Proposal for New Work under Q12
1
Summary

A proposal has been received from Sun Microsystems Inc and from OSS-Nokalva that work should commence on a new ITU-T Recommendation and ISO Standard concerned with ASN.1 support for Web Services.

At present, it is expected that this work will result in a single new Recommendation, X.695 (IS 8825-6), with the currently proposed title:

"ASN.1 Support for SOAP, Web Services and the XML Information Set."

E-mails related to the proposal are attached in Annex A.  Annexes B, C, and D provide technical input for the three parts of the work that are currently being proposed.

It is expected that a number of other ITU-T Members and ISO National Bodies will express support for this work, and may wish to contribute to it.

The ITU-T SG17 Q12 (ASN.1) Rapporteur, in consultation with the Chairman of WP3 and the Chairman of SG17 has agreed that this work falls within the remit of Question 12 d) as currently drafted:

"What Recommendations are needed to provide linkage between ASN.1 and other notations for data schema definition, particularly (but not exclusively) related to XML mark-up?"
Accordingly the Rapporteur has approved the start of work in this new area (a revised Action Plan for Question 12 has been produced as a separate document).  Initial consideration of the inputs will take place on Wednesday and Thursday June 18th and 19th as part of an additional Joint Rapporteur meeting running from June 16th to June 19th in Somerset New Jersey (a Calling Notice for this additional Rapporteur Meeting has been produced as a separate document).

It is intended that this work be progressed as Joint Work with ISO/IEC/JTC1/SC6, and an ISO New Work Item Proposal is being initiated within ISO/IEC/JTC1 for assignment to JTC1/SC6.

2
Legal issues 

The following assurances have been given by SUN Microsystems in the attached e-mails:

a)
The submission re SOAP is SUN Copyright, but permission has been given for ITU-T and ISO to circulate their Members for the purpose of progressing this work.

b)
Any resulting Recommendation will be produced in conformance with the ITU-T Patent Policy, and its use is expected to be free of IPR or Patent encumbrances, but see Annex A for a precise statement.

Annex A
E-mails requesting the work

Contents of e-mails from Sun Microsystems

      Dear Mr. Larmouth:

I'm writing on behalf of Sun Microsystems, Inc., an ITU-T member, to provide one of two related input documents for consideration at the ITU-T SG17/Q12 ASN.1 Rapporteur Group meeting in Somerset, NJ, April 22-May 1, 2003. The document, attached, is a draft specification for "ASN.1 Schema for SOAP." 

The companion document, being submitted separately by OSS Nokalva, Inc., is a draft specification for "ASN.1 Schema for the XML Information Set." 

The advent of X.694 provides much of the core required to define ASN.1-based web services. We believe the functionality specified by these two input documents is additionally necessary for X.694 to be used in conjuction with SOAP, web services and the XML infoset. 

This input requests consideration of an addition to the Q12 Program of Work.  I believe that it is fully within the scope of Question 12, and that a number of the ITU-T members will recognize the value of this work and support its progression in ITU-T. 

Tentatively, we are looking at a new recommendation, X.695, with the title, "ASN.1 Support for SOAP, Web Services and the XML Information Set."

This mail confirms that you and the ITU-T have Sun Microsystems' permission to reproduce our "ASN.1 Schema for SOAP" submission and to distribute copies of the submission to any member of ITU-T and/or ISO.

This mail also confirms that if Sun determines that we believe we hold granted patents and/or pending applications whose use would be required to implement the ASN.1 Schema for SOAP should that Schema become anITU-T Recommendation, then Sun will comply with the ITU-T Patent Policy.  In particular, should we determine that we believe we hold such patents or patent applications then we are prepared to grant – on the basis of reciprocity for the Schema should it become an ITU-T Recommendation - a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the Schema.

Thank you.

Connie Weiss, Director

Web Technologies and Standards

Sun Microsystems, Inc.
Contents of E-mail from OSS Nokalva

      John,

I know that you announced on the ITU-T SG17 list some weeks ago that a

contribution was expected to the ITU-T SG17/Q12 ASN.1 Rapporteur Group

meeting in Somerset, NJ, April 22-May 1, 2003, and that you placed

consideration of it on the Agenda for that meeting.

I now wish to formally request on behalf of OSS Nokalva, Inc., an ITU-T

member, that work begin to extend and strengthen the ASN.1 support for XML

and for Web Services in particular, by adding to the Q12 Action Plan.

Attached please find a draft specification titled, "ASN.1 Schema for the XML

Information Set".  This document is complementary to Sun's submission,

"ASN.1 Schema for SOAP".

"ASN.1 Schema for the XML Information Set" contains a formal definition of a

data type equivalent to the XML Information Set, written in ASN.1.  The use

of ASN.1 binary encoding rules, such as the Packed Encoding Rules (PER),

results in compact serialization formats for the types defined in the ASN.1

schema.  This facilitates the exchange of XML infosets between systems, with

significant performance benefits over the exchange of the corresponding XML

documents.

Attached please also find a first draft of the "third part" of the proposed X.695 as currently planned. This "SOAP module" describes a mechanism (a "SOAP feature") for performing transformations of the formats of messages (from XML to some PER encoding) and of the format of the data carried by the messages

(from XML or some infoset representation, to PER).  

This "SOAP feature" fits well into the general SOAP messaging framework

and does not require any changes to any part of SOAP 1.2 or WSDL 1.2.

It allows to perform "message transcoding" at any point of a message

path across a network, regardless of what format the initial sender and

the ultimate receiver use.

This solution facilitates interoperability, because it does not require either servers or clients to replace their software, or to replace it simultaneously.  In many cases, the network itself (i.e., not the server or the client) will be able to reduce the size of messages (e.g., using ASN.1/PER) before they go across a slow link.  In other cases, a client (talking XML) and a server (talking PER) will be able to communicate without a problem.

Bancroft Scott

Annex B
Initial submission re ASN.1 schema for SOAP 

Draft: ASN.1 Schema for SOAP

Paul.Sandoz@Sun.Com
Marc.Hadley@Sun.Com
Copyright © 2003 Sun Microsystems, All Rights Reserved
The ASN.1 Schema for SOAP is an ASN.1 specific realization of the SOAP 1.2 [SOAP Part 1] message construct re-targeted for use with ASN.1 based message payloads. It is a specific goal of this specification that the semantics of SOAP 1.2 including the SOAP 1.2 processing model and the notion of intermediaries are preserved. However, since the construct is not based on XML infoset it cannot be considered a true SOAP 1.2 binding. 

From the WSDL perspective, ASN.1 is a new protocol binding but, because ASN.1 SOAP is semantically very close to XML SOAP, only minimal extension to the existing WSDL SOAP binding is required to support ASN.1 in WSDL. 

An alternative to an ASN.1 specific realization of SOAP would be to use X.694 to map the XSD SOAP Schema to ASN.1. However. the advantages of an ASN.1 specific realization are: 

· general XSD 'any' concepts can be more formally defined in ASN.1 

· additional features can be added that are specific to the new protocol 

· it may be optimized to be efficient for constrained devices 

SOAP 1.2 is currently a W3C Candidate Recommendation and is expected to become a Proposed Recommendation soon. The specification is therefore unlikely to change significantly in the near term making an ASN.1 specific realization of SOAP a safe thing to embark upon. The X.694 proposal has been used as a guide whilst developing the ASN.1 Schema for SOAP. 

The following subsections highlight each area of the ASN.1 Schema for SOAP. A complete schema may be found in [ASN.1 SOAP Schema] 

SOAP Envelope

SoapEnvelope ::= SEQUENCE {
  headers SoapHeaders OPTIONAL,
  body-or-fault CHOICE {
    body SoapBody,
    fault SoapFault
  }
}

The SOAP envelope is defined by the SoapEnvelope type, which is the top level type of an ASN.1 SOAP message (value type of SoapEnvelope). It contains the header and body or fault types. 

Headers are marked as OPTIONAL. 

The relationship between a SOAP fault and a SOAP body is formally defined as a CHOICE of either a SoapBody type or a SoapFault type. SOAP 1.2 states: 

"To be recognized as carrying SOAP error information, a SOAP message MUST contain a single SOAP Fault element information item as the only child element information item of the SOAP Body" 

The ASN.1 schema makes this relationship explicit and unambiguous: a SoapBody contains message contents other than a SOAP fault. 

SOAP Headers

SoapHeaders ::= SEQUENCE OF SoapHeader

SoapHeader ::= SEQUENCE {
  role XSD.AnyURI OPTIONAL
  mustUnderstand BOOLEAN DEFAULT FALSE
  relay BOOLEAN DEFAULT FALSE
  content OpenContent
}
Headers are defined as a SEQUENCE OF the SoapHeader type. 

A SoapHeader type formally defines the attributes that may be associated with header content, namely role, mustUnderstand and relay, with appropriate OPTIONAL and DEFAULT properties corresponding to the SOAP 1.2 specification definitions. 

The content of the header is defined as an OpenContent type, described later. The content is explicitly defined not to be optional. 

SOAP Body

SoapBody ::= SEQUENCE OF OpenContent

The body of a SOAP message, the  SoapBody type, is a SEQUENCE OF the content of type OpenContent.

SOAP 1.2 states that the SOAP body may have:

"Zero or more namespace qualified element information items in its [children] property." 

SOAP Fault

SoapFault ::= SEQUENCE {
  faultCode SoapFaultCode,
  reasons SEQUENCE SIZE(1..MAX) OF SoapFaultReason,
  node XSD.AnyURI OPTIONAL
  role XSD.AnyURI OPTIONAL
  detail OpenContent OPTIONAL
}

SoapFaultCode ::= SEQUENCE {
  code SoapFaultCodeValue,
  subCodes SEQUENCE OF Identifier
}

SoapFaultCodeValue ::= ENUMERATED {
  VersionMismatch,
  MustUnderstand,
  DataEncodingUnknown,
  Sender,
  Receiver,
  ...
}

SoapFaultReason ::= SEQUENCE {
  lang XSD.Language,
  text UTF8String
}

A SOAP fault, the SoapFault type, maps closely to the equivalent in SOAP 1.2 with node, role and detail being OPTIONAL. 

The SOAP fault code, SoapFaultCodeValue type, differs slightly from the SOAP 1.2 specification. An ENUMERATION is defined instead of using a set of predfined QNames. This allow for a more efficient representation.

The subCode value differs from the SOAP 1.2 equivalent. SOAP 1.2 defines the SOAP subcode to contain a value and a subcode. Hence, this is recursively defined. The ASN.1 schema flattens this structure such that it is represented as a sequence of Identifier. This allows receivers of fault information to pre-allocate space.

The SoapFaultReason type also differs from the SOAP 1.2 equivalent. SOAP 1.2 requires that the lang value be unique amongst the members of the reasons value on the SoapFault type. The SOAP 1.2 schema uses XPath features of XSD to define this. It is not clear if this constraint can be mapped to an equivalent feature in ASN.1, and thus has been defined as an implicit rule. 

Open Content

OpenContent ::= SEQUENCE {
  id Identifier,
  metaData OPEN.&Type OPTIONAL,
  content OPEN.&Type
}

Identifier ::= CHOICE {
  oid OID,
  int XSD.Int,
  qName XSD.QName
} 

The 'holes' for SOAP headers and the SOAP body or fault use the OpenContent type. The content of the OpenContent type is defined such that it is of an open type, Open.&Type. In conjunction with this an identifier is required, Identifier type. This type is used to connect the content (which is just a length prefixed array of bytes at the SOAP layer) to encoders/decoders. 

An additional hole has preliminarily been added, metaData value, which may provide further information for the content. This requires further work to define this more formally. 

An identifier may be either an ASN.1 Object Identifier, OID, an XSD.Int, or an XSD.QName. 

The use of QName fits closely to the XSD schema and WSDL used to defined the messages. The value of a QName corresponds to the top level element that would occur if using XSD and XML. This allows for use of existing WSDL defined messages with no modification. 

QNames may be considered to consume too much bandwidth for those wishing to optimize this aspect. An ASN.1 Object Identifier may be an alternative if chosen carefully to ensure uniqueness. A less open contract but even more efficient in terms of bandwidth use would be the use of an integer. Modifications to WSDL will be required to formalize the contract between client and service to ensure than non QName defined identifiers are used correctly. 

Observations/Issues

· Extention/versioning needs to be thought about more carefully.

· The schema does not ensure that XER encoded instances conform to SOAP 1.2 defined envelopes. 

· Does not use X.694 to automatically map the SOAP XSD to ASN.1. There are advantages to such an approach in that there would be no need to define a new Schema. However, this may not offer the flexibility for certain features. 

· Other ASN.1 features may be used namely abstract types in conjunction with information classes and information objects to ensure better alignment to ASN.1 based tools that can automatically encode/decode of the 'holes'. Care may have to be taken to ensure that ASN.1 SOAP can be clearly separated from an ASN.1 types defined that correspond to information mapped from WSDL. SOAP 1.2 is independent of WSDL and it may be advantageous to ensure the same for the ASN.1 SOAP Schema and WSDL. 

· Allowing identifiers other then QNames requires WSDL extensions to ensure formal contracts. 

ASN.1 SOAP Schema

A preliminary ASN.1 schema is presented below. Note that this has not been compiled, by an ASN.1 tool to check for validity, although effort has been made to ensure that this is the case. The schema reuses some types defined in the XSD module of the XSD to ASN.1 (X.694) mapping specification. 

AsnSoap DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

IMPORT
  AnyURI, Int, Language, QName
    FROM XSD;

OPEN ::= CLASS {
  &Type
}

SoapEnvelope ::= SEQUENCE {
  headers SoapHeaders OPTIONAL,
  body-or-fault CHOICE {
    body SoapBody,
    fault SoapFault
  }
}

SoapHeaders ::= SEQUENCE OF SoapHeader

SoapHeader ::= SEQUENCE {
  role XSD.AnyURI OPTIONAL
  mustUnderstand BOOLEAN DEFAULT FALSE
  relay BOOLEAN DEFAULT FALSE
  content OpenContent
}

SoapBody ::= SEQUEUNCE OF OpenContent

SoapFault ::= SEQUENCE {
  faultCode SoapFaultCode,
  reasons SEQUENCE SIZE(1..MAX) OF SoapFaultReason,
  node XSD.AnyURI OPTIONAL
  role XSD.AnyURI OPTIONAL
  detail OpenContent OPTIONAL
}

SoapFaultCode ::= SEQUENCE {
  code SoapFaultCodeValue,
  subCodes SEQUENCE OF Identifier
}

SoapFaultCodeValue ::= ENUMERATED {
  VersionMismatch,
  MustUnderstand,
  DataEncodingUnknown,
  Sender,
  Receiver,
  ...
}

SoapFaultReason ::= SEQUENCE {
  lang XSD.Language,
  text UTF8String
}

OpenContent ::= SEQUENCE {
  id Identifier,
  metaData OPEN.&Type OPTIONAL,
  content OPEN.&Type
}

Identifier ::= CHOICE {
  oid OID,
  int XSD.Int,
  qName XSD.QName
} 

END

References 

[ASN.1 Complete] 
"ASN.1 Complete" by Professor John Larmouth 

[SOAP Part 1] 

W3C Working Draft "SOAP Version 1.2 Part 1: Messaging Framework", Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 19 December 2002 (See http://www.w3.org/TR/2002/CR-soap12-part1-20021219.) 

Annex B
Initial submission re ASN.1 schema for the XML Infoset 

ASN.1 Schema for the XML Information Set  (Rev. 2003-05-01)

Introduction

This document contains a formal definition of a data type equivalent to the XML Information Set, written in ASN.1. The ASN.1 schema herein provides a complete and faithful abstract representation of all the information items in the XML Information Set and all their properties, as specified in the W3C XML Information Set Recommendation.

The standard ASN.1 binary encoding rules (PER, BER, etc.) provide compact serialization formats for the types defined in this ASN.1 schema, facilitating the exchange of XML infosets between systems, with significant performance benefits over the exchange of the corresponding XML documents.  Unlike other existing alternative binary representations of XML 1.0, the ASN.1 schema is built upon the W3C standard specification of the XML Information Set.  This allows the direct use of in-memory infosets that are never serialized into/from XML 1.0 documents.

In terms of speed and size of the encoding, the end results are expected to be comparable with those of other existing binary serialization formats of XML, but the ASN.1 schema differs from them conceptually in several regards.  

· The ASN.1 schema is a formal specification that uses a standard data-definition language with standardized on-the-wire representations of the data.  Among the benefits are: readability; freedom from ambiguity and unclarity in the format specification; availability of tools (including most free ASN.1 tools) that facilitate the development of applications based on this specification.

· The ASN.1 schema has several features that a writer application can use to achieve various degrees of compactness, according to availability of memory, CPU cycles, and other system resources.  Compression is an optional feature and operates on character-string blocks to maximize efficiency.

· Any application conceptually based on the standard XML Information Set can easily be adapted so as to use the ASN.1 schema.  There is no loss of information when going from an application's internal representation of the abstract infoset to the ASN.1 representation and then back to the infoset, because the individual properties of information items are completely mapped into the ASN.1 schema.

Types Defined in the Schema

Infoset

This is the single topmost type. It is distinct from the Document type because it does not correspond to any information item, but carries information related to the representation of information items, such as an optional string table and an optional name table.

(To be completed)
ComponentStringGroup

This type holds a subset of the strings in a string table. A value of the Infoset type may or may not contain a string table.  If it does, the string table shall consist of one or more component string groups.  

Each component string group shall contain one or more strings and may be individually compressed.  If compression is not used for a component string group, the component string block shall be a contiguous block of concatenated character strings, each encoded in UTF-8 and terminated by a null byte.  If compression is used for a component string group, a block of concatenated character strings shall first be (conceptually) created as described above, then compression shall be applied to it, and the resulting compressed block shall be included as the component string block in the component string group.

If compression is used for a component string group, the compression algorithm shall identify the algorithm, otherwise the compression algorithm shall be empty.  Each component string group for which compression is used shall always be compressed separately.

The strings in the string table are implicitly assigned indexes.  The index of the first string in the first component string group shall be 1, and the index of the first string in each subsequent component string group shall be one plus the index of the last string in the preceding component string group. These indexes shall be used within several type definitions to reference the strings in the string table.

There is no obligation for the string table to contain all of the strings that occur in the infoset. The string table may be empty, or any number of strings, from 1 to the total number of strings in the infoset, can be present in the string table in any order.  It is possible for a writer application to arrange the strings within a component string group and among different component string groups so to achieve maximum efficiency.

Although it is expected and recommended that the string table does not contain any duplicates, it is not an error if it does.
(To be completed)
CommonName

This type hold a common name, which is an element name or attribute name that occurs one or more times in the infoset.  The Infoset type may contain a name table, containing one or more common names. 

There is no obligation for the name table to contain all of the element names and attribute names existing in the infoset.

Although it is expected and recommended that the name table does not contain any duplicates, it is not an error if it does.

(To be completed)
Document

This corresponds to the document information item and has a component for each of its properties. 

The only exception is the [document element] property, which is not represented as a component of Document as it is a duplicate link to the document element, which is included in the [children] property.
(To be completed)
Element

This corresponds to the element information item and has a component for each of its properties. 

The only exception is the [parent] property, which is not represented as a component of Element as it is an upward reference to either the document information item or the element information item that is the parent of this element information item.
(To be completed)
Attribute

This corresponds to the attribute information item and has a component for each of its properties. 

The only exception is the [owner element] property, which is not represented as a component of Attribute as it is an upward reference to the element information item that owns this attribute information item.
(To be completed)
ProcessingInstruction

This corresponds to the processing instruction information item and has a component for each of its properties. 

The only exception is the [parent] property, which is not represented as a component of ProcessingInstruction as it is an upward reference to a document, element, or document type definition information item.
(To be completed)
UnexpandedEntityReference

This corresponds to the unexpanded entity reference information item and has a component for each of its properties. 

The only exception is the [parent] property, which is not represented as a component of UnexpandedEntityReference as it is an upward reference to the parent element information item.
(To be completed)
Characters

This corresponds to the character information item, but represents a contiguous chunk of characters in the content of the parent element rather than a single character.

For optimization purposes, whenever the chunk of characters is a hexadecimal or base64 representation of a binary data block, the binary data block can be represented as an OCTET STRING.

The [parent] property is not represented as a component of Characters as it is an upward reference to the parent element information item.
(To be completed)
Comment

This corresponds to the comment information item and has a component for its content property. 

The [parent] property is not represented as a component of Comment as it is an upward reference to the parent element information item.
(To be completed)
DocumentTypeDeclaration

This corresponds to the document type declaration information item and has a component for each of its properties. 

The only exception is the [parent] property, which is not represented as a component of DocumentTypeDeclaration as it is an upward reference to the parent document information item.
(To be completed)
UnparsedEntity

This corresponds to the unparsed entity information item and has a component for each of its properties. 
(To be completed)
Notation

This corresponds to the notation information item and has a component for each of its properties. 
(To be completed)
Namespace

This corresponds to the namespace information item and has a component for each of its properties. 
(To be completed)
StringOrIndex

This type holds a character string, either literally or as an index into the string table.  

An index value of 0 denotes an empty string.
(To be completed)
URIOrIndex

This type holds a URI, either literally as a character string, or as an index into the string table.

An index value of 0 denotes an empty string.
(To be completed)
NCNameOrIndex

This type holds an NCName, either literally as a character string, or as an index into the string table.

An index value of 0 denotes an empty string.
(To be completed)
ASN.1 Module
In general, OPTIONAL is used to support infoset item properties that can have a special value of "no value".
XMLInformationSet DEFINITIONS AUTOMATIC TAGS ::= BEGIN

Infoset ::= SEQUENCE {

  order CHOICE {


no-tables Document,


tables-first SEQUENCE {


  component-strings SEQUENCE OF ComponentStringGroup, --Note 1--


  common-names SEQUENCE OF CommonName, --Note 2--



document Document


},


document-first SEQUENCE {



document Document,



component-strings SEQUENCE OF ComponentStringGroup,


common-names SEQUENCE OF CommonName


},


dynamic-tables Document

}

}



--Referenced by: Infoset--

ComponentStringGroup ::= SEQUENCE {


compression-algorithm URI,


component-string-block OCTET STRING }

--Referenced by: Infoset--

CommonName ::= SEQUENCE {


namespace-name CHOICE {



namespace-name URIOrIndex,



same-as-previous-item NULL } OPTIONAL,


local-name NCNameOrIndex,


prefix CHOICE {



prefix NCNameOrIndex,



same-as-previous-item NULL } OPTIONAL }

--Referenced by: Infoset--

Document ::= SEQUENCE {


--document-element: second link not represented--



notations SEQUENCE OF Notation,


unparsed-entities SEQUENCE OF UnparsedEntity,


base-URI URIOrIndex,


character-encoding-scheme StringOrIndex,


standalone BOOLEAN OPTIONAL,


version StringOrIndex OPTIONAL,


all-declarations-processed BOOLEAN,


children SEQUENCE OF CHOICE {



element Element,



processing-instruction ProcessingInstruction,



comment Comment,



document-type-declaration DocumentTypeDeclaration }

}

--Referenced by: Document, Element--
Element ::= SEQUENCE {


name CHOICE {



name SEQUENCE {




namespace-name CHOICE {





namespace-name URIOrIndex,





same-as-parent-element NULL } OPTIONAL,




local-name NCNameOrIndex,




prefix CHOICE {





prefix NCNameOrIndex,





same-as-parent-element NULL } OPTIONAL,




add-to-dynamic-table BOOLEAN },



common-name-index Index },


attributes SEQUENCE OF Attribute,


namespace-attributes SEQUENCE OF Attribute,


in-scope-namespaces CHOICE {



in-scope-namespaces SEQUENCE OF Namespace,



same-as-parent-element NULL },


base-URI CHOICE {



base-URI URIOrIndex,



same-as-parent-element NULL },


--parent: link not represented (the parent Element or Document)--

children SEQUENCE OF CHOICE {



element Element,



processing-instruction ProcessingInstruction,



unexpanded-entity-reference UnexpandedEntityReference,



characters Characters,



comment Comment }

}

--Referenced by: Element--
Attribute ::= SEQUENCE {


name CHOICE {



name SEQUENCE {




namespace-name CHOICE {





namespace-name URIOrIndex,





same-as-owner-element NULL,





same-as-previous-attribute NULL } OPTIONAL,



local-name NCNameOrIndex,




prefix CHOICE {





prefix NCNameOrIndex,





same-as-owner-element NULL,





same-as-previous-attribute NULL } OPTIONAL,




add-to-dynamic-table BOOLEAN },



common-name-index Index },


normalized-value StringOrIndex,


specified BOOLEAN,


attribute-type CHOICE {



attribute-type AttributeType,



unknown NULL } OPTIONAL,


references CHOICE {   --Note 3--



element-indexes SEQUENCE OF RELATIVE-OID,



unparsed-entity-indexes SEQUENCE OF Index,



notation-index Index,



unknown NULL } OPTIONAL


--owner-element: link not represented (the owner Element)--

}

--Referenced by: Document, Element, DocumentTypeDeclaration--

ProcessingInstruction ::= SEQUENCE {


target NCNameOrIndex,


content StringOrIndex,


base-URI CHOICE {



base-URI URIOrIndex,



same-as-parent NULL },

notation CHOICE {



notation-index Index,



unknown NULL } OPTIONAL


--parent: link not represented (the parent Document, Element,-- 



--or DocumentTypeDefinition)--

}

--Referenced by: Element--
UnexpandedEntityReference ::= SEQUENCE {


name NCNameOrIndex,


system-identifier
CHOICE {



system-identifier URIOrIndex,



unknown NULL } OPTIONAL,


public-identifier CHOICE {



public-identifier URIOrIndex,



unknown NULL } OPTIONAL,


declaration-base-URI CHOICE {



declaration-base-URI URIOrIndex,



unknown NULL } OPTIONAL


--parent: link not represented (the parent Element)--

}

--Referenced by: Element--
Characters ::= SEQUENCE {


characters CHOICE {



characters StringOrIndex,


binary-block OCTET STRING },   --Note 4--

element-content-whitespace BOOLEAN


--parent: link not represented (the parent Element)--

}

--Referenced by: Document, Element--
Comment ::= SEQUENCE {


content StringOrIndex

--parent: link not represented (the parent Element)--

}

--Referenced by: Document--
DocumentTypeDeclaration ::= SEQUENCE {


system-identifier URIOrIndex OPTIONAL,


public-identifier URIOrIndex OPTIONAL,


children SEQUENCE OF ProcessingInstruction

--parent: link not represented (the parent Document)--

}

--Referenced by: Document--
UnparsedEntity ::= SEQUENCE {


name NCNameOrIndex,


system-identifier URIOrIndex OPTIONAL,


public-identifier URIOrIndex OPTIONAL,


declaration-base-URI URIOrIndex OPTIONAL,


notation-name NCNameOrIndex,


notation CHOICE {



notation-index Index,


unknown NULL } OPTIONAL

}

--Referenced by: Document--
Notation ::= SEQUENCE {


name NCNameOrIndex,


system-identifier URIOrIndex OPTIONAL,


public-identifier URIOrIndex OPTIONAL,


declaration-base-URI URIOrIndex OPTIONAL

}

--Referenced by: Element--
Namespace ::= SEQUENCE {


prefix NCNameOrIndex OPTIONAL,


namespace-name URIOrIndex
}

URI ::= UTF8String

StringOrIndex ::= CHOICE {


string SEQUENCE {



string UTF8String,



add-to-dynamic-table BOOLEAN },


component-string-index Index }

URIOrIndex ::= StringOrIndex

NCNameOrIndex ::= StringOrIndex

Index ::= INTEGER (0 .. 32767, ..., 0 .. MAX)

AttributeType ::= ENUMERATED {


id,


idref,


idrefs,


entity,


entities,


nmtoken,


nmtokens,


notation,


cdata,


enumeration 

}

END
NOTES

Some optimizations are possible and should be introduced, provided that their extent is limited.  The ASN.1 representation should remain as close as possible to the original model of the infoset.

Suggested optimizations:


- make certain components OPTIONAL


- use unaligned PER, but ensure that the string table is byte-aligned

Note 1

Use of component-strings is optional for the writer.

If compression is used, each component-string-block is the result of compression.  

The use of the string table can be beneficial even if compression is not used, because each string (of any kind) that occurs multiple times in the infoset can be included once in the string table and referenced by index as many times as it occurs in the infoset (as a URI, NCName, attribute value, character chunk, etc.).

The choice of compression algorithm(s), the number of component string groups, and the size and composition of each component string group is at the discretion of the writer.

Note 2

Use of common-names is optional for the writer.

This feature can be used for all the element or attribute information items in the infoset, or even only for some of them, or none at all, at the discretion of the writer.

Note 3

For IDREF(S) attributes: Each relative oid is a path to the Element identified by the value of the attribute. Each component of the relative oid is an index that identifies an Element child. 

Example: { 1 4 3 } indicates the 3rd Element child of the 4th Element child of the document element. 

For ENTITY(IES) attributes: Each Index is an index into the unparsed-entities list in Document.

For NOTATION attributes: The Index is an index into the notations list in Document.

Note 4

Use of this feature is optional for the writer.

Whenever characters is a valid lexical representation for xsd:hexBinary or xsd:base64binary and the element has an "xsi:type" attribute whose value is "xsd:hexBinary" or "xsd:base64Binary" (respectively), then binary-block may be used instead of characters at the discretion of the writer.

Alessandro Triglia, OSS Nokalva

May 1, 2003

Annex D
Initial submission re SOAP Module

SOAP 1.2 Module for Message Transcoding Based on ASN.1

Introduction

This document specifies a mechanism for identifying and changing the on-the-wire representation of messages and the encoding of application data carried in them, within the context of the SOAP 1.2 distributed messaging framework. 

This mechanism is specified, in SOAP 1.2 terminology, as a SOAP Feature, and exploits the extensibility provisions of SOAP 1.2.  This document contains a SOAP Module that describes this feature in compliance with SOAP 1.2.  URIs are assigned both to the SOAP Feature and to the SOAP Module as required by the W3C SOAP 1.2 Candidate Recommendation.

The mechanism defined in this document uses SOAP 1.2 concepts such as role and active intermediary and the ability of a node (whether an intermediary or the ultimate receiver) to process message headers and/or the message body based upon a role that the SOAP node assumes and upon the headers present in a message. These features of SOAP 1.2 allow a node to instruct other node(s) down the message path to perform certain desired operations on the message, such as message transcoding.

Embedding forms and media types

Embedding forms

In SOAP 1.2, a message is defined in abstract terms as an XML information set, without any implied serialization format (in particular, there is no specific requirement that the messages be represented in XML syntax).  SOAP message bodies carry application data.

This document distinguishes two forms in which application data is carried in a message infoset (embedding forms):


a) an explicit embedding form, which contributes actual element and attribute information items to the message infoset, so that the structure of the application data coincides with the structure of the portion of the infoset where it resides;


b) an implicit embedding form, usually pre-encoded in some binary form, wrapped within a base64 or hexadecimal block, and included as the content of an element information item in the body of the message infoset.

The on-the-wire representation of the message infoset is not fixed during the lifetime of the message, but may change as appropriate, from one hop to the next.  The on-the-wire representation is defined by a SOAP binding.  It would be possible to use a different binding in different parts of a message path. It would also be possible to use the same binding with different parameters.

Media types

This document specifies the use of only one binding for SOAP, the HTTP 1.1 binding of SOAP 1.2 as specified in the W3C SOAP 1.2 Candidate Recommendation.  This binding allows different on-the-wire representations, identified by the "ContentType" header field of the HTTP request or response message.  This document specifies the use of the following three media types:


a) "application/soap+xml" (XML) identifies the XML 1.0 syntax;


b) "application/asn1-soapenv" (SOAPEnvelope) identifies a compact representation of the SOAP message infoset, based on an ASN.1 schema for the SOAP envelope, using aligned PER as the encoding rules;


c) "application/asn1-infoset" (Infoset) identifies a compact representation of the SOAP message infoset, based on an ASN.1 schema for the XML Information Set, using aligned PER as the encoding rules.

(THESE NEW MEDIA TYPES SHOULD BE REGISTERED)

Combinations of media types and embedding forms

Each of the embedding forms (explicit and implicit) can be used in combination with any of the media types at any time during the lifetime of a message.  The following combinations are possible:


a) XML/explicit: the message is represented as an XML 1.0 document; the application data is also represented in XML 1.0 as a part of the same XML document;


b) XML/implicit: the message is represented as an XML 1.0 document; the application data is pre-encoded in some binary form, wrapped within a base64 or hexadecimal block, and included as the content of an element in the XML document;


c) SOAPEnvelope/explicit: the message is represented as an ASN.1 abstract value of a "SOAPEnvelope" type; the application data is represented in XML 1.0 and carried in one or more character strings (UTF8String) within the message; the message is encoded in aligned PER;


d) SOAPEnvelope/implicit: the message is represented as an ASN.1 abstract value of a "SOAPEnvelope" type; the application data is pre-encoded in some binary form and included as a binary block; the message is encoded in aligned PER;


e) Infoset/explicit: the message is represented as an ASN.1 abstract value of an "Infoset" type; the application data is explicitly present as portion of the same infoset; the message is encoded in aligned PER;


f) Infoset/implicit: the message is represented as an ASN.1 abstract value of an "Infoset" type; the application data is pre-encoded in some binary form and included as a binary block; the message is encoded in aligned PER.

Schemas for application data

Application data may be defined by a schema, specified in a schema language.  If the schema language is ASN.1, or a language for which a generic standard mapping into ASN.1 exists (such as XML Schema), then both explicit embedding and implicit embedding are possible, and the two forms can be automatic converted into each other.  This is also possible when the schema language does not have a generic standard mapping into ASN.1, so long as a specialized transcoder for that application data is available.

Therefore, while conversion between media types is always possible, conversion between embedding forms is usually, but not always, possible.

For the purposes of this document, it is not important that a convenient data access API be available for the application data schema.  What is important is the ability of a transcoder to convert efficiently among the various combinations of embedding forms and media types, for several different kinds of application data.

SOAP Feature "Message Transcoding Based on ASN.1"

The URI assigned to this SOAP Feature is:


http://www.asn1.org/soap/f/transcode
The URI assigned to the SOAP Module that describes this feature is:


http://www.asn1.org/soap/m/transcode
(TO BE REVISED AND COMPLETED ACCORDING TO THE SOAP 1.2 CANDIDATE RECOMMENDATION)

Roles

The following SOAP roles are specified:


a) http://www.asn1.org/soap/r/mk-soapenv (Make SOAPEnvelope): Any SOAP node with the ability to convert a message from any media type into SOAPEnvelope.


b) http://www.asn1.org/soap/r/mk-infoset (Make Infoset): Any SOAP node with the ability to convert a message from any media type into Infoset.

c) http://www.asn1.org/soap/r/mk-imp-asn1 (Make implicit): Any SOAP node with the ability to convert a message into the implicit embedding form (usually a PER encoding) using an ASN.1 schema.

d) http://www.asn1.org/soap/r/mk-imp-asn1xsd (Make implicit): Any SOAP node with the ability to convert a message into implicit embedding form using an ASN.1 schema mapped from XML Schema via X.694.
(TO BE REVISED AND COMPLETED)

When a SOAP node receives a message and a header block in the message references a role that the node can assume, the node shall use the information in that header block to perform the requested operation as specified below.

(TO BE REVISED AND COMPLETED)

References

W3C SOAP Version 1.2 Part 1: Messaging Framework

W3C SOAP Version 1.2 Part 2: Adjuncts

W3C Recommendation "XML Information Set"

(TO BE COMPLETED)

Alessandro Triglia,  OSS Nokalva

May 1, 2003

18


19

