributeValue> TCmember </saml:AttributeValue> </saml:Attribute>

</saml:AttributeStatement>
</saml:Assertion>
<SOAP:Header/>

<SOAP:Body>

<urn:initCookie>

 <urn:registrationContext> ... </urn:registrationContext>

</urn:initCookie>

 <!-- initCookie is considered a necessary evil

 ... but handy for establishing a SISP context!
 -->

</SOAP:Body>

� The specifications build on each other in complex ways. Some may even require licensing?

� No subject is carried in the SAML attribute assertion.

