	Test
	Client Action
	Server Response

	1
	Client sends request exactly as described in Scenario 1
	Server responds with a success exactly as described in Scenario 1

	2
	Client sends a request as in Test 1, except:

/Envelope/Header/Security/UsernameToken/Password/@Type is equal to “wssePasswordDigest” not the default “wsse:PasswordText”
	Server sends a success as in Test 1 or responds with a Fault of “UnsupportedSecurityToken”

	3
	Client sends a request as in Test 1, except:

/Envelope/Header/Security/UsernameToken/Username contains an unknown username (not on the list)
	Server responds with a Fault of “FailedAuthentication”

	4
	Client sends a request as in Test 1, except:

/Envelope/Header/Security/UsernameToken/Password contains the wrong password for the given Username
	Server responds with a Fault of “FailedAuthentication”

	5
	Client sends a request as in Test 1, except it omits the UsernameToken
	Server responds with a Fault of “InvalidSecurity”

	6
	Client sends a request exactly as described in Scenario 2
	Server responds with a success exactly as described in Scenario 2

	7
	Client sends a request as in Test 6, except:

…/EncryptedKey/EncryptionMethod/@Algorithm is equal to “http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p” which is a REQUIRED Key Transport
	Server responds with a success message as in Test 6 or a Fault of “UnsupportedAlgorithim”

	8
	Client sends the exact same message as in Test 6 twice. {Note this may not be possible in some clients to duplicate the NONCE, in which case this will have to be done manually and this test reverts to a test of only the Server.}
	Server rejects the second message but responds to the first as in Test 6. The rejection should be with a Fault of “InvalidSecurityToken”

	9
	Client sends a request as in Test 6, except it uses a different binary security token that is unavailable to the server
	Server responds with a fault of “SecurityTokenUnavailable”

	10
	Client sends a request as in Test 6, except:

../EncryptedData/EncryptionMethod/@Algorithm is equal to “http://www.w3.org/2001/04/xmlenc#aes128-cbc” which is a REQUIRED Block Encryption algorithm
	Server responds as in 6 or faults with “UnsupportedAlgorithm”

	11
	Client sends a request exactly as in Scenario 3
	Server responds with a success exactly as in Scenario 3

	12
	Client sends a request as in Test 11, except:

…/Signature/SignedInfo/CanonicalizationMethod/@Algorithim is equal to “http://www.w3.org/TR/2001/REC-xml-c14n-20010315” instead of the exclusive c14n method
	Server responds with success as in Test 11 or faults with “UnsupportedAlgorithim”

	13
	Client sends a request as in Test 11, except:

…/Signature/SignedInfo/SignatureMethod/@Algorithm is equal to “http://www.w3.org/2000/09/xmldsig#dsa-sha1”
	Server responds with a success as in Test 11 (except signing the response with the same SignatureMethod) or faults with “UnsupportedAlgorithm”

	14
	Client sends a request as in Test 11, except with the certificate used for signing included as a BinarySecurityToken in the KeyInfo element instead of the SecurityTokenReference
	Sever responds with a success as in Test 11, except that it too inserts the certificate as a binary token in the KeyInfo element


