WSS XrML2-Based Rights Expression Token Profile Interop Scenarios

Table of Contents

1WSS XrML2-Based Rights Expression Token Profile Interop Scenarios

2Table of Contents

3Introduction

41
Application

52
Scenario 1.0

52.1 Message Exchanges

52.2 Message from the Requester

52.2.1 Elements and Attributes

62.2.2 Elements within a Request Message

72.2.3 Processing at the Receiver

72.2.4 Example (Non-normative)

82.3 Second Message - Response

82.3.1 Message Elements and Attributes

82.3.2 Message sent in response

82.3.3 Message Processing at the Receiver

82.3.4 Example (Non-normative)

103
Scenario 2.0

103.1 Message Exchanges

103.2 Message from the Requester

103.3 Processing at the receiver

113.4 Message back from the service

113.4.1 Elements and Attributes

113.4.2 Elements within a Request Message

123.4.3 Processing at the Client

133.4.4 Example (Non-normative)

164
Scenario 3.0

164.1 Message Exchanges

164.2 Message from the Requester

164.2.1 Elements and Attributes

174.2.2 Elements within a Request Message

184.2.3 Example (Non-normative)

184.3 Processing at the receiver

185
Annex A: license Signatures

Introduction

The document is intended as a proposed plan for the implementers of the WSS XrML2-based Rights Expression Token Profile interoperability tests. The document contains a series of tests that can be conducted to ensure the interoperable use of licenses within WS-Security. The tests will highlight the shortcomings or issues with the interoperability of the specification, and such results will be used to further refine the specification. It should be noted that the tests described here only test the interoperability of XrML2-Based Rights Expression Token Profile. The test scenarios and the message exchange patterns for the rest of the tokens (username/password, x509, Kerberos, SAML) can be found in other documents.
1 Application

The scenarios described herein use a simple Ping application. This application makes use of a simple client/server model. The client shall act as a Requester of a service, and the server, would act as a Responder.

The Requester sends a Ping element with a value of a string inside the SOAP Body.

The Responder returns a PingResponse element with a value of the same string. Each of the scenarios places restrictions and recommendations on the contents of the WSS Security header embedded within the SOAP Header. For specifics please refer to the section on a particular scenario.

2 Scenario 1.0

The Requester application sends a SOAP Envelope with a license inside the Security header. Besides the license, the Security header also contains a Signature element that has a SignedInfo pointing to the signed elements and a Reference (within the KeyInfo element) to the license used to sign. The Responder application receives the SOAP Envelope, and begins a series of tests to ensure the validity. First, the public key is extracted out of license, and used to verify the signature of the SOAP Body. If the signature is valid, a PingResponse is returned. If the receiver finds the signature invalid, a fault is returned.

2.1 Message Exchanges

This section provides a general overview of the flow of messages.

During the test, request and response messages are exchanged between the client and the server. The Requester initiates the exchange by sending a SOAP 1.1 message containing a WSS Security header inside the SOAP Header. This SOAP exchange MUST take place over HTTP 1.1 layer. The WSS Security header MUST contain a license. The receiver validates the signature, and the license. If this step is successful, the receiver sends back a PingResponse. If the signature does not validate, the receiver returns a SOAP fault in the message. The specifics of the messages are detailed later on in the document.

2.2 Message from the Requester

2.2.1 Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	license
	Mandatory

	 grant
	Mandatory

	 keyHolder
	Mandatory

	 possessProperty
	Mandatory

	 emailName
	Mandatory

	 issuer
	Mandatory

	 Signature
	Mandatory

	Signature
	Mandatory

	 SignedInfo
	Mandatory

	 CanonicalizationMethod
	Mandatory

	 SignatureMethod
	Mandatory

	 Reference
	Mandatory

	 SignatureValue
	Mandatory

	 KeyInfo
	Mandatory

	Body
	Mandatory

2.2.2 Elements within a Request Message

2.2.2.1 Security

The Security element MUST contain the mustUnderstand=“1” attribute.

2.2.2.2 license

The license element contains a possessProperty grant and a Signature in the issuer element. The enclosed grant MUST contain a keyHolder identifying the public key of the alleged-sender and the possessProperty right, along with an emailName for the sender. The grant certifies that the specified public key belongs to the person with the stated emailName. The integrity of the license is protected with the Signature in the issuer element.

2.2.2.3 Signature

The signature is over the entire SOAP Body.

2.2.2.3.1 SignedInfo

The CanonicalizationMethod MUST be c14n Exclusive Canonicalization. The SignatureMethod MUST be RSA-SHA1. The Reference MUST specify a relative URI that refers to the SOAP Body element. The only Transform specified MUST be Exclusive Canonicalization. The DigestMethod MUST be SHA1.

2.2.2.3.2 SignatureValue

The SignatureValue MUST be calculated as specified in the specification. The sender creates a signature using its own private key, and places the license containing his/her public key inside Security header.

2.2.2.3.3 KeyInfo

The KeyInfo MUST contain a SecurityTokenReference. The SecurityTokenReference MUST contain a wsse:Reference element with URI attribute equal to the wsu:Id that was used to identify the license.

2.2.2.4 Body

The Body element MUST be signed using the private key corresponding to the public key identified within the license.

2.2.2.5 Security

2.2.2.6 license

The license contains the public key inside the keyHolder element. This public key is extracted and used for validating the signature of the Body.

2.2.2.7 Body

The contents of the Body must be used in conjunction with the public key to verify the Signature element.

2.2.2.8 Signature

The Body MUST be verified against the Signature element using the specified algorithms, Transforms and the public key contained within the keyHolder element of the license.

2.2.3 Processing at the Receiver

The receiver performs a series of steps once the above request is received. These steps are as follows:
1. The receiver extracts the public key out of the license.

2. The public key is used to ensure the integrity of the SOAP Body by comparing against the signature value.

3. The receiver ensures that there is a possessProperty right in the grant

4. The emailName is extracted out of the license and must be found to be a valid user (either john@doe.com or jane@doe.com).

5. Validate that a predetermined key (provided to interop participants offline) signed the license. This is done by validating the Signature inside the <issuer> element of the license.

6. If all of the above steps were successful, a PingResponse is sent back. Otherwise, a SOAP fault is sent instead.

2.2.4 Example (Non-normative)

Example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">

 <wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <r:license xmlns:r="..." wsu:Id="ef375268">
 <r:grant>
 <r:keyHolder>
 <r:info>
 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>
 </r:info>
 </r:keyHolder>
 <r:possessProperty/>
 <sx:emailName xmlns:sx="...">john@doe.com</sx:emailName>
 </r:grant>
 <r:issuer>
 <ds:Signature>...</ds:Signature>
 </r:issuer>
 </r:license>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#” />

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <Reference URI="#body">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue>KxW...5B=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>8Hkd...al7=</SignatureValue>

 <KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#ef375268"/>

 </wsse:SecurityTokenReference>

 </KeyInfo>

 </Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body wsu:Id="body" xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </xenc:EncryptedData>

 </soap:Body>

</soap:Envelope>

2.3 Second Message - Response

2.3.1 Message Elements and Attributes

Items not listed in the following table MUST NOT be created or processed. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Body
	Mandatory

2.3.2 Message sent in response

The Message only contains the Body element, and MUST not contain the Security header.
2.3.3 Message Processing at the Receiver

The Body is not processed at the Security layer, and sent without alteration to the application layer.

2.3.4 Example (Non-normative)

Here is an example response.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <PingResponse xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </PingResponse>

 </soap:Body>

</soap:Envelope>

.

3 Scenario 2.0

The aim of Scenario 2.0 is to test interoperability issues in the case of a mutual authentication scenario. The sender sends an authenticated SOAP message with its license in the Security header. The receiver validates the integrity of the message and the license, and eventually sends an authenticated SOAP response message. The response Body is signed and the receiver appends its own attribute license to the header for authentication. Upon receiving the response, the original sender validates the signature, and the license imbedded within the Security header.

3.1 Message Exchanges

This section provides a general overview of the flow of messages.

The sender begins by signing the Body with its private key. The signature of this Body is placed within the Security header. In addition, the receiver also attaches its local attribute license within the Security header. Next, this SOAP message is sent out on the wire to the receiver. Upon reception, the receiver authenticates the sender by ensuring the validity of the attribute license. If the processing steps are successful, the receiver signs the response message with the local private key and places the resulting signature in the Security header of the response SOAP message. The receiver also places the local attribute license certifying that the receiver identified with the public key has the stated emailName. This signed and authenticated SOAP message is sent back to the original sender.

3.2 Message from the Requester

The SOAP message from the requester is the same as the message in Scenario 1.0. Please refer to Scenario 1.0 section ‎2.2 for normative details.
3.3 Processing at the receiver

The processing steps at the receiver are as follows:

1. The receiver extracts the public key out of the license

2. The public key is used to ensure the integrity of the SOAP Body by validating the contents of the SOAP Body against the signature value

3. The receiver ensures that there is a possessProperty right in the grant

4. The emailName is extracted out of the license and must be found to be a valid user (either john@doe.com or jane@doe.com).

5. Next, the receiver validates that a predetermined key (provided to interop participants offline) signed the license. This is done by ensuring the validity of the signature inside the <issuer> element of the license.

6. If all of the above steps are successful, a PingResponse is sent back. The PingResponse Body is signed by the receiver and the local attribute license is placed in the Security header.

3.4 Message back from the service

3.4.1 Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	license
	Mandatory

	 grant
	Mandatory

	 keyHolder
	Mandatory

	 possessProperty
	Mandatory

	 dnsName
	Mandatory

	 issuer
	Mandatory

	 Signature
	Mandatory

	Signature
	Mandatory

	 SignedInfo
	Mandatory

	 CanonicalizationMethod
	Mandatory

	 SignatureMethod
	Mandatory

	 Reference
	Mandatory

	 SignatureValue
	Mandatory

	 KeyInfo
	Mandatory

	Body
	Mandatory

3.4.2 Elements within a Request Message

3.4.2.1 Security

The Security element MUST contain the mustUnderstand=“1” attribute.

3.4.2.2 license

The license element contains a possessProperty grant and a Signature in the issuer element. The enclosed grant must contain a keyHolder identifying the public key of the alleged-service and the possessProperty right, along with a dnsName identifying the local service. The grant certifies that the specified public key belongs to the server with the stated dnsName. The integrity of the license is protected with the Signature in the issuer element.

3.4.2.3 Signature

The signature is over the entire SOAP Body.

3.4.2.3.1 SignedInfo

The CanonicalizationMethod MUST be Exclusive Canonicalization. The SignatureMethod MUST be RSA-SHA1. The Reference MUST specify a relative URI that refers to the SOAP Body element. The only Transform specified MUST be Exclusive Canonicalization. The DigestMethod MUST be SHA1.

3.4.2.3.2 SignatureValue

The SignatureValue MUST be calculated as specified in the specification. The sender creates a signature using its own private key, and places the license containing his/her public key inside Security header.

3.4.2.3.3 KeyInfo

The KeyInfo MUST contain a SecurityTokenReference. The SecurityTokenReference MUST contain a wsse:Reference element with URI attribute equal to the wsu:Id that was used to identify the license.

3.4.2.4 Body

The Body element MUST be signed using the private key corresponding to the public key identified within the license.

3.4.3 Processing at the Client

The receiver performs a series of steps once the above request is received. The steps are as follows:

1. The receiver extracts the public key out of the license

2. The public key is used to ensure the integrity of the SOAP Body by comparing against the signature value

3. The receiver ensures that there is a possessProperty right in the grant

4. The dns name is extracted out of the license and must be found to be a valid user (either john@doe.com or jane@doe.com).

5. Validate that a predetermined key (provided to interop participants offline) signed the license. This is done by validating the Signature inside the <issuer> element of the license.

6. If all the above steps are successful, the receiver behaved correctly, otherwise the receiver behaved incorrectly or the message was hacked.

3.4.3.1 license

The license contains the public key inside the keyHolder element. This public key is extracted and used for validating the signature of the Body.

3.4.3.2 Body

The contents of the Body must be used in conjunction with the public key to verify the Signature element.

3.4.3.3 Signature

The Body MUST be verified against the signature using the specified algorithms, Transforms and the public key contained within the keyHolder element of the license.

3.4.4 Example (Non-normative)

Example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">

 <wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <r:license xmlns:r="..." wsu:Id="ef375268">
 <r:grant>
 <r:keyHolder>
 <r:info>
 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>
 </r:info>
 </r:keyHolder>
 <r:possessProperty/>
 <sx:dnsName xmlns:sx="...">www.doe.com</sx:dnsName>

 </r:grant>
 <r:issuer>
 <ds:Signature>...</ds:Signature>
 </r:issuer>
 </r:license>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#” />

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <Reference URI="#body">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue>KxW...5B=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>8Hkd...al7=</SignatureValue>

 <KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#ef375268"/>

 </wsse:SecurityTokenReference>

 </KeyInfo>

 </Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body wsu:Id="body" xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </xenc:EncryptedData>

 </soap:Body>

</soap:Envelope>

.

4 Scenario 3.0

The scenario specified herein tests the interoperability issues in the case when issuer authorization licenses are used to complete the authorization story. In this Scenario, the sender sends a WSS Security header containing an attribute license issued by an issuer who might not have been previously known to the receiver as a trusted authority. Therefore, the sender includes the license permitting the signer of the attribute license to issue possessProperty grants. The issuer of this issuer authorization license is assumed to be known to the receiver as an issuing authority permitted to certify subordinate issuing authorities.

4.1 Message Exchanges

This section provides a general overview of the messages exchanged between the client and the server.

The Sender begins the exchange by sending a SOAP message containing a WSS Security header. The Security header contains an attribute license, identifying the public key of the sender. In addition, the Security header contains a license asserting that the issuer of the attribute license has the right to issue attribute licenses. This SOAP message is sent out on the wire to the receiver. Upon reception, the receiver queries the Security header for the attribute grant. It validates the grant, and detects that the issuer is not a known issuing authority. The receiver queries the header for other licenses containing grants with the issuing authority as the principal. The receiver locates a grant that authorizes the issuer to issue attribute grants. This grant is validated and the receiver ensures that the root grant is issued by a known trusted issuer. (Note: It is not an objective to test complex chain building logic for determining license trust. The goal is to insure participants can process a grant of an issue right authorizing an authority the right to issue a supported end-entity license.) If the above processing steps at the receiver fail, a SOAP fault is sent back to the sender. If the processing steps are successful, a PingResponse is sent back.
4.2 Message from the Requester

4.2.1 Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	license
	Mandatory

	 grant
	Mandatory

	 keyHolder
	Mandatory

	 possessProperty
	Mandatory

	 emailName
	Mandatory

	 issuer
	Mandatory

	 Signature
	Mandatory

	license
	Mandatory

	 forAll varName=’K’
	Mandatory

	 forAll varName=’E’
	Mandatory

	 grant
	Mandatory

	 keyHolder
	Mandatory

	 issue
	Mandatory

	 grant
	Mandatory

	 keyHolder varRef=’K’
	Mandatory

	 possessProperty
	Mandatory

	 emailName varRef=’E’
	Mandatory

	 issuer
	Mandatory

	 Signature
	Mandatory

	Signature
	Mandatory

	 SignedInfo
	Mandatory

	 CanonicalizationMethod
	Mandatory

	 SignatureMethod
	Mandatory

	 Reference
	Mandatory

	 SignatureValue
	Mandatory

	 keyInfo
	Mandatory

	Body
	Mandatory

4.2.2 Elements within a Request Message

4.2.2.1 Security

The Security element MUST contain the mustUnderstand=“1” attribute.

4.2.2.2 license #1

The license element contains a possessProperty grant and a Signature in the issuer element. The enclosed grant must contain a keyHolder identifying the public key of the alleged-sender and the right granted must be identified using the <possessProperty> element. The resource must be an email address using the <sx:emailName> element.

4.2.2.3 license #2

The license element contains an issue grant and a Signature in the issuer element. The grant is a proof of authorization to the issuer of the license #1, to create such grants. The license #2 must look like the one in the example (shown below) except for the KeyValue and variable names. This license conveys that the <keyHolder> in license #2 (issuer of license #1) has the right to “issue” the grant specified in the grant resource. This grant resource must be a possessProperty grant, certifying that some keyHolder possessProperty some emailName. The issue grant must be valid and must be issued by a trusted authority.

4.2.2.4 Signature

The signature is over the entire SOAP Body.

4.2.3 Example (Non-normative)

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <wsse:Security soap:mustUnderstand=“1” xmlns:wsse="http://schemas.xmlsoap.org/ws/2003/06/secext">

 <wsu:Timestamp xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <r:license xmlns:r="..." wsu:Id="ef375268">
 <r:grant>
 <r:keyHolder>
 <r:info>
 <ds:KeyValue>FDFEWEFF…</ds:KeyValue>
 </r:info>
 </r:keyHolder>
 <r:possessProperty/>
 <sx:emailName xmlns:sx="...">john@doe.com</sx:emailName>
 </r:grant>
 <r:issuer>
 <ds:Signature>...</ds:Signature>
 </r:issuer>
 </r:license>

 <r:license xmlns:r="..." wsu:Id="urn:foo:SecurityToken:da731230">
 <r:grant>

 <r:forAll varName=’K’/>

 <r:forAll varName=’E’/>

 <r:keyHolder>

 <r:info>

 <ds:KeyValue>BCDFDFEF…</ds:KeyValue>

 </r:info>
 </r:keyHolder>
 <r:issue/>
 <r:grant>

 <r:keyHolder varRef=’K’/>
 <r:possessProperty/>
 <sx:emailName xmlns:sx="..." varRef=’E’/>
 </r:grant>
 </r:grant>

 <r:issuer>
 <ds:Signature>...</ds:Signature>
 </r:issuer>
 </r:license>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm=”http://www.w3.org/2001/10/xml-exc-c14n#” />

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

 <Reference URI="#body">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue>KxW...5B=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>8Hkd...al7=</SignatureValue>

 <KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#ef375268"/>

 </wsse:SecurityTokenReference>

 </KeyInfo>

 </Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body wsu:Id="body" xmlns:wsu="http://schemas.xmlsoap.org/ws/2003/06/utility">

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </xenc:EncryptedData>

 </soap:Body>

</soap:Envelope>

4.3 Processing at the receiver

A Security header containing a license is processed in the following steps at the receiver

1. The receiver extracts the public key out of the license #1

2. The public key is used to ensure the integrity of the SOAP Body by comparing against the signature value

3. The receiver ensures that there is a possessProperty right in the grant.

4. The emailName is extracted out of the license and must be found in a database of valid users (either john@doe.com or jane@doe.com).

5. The receiver checks the signature of license #1 to ensure the integrity of license #1.

6. The issuer of license #1 will not be a trusted authority, so the receiver queries the Security header for an issuer authorization license.

7. The receiver ensures that, according to the issuer authorization license (#2), the issuer of license #1 has the right to issue the grant in license #1.

8. The receiver checks the signature of the issuer authorization license (#2) and ascertains that the issuer authorization license is issued by the pre-agreed mutually trusted authority.
9. If all of the above steps were successful, a PingResponse is sent back. Otherwise, a SOAP fault is sent instead.

5 Annex A: license Signatures

The license Signatures will all use the enveloped transform algorithm and Exclusive Canonicalization.

