
[image: image1.png]
Web Services Security:

SAML 2.0 Interop Scenarios

Working Draft 1, August 18, 2005
Document identifier:

wss-saml2-interop-draft-1.doc
Location:

http://www.oasis-open.org/committees/wss/

Editor:

Abbie Barbir, Nortel <abbieb@nortel.com>
Rich Levinson, Netegrity <rlevinson@netegrity.com>

Contributors:

Hal Lockhart, BEA Systems <hlockhart@bea.com>

Prateek Mishra, Netegrity <pmishra@netegrity.com>

Ron Monzillo, Sun Microsystems <ronald.monzillo@sun.com>

Abstract:

This document documents the four scenarios to be used for the WSS-SAML 2.0 Interoperability Event.

Status:
Committee members should send comments on this specification to the wss@lists.oasis-open.org list. Others should subscribe to and send comments to the wss-comment@lists.oasis-open.org list. To subscribe, send an email message to wss-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Table of Contents

5Introduction

51.1 Terminology

62
Test Application

73
Scenario #1 – Sender-Vouches: Unsigned

73.1 Agreements

73.1.1 USERNAME-LIST

73.1.2 ISSUERNAME-LIST

73.2 Parameters

73.3 General Message Flow

73.3.1 Message exchange overview

83.4 First Message - Request

83.4.1 Message Elements and Attributes

93.4.2 Message Creation

93.4.3 Message Processing

103.4.4 Example (Non-normative)

113.5 Second Message - Response

113.5.1 Message Elements and Attributes

113.5.2 Message Creation

113.5.3 Message Processing

113.5.4 Example (Non-normative)

113.6 Other processing

113.6.1 Requester

113.6.2 Responder

113.7 Expected Security Properties

124
Scenario #2 – Sender-Vouches: Unsigned: SSL

124.1 Agreements

124.1.1 ISSUERNAME-LIST

124.1.2 Signature Trust Root

124.1.3 REQUESTER-CERT-VALUE

124.2 Parameters

124.3 General Message Flow

124.3.1 Message exchange overview

134.4 First Message - Request

134.4.1 Message Elements and Attributes

144.4.2 Message Creation

144.4.3 Message Processing

154.4.4 Example (Non-normative)

164.5 Second Message - Response

164.5.1 Message Elements and Attributes

164.5.2 Message Creation

164.5.3 Message Processing

164.5.4 Example (Non-normative)

174.6 Other processing

174.6.1 Requester

174.6.2 Responder

174.7 Expected Security Properties

185
Scenario #3 – Sender-Vouches: Signed

185.1 Agreements

185.1.1 ISSUERNAME-LIST

185.1.2 Signature Trust Root

185.1.3 REQUESTER-CERT-VALUE

185.2 Parameters

185.3 General Message Flow

185.3.1 Message exchange overview

195.4 First Message - Request

195.4.1 Message Elements and Attributes

205.4.2 Message Creation

215.4.3 Message Processing

215.4.4 Example (Non-normative)

235.5 Second Message - Response

235.5.1 Message Elements and Attributes

235.5.2 Message Creation

235.5.3 Message Processing

235.5.4 Example (Non-normative)

245.6 Other processing

245.6.1 Requester

245.6.2 Responder

245.7 Expected Security Properties

256
Scenario #4 – Holder-of-Key

256.1 Agreements

256.1.1 ISSUERNAME-LIST

256.1.2 ASSERTIONISSUER-CERT-VALUE

256.1.3 Signature Trust Root

256.2 Parameters

256.3 General Message Flow

266.3.1 Message exchange overview

266.4 First Message - Request

266.4.1 Message Elements and Attributes

276.4.2 Message Creation

296.4.3 Message Processing

296.4.4 Example (Non-normative)

316.5 Second Message - Response

316.5.1 Message Elements and Attributes

316.5.2 Message Creation

316.5.3 Message Processing

316.5.4 Example (Non-normative)

316.6 Other processing

316.6.1 Requester

316.6.2 Responder

316.7 Expected Security Properties

327
References

327.1 Normative

33Appendix A. Ping Application WSDL File

34Appendix B. Revision History

35Appendix C. Notices

Introduction

This document describes message exchanges to be tested during the SAML 2.0 interoperability event of the WSS TC. All use the Request/Response Message Exchange Pattern (MEP) with no intermediaries. All invoke the same simple application. All scenarios MUST use SAML 2.0 Assertions.

These scenarios are intended to test the interoperability of different implementations performing common operations and to test the soundness of the various specifications and clarity and mutual understanding of their meaning and proper application. Scenario 1 is an unprotected test example of message structure, and scenarios 2,3,4 are compatible with the “Web Services Security: SAML Token Profile” [SAMLProf].

THESE SCENARIOS ARE NOT INTENDED TO REPRESENT REASONABLE OR USEFUL PRACTICAL APPLICATIONS OF THE SPECIFICATIONS. THEY HAVE BEEN DESIGNED PURELY FOR THE PURPOSES INDICATED ABOVE AND DO NOT NECESSARILY REPRESENT EFFICIENT OR SECURE MEANS OF PERFORMING THE INDICATED FUNCTIONS. IN PARTICULAR, THESE SCENARIOS ARE KNOWN TO VIOLATE SECURITY BEST PRACTICES IN SOME RESPECTS AND IN GENERAL HAVE NOT BEEN EXTENSIVELY VETTED FOR ATTACKS.
1.1 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [SAMLProf]
Oasis Committee Specification 01, P. Hallam-Baker, C. Kaler, R. Monzillo, A. Nadalin (Editors), Web Services Security: SAML Token Profile WD 13, 30-Jun-04.
[RFC2119]
.

2 Test Application

All scenarios use the same simple application.

The Requester sends a Ping element with a value of a string. The value should be the name of the organization that has developed the software and the number of the scenario, e.g. “Acme Corp. – Scenario #1”.

The Responder returns a PingResponse element with a value of the same string.

3 Scenario #1 – Sender-Vouches: Unsigned

The request contains a minimal sender-vouches SAML assertion with no optional elements included. There are no signatures or certificates required. The response does not contain a security header.
3.1 Agreements

This section describes the agreements that must be made, directly or indirectly, between the parties who wish to interoperate.

3.1.1 USERNAME-LIST

This is a list of usernames associated with the test users that participate in the test scenario.

3.1.2 ISSUERNAME-LIST

This is a list of trusted issuers of SAML assertions.
3.2 Parameters

This section describes parameters that are required to correctly create or process messages, but not a matter of mutual agreement.

No parameters required.
3.3 General Message Flow

This section provides a general overview of the flow of messages.

This contract covers a request/response MEP over the HTTP binding. SOAP 1.1 MUST be used. As required by SOAP 1.1, the SOAPAction HTTP header MUST be present. Any value, including a null string may be used. The recipient SHOULD ignore the value. The request contains a plain text SAML assertion which contains one valid SubjectStatement of any valid type. The Responder checks the issuer name in the SAML assertion and determines if it is valid against the local directory of trusted issuers. If no errors are detected it returns the response without any security mechanisms.

3.3.1 Message exchange overview

This section contains a high level diagram of the scenario including the actors and the basis of trust. Interoperability for all scenarios is between the Requester and Responder. For each scenario, a hypothetical set of actions that take place prior to the Requester sending the request will be described in order to give some context for the assembly of the request and to show where the basis of trust lies for the Responder. However, the interoperability aspect of each scenario consists solely of the Request that the Requester sends to the Responder and the Response that the Responder returns to the Requester.

[image: image2]
In the Sender Vouches: Unsigned scenario there is no technical basis for trust, because the messages are sent in the clear with no content or channel protection. This scenario is intended only to demonstrate message structure interoperability and is not intended for production use. In typical scenarios the Requester and Assertion Issuer may be the same party however this is not a requirement and does not impact the interoperability characteristics of this scenario.
In the following sequence, steps 1,2,3,6 are for illustrative purposes only and represent a potential before and after context for the operability test which only includes steps 4 and 5.

User sends a SOAP request to the Requester

Requester requests a SAML assertion for this User from the Assertion Issuer.

Assertion Issuer returns a Sender-Vouches SAML assertion for the User to the Requester.

Requester inserts the Assertion to a wsse:Security header in the SOAP message as described in the “First Message” section below and sends the Request to the Responder.

Responder processes Request as described in “Message Processing” section below and returns Response to Requester as described in “Second Message” section below.

Requester returns Response to User.

3.4 First Message - Request

3.4.1 Message Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items marked as optional MAY be generated and MUST be processed if generated. Items MUST appear in the order specified, except as noted.
	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	Timestamp
	Mandatory

	Assertion
	Mandatory

	 Issuer
	Mandatory

	 SubjectStatement
	Mandatory

	 Subject
	Mandatory

	 SubjectConfirmation
	Mandatory

	 ConfirmationMethod
	Mandatory

	Body
	Mandatory

3.4.2 Message Creation

3.4.2.1 Timestamp

The Created element within the Timestamp SHOULD contain the current local time at the sender expressed in the UTC time zone.
3.4.2.2 Security

The Security element MUST contain the mustUnderstand=”1” atttibute.
3.4.2.3 Assertion

The Assertion element MUST contain an Issuer attribute, whose value MUST match an Issuer value in the ISSUERNAME-LIST.

3.4.2.4 SubjectStatement

The Assertion element MUST contain one SubjectStatement, which may be any of the standard SAML SubjectStatement extensions.
3.4.2.4.1 ConfirmationMethod

The Subject element MUST also contain a SubjectConfirmation element which MUST contain a ConfirmationMethod with a value of “urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”.

3.4.2.5 Body

The Body is not signed or encrypted in any way.
3.4.3 Message Processing

This section describes the processing performed by the Responder. If an error is detected, the Responder MUST cease processing the message. If an error is detected, a SOAP Fault MAY be returned and, if so, it MUST have a value of InvalidSecurityToken.

3.4.3.1 Security

3.4.3.2 Timestamp

The Timestamp element MUST be ignored.
3.4.3.3 Assertion

The Assertion element MUST be validated. The value of the Issuer attribute MUST match an entry in the ISSUERNAME-LIST.

3.4.3.4 SubjectStatement

The Responder MUST check that at least one of the standard SAML SubjectStatement elements is included in the Assertion. Any elements or attributes in the statement other than those explicitly described here SHOULD be ignored.
3.4.3.4.1 ConfirmationMethod

The value of the ConfirmationMethod element MUST be “urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”.
3.4.3.5 Body

The Body is passed to the application without modification.
3.4.4 Example (Non-normative)

Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsse=="http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-
 wss-wssecurity-secext-1.1.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
 -wssecurity-utility-1.0.xsd">

 <soap:Header>

 <wsse:Security soap:mustUnderstand="1">

 <wsu:Timestamp>

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 MajorVersion="2" MinorVersion="0"

 AssertionID="2sxJu9g/vvLG9sAN9bKp/8q0NKU="

 Issuer="www.opensaml.org"

 IssueInstant="2002-06-19T16:58:33.173Z">

 <saml:AuthenticationStatement

 AuthenticationMethod="urn:oasis:names:tc:SAML:2.0:am:password"

 AuthenticationInstant="2002-06-19T16:57:30.000Z">

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format="">

 uid=joe,ou=people,ou=saml-demo,o=example.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 </saml:Assertion>

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </soap:Body>

</soap:Envelope>

3.5 Second Message - Response

3.5.1 Message Elements and Attributes

Items not listed in the following table MUST NOT be created or processed. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Body
	Mandatory

3.5.2 Message Creation

The response message MUST NOT contain a <wsse:Security> header. Any other header elements MUST NOT be labeled with a mustUnderstand=”1” attribute.
3.5.3 Message Processing

The Body is passed to the application without modification.
3.5.4 Example (Non-normative)

Here is an example response.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <PingResponse xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </PingResponse>

 </soap:Body>

</soap:Envelope>

3.6 Other processing

This section describes processing that occurs outside of generating or processing a message.

3.6.1 Requester

No additional processing is required.

3.6.2 Responder

No additional processing is required.

3.7 Expected Security Properties

Use of the service is restricted to Requesters that can obtain and include a SAML assertion with an Issuer name that is on the Responder’s ISSUERNAMELIST.

4 Scenario #2 – Sender-Vouches: Unsigned: SSL

The request contains a sender-vouches SAML assertion. There are no signatures required. This scenario MUST be tested over SSL and certificates are required to support SSL at the transport layer. The response does not contain a security header.
4.1 Agreements

This section describes the agreements that must be made, directly or indirectly, between the parties who wish to interoperate.

4.1.1 ISSUERNAME-LIST

This is a list of trusted issuers of SAML assertions.
4.1.2 Signature Trust Root

This refers generally to agreeing on at least one trusted key and any other certificates and sources of revocation information sufficient to validate certificates sent for the purpose of verifying the identity of the Requester.
4.1.3 REQUESTER-CERT-VALUE

This is an opaque identifier indicating the X.509 certificate to be used by the Requester. The Responder MUST have the necessary trusted certificates in the Signature Trust Root to validate the Requester certificate.
4.2 Parameters

This section describes parameters that are required to correctly create or process messages, but not a matter of mutual agreement.

No parameters required.
4.3 General Message Flow

This section provides a general overview of the flow of messages.

This contract covers a request/response MEP over the HTTP binding. SOAP 1.1 MUST be used. As required by SOAP 1.1, the SOAPAction HTTP header MUST be present. Any value, including a null string may be used. The recipient SHOULD ignore the value. The request contains a plain text SAML assertion which contains one valid SubjectStatement of any valid type. The Responder checks the issuer name in the SAML assertion and determines if it is valid against the local directory of trusted issuers. If no errors are detected it returns the response without any security mechanisms.
4.3.1 Message exchange overview

This section contains a high level diagram of the scenario including the actors and the basis of trust. Interoperability for all scenarios is between the Requester and Responder. For each scenario, a hypothetical set of actions that take place prior to the Requester sending the request will be described in order to give some context for the assembly of the request and to show where the basis of trust lies for the Responder. However, the interoperability aspect of each scenario consists solely of the Request that the Requester sends to the Responder and the Response that the Responder returns to the Requester.

[image: image3]
In the Sender-Vouches: SSL scenario the basis of trust is the Requester’s client certificate used to establish the SSL link. The Responder relies on the Requester who vouches for the contents of the User message and the SAML Assertion. In typical scenarios the Requester and Assertion Issuer may be the same party however this is not a requirement and does not impact the interoperability characteristics of this scenario.

In the following sequence, steps 1,2,3,6 are for illustrative purposes only and represent a potential before and after context for the operability test which only includes steps 4 and 5.

User sends a SOAP request to the Requester

Requester requests a SAML assertion for this User from the Assertion Issuer.

Assertion Issuer returns a Sender-Vouches SAML assertion for the User to the Requester.

Requester inserts the Assertion to a wsse:Security header in the SOAP message as described in the “First Message” section below and sends the Request to the Responder.

Responder processes Request as described in “Message Processing” section below and returns Response to Requester as described in “Second Message” section below.

Requester returns Response to User.

4.4 First Message - Request

4.4.1 Message Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items marked as optional MAY be generated and MUST be processed if generated. Items MUST appear in the order specified, except as noted.
	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	Timestamp
	Mandatory

	Assertion
	Mandatory

	 Issuer
	Mandatory

	 Conditions
	Mandatory

	 NotBefore
	Mandatory

	 NotOnOrAfter
	Mandatory

	 SubjectStatement
	Mandatory

	 Subject
	Mandatory

	 SubjectConfirmation
	Mandatory

	 ConfirmationMethod
	Mandatory

	Body
	Mandatory

4.4.2 Message Creation

4.4.2.1 Security

The Security element MUST contain the mustUnderstand=”1” atttibute.
4.4.2.2 Timestamp

The Created element within the Timestamp SHOULD contain the current local time at the sender expressed in the UTC time zone.
4.4.2.3 Assertion

The Assertion element MUST contain an Issuer attribute, whose value MUST match an Issuer value in the ISSUERNAME-LIST.

4.4.2.3.1 Conditions

The Conditions element MUST be present and contain valid values for the NotBefore and NotOnOrAfter attributes.

4.4.2.3.2 SubjectStatement
The Assertion element MUST contain one SubjectStatement, which may be any of the standard SAML SubjectStatement extensions.
4.4.2.3.3 ConfirmationMethod

The Subject element MUST also contain a SubjectConfirmation element which MUST contain a ConfirmationMethod with a value of “urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”.
4.4.2.4 Body

The Body is not signed or encrypted in any way.
4.4.3 Message Processing

This section describes the processing performed by the Responder. If an error is detected, the Responder MUST cease processing the message. If an error is detected, a SOAP Fault MAY be returned and, if so, it MUST have a value of InvalidSecurityToken.

4.4.3.1 Security

4.4.3.2 Timestamp

The Timestamp element MUST be ignored.
4.4.3.3 Assertion

The Assertion element MUST be validated. The value of the Issuer attribute MUST match an entry in the ISSUERNAME-LIST.
4.4.3.3.1 Conditions

As part of validating the Assertion element, the NotBefore and NotOnOrAfter attributes MUST be consistent with the current UTC time.

4.4.3.3.2 SubjectStatement
The Responder MUST check that at least one of the standard SAML SubjectStatement elements is included in the Assertion. Any elements or attributes in the statement other than those explicitly described here SHOULD be ignored.
4.4.3.3.3 ConfirmationMethod

The value of the ConfirmationMethod element MUST be “urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”.
4.4.3.4 Body

The Body is passed to the application without modification.
4.4.4 Example (Non-normative)

Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsse=="http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-
 wss-wssecurity-secext-1.1.xsd"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <soap:Header>

 <wsse:Security soap:mustUnderstand="1">

 <wsu:Timestamp>

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <saml:Assertion

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 MajorVersion="2" MinorVersion="0"

 AssertionID="2sxJu9g/vvLG9sAN9bKp/8q0NKU="

 Issuer="www.opensaml.org"

 IssueInstant="2002-06-19T16:58:33.173Z">

 <saml:Conditions

 NotBefore="2002-06-19T16:53:33.173Z"

 NotOnOrAfter="2002-06-19T17:08:33.173Z"/>

 <saml:AuthenticationStatement

 AuthenticationMethod="urn:oasis:names:tc:SAML:2.0:am:password"

 AuthenticationInstant="2002-06-19T16:57:30.000Z">

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format="">

 uid=joe,ou=people,ou=saml-demo,o=example.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 </saml:Assertion>

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 <Ping xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </Ping>

 </soap:Body>

</soap:Envelope>

4.5 Second Message - Response

4.5.1 Message Elements and Attributes

Items not listed in the following table MUST NOT be created or processed. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Body
	Mandatory

4.5.2 Message Creation

The response message MUST NOT contain a <wsse:Security> header. Any other header elements MUST NOT be labeled with a mustUnderstand=”1” attribute.
4.5.3 Message Processing

The Body is passed to the application without modification.
4.5.4 Example (Non-normative)

Here is an example response.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <PingResponse xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </PingResponse>

 </soap:Body>

</soap:Envelope>

4.6 Other processing

This section describes processing that occurs outside of generating or processing a message.

4.6.1 Requester

No additional processing is required.

4.6.2 Responder

No additional processing is required.

4.7 Expected Security Properties

Use of the service is restricted to Requesters that can obtain and include a SAML assertion with an Issuer name that is on the Responder’s ISSUERNAMELIST. In addition, the Requester must use a client certificate on an SSL link that the Responder can validate.
5 Scenario #3 – Sender-Vouches: Signed

The request contains a sender-vouches SAML assertion. The Assertion and the Body elements are signed. A reference to the certificate used to verify the signature is provided in the header. The response does not contain a security header.
5.1 Agreements

This section describes the agreements that must be made, directly or indirectly between parties who wish to interoperate.

5.1.1 ISSUERNAME-LIST

This is a list of trusted issuers of SAML assertions. (This is optional in the signed scenario since the basis for trust is the Requester certificate that is used for signing.)
5.1.2 Signature Trust Root

This refers generally to agreeing on at least one trusted key and any other certificates and sources of revocation information sufficient to validate certificates sent for the purpose of signature verification.
5.1.3 REQUESTER-CERT-VALUE

This is an opaque identifier indicating the X.509 certificate to be used by the Requester. The Responder MUST have the necessary trusted certificates in the Signature Trust Root to find and validate the Requester certificate.

5.2 Parameters

This section describes parameters that are required to correctly create or process messages, but not a matter of mutual agreement.

No parameters required.

5.3 General Message Flow

This section provides a general overview of the flow of messages.

This contract covers a request/response MEP over the HTTP binding. SOAP 1.1 MUST be used. As required by SOAP 1.1, the SOAPAction HTTP header MUST be present. Any value, including a null string may be used. The recipient SHOULD ignore the value. The request contains a plain text unsigned SAML assertion. The Responder checks the issuer name in the SAML assertion, validates the Requester certificate referenced in the signature, and verifies the signature. If no errors are detected, the message is delivered to the application and the application returns the response without any security mechanisms.

5.3.1 Message exchange overview

This section contains a high level diagram of the scenario including the actors and the basis of trust. Interoperability for all scenarios is between the Requester and Responder. For each scenario, a hypothetical set of actions that take place prior to the Requester sending the request will be described in order to give some context for the assembly of the request and to show where the basis of trust lies for the Responder. However, the interoperability aspect of each scenario consists solely of the Request that the Requester sends to the Responder and the Response that the Responder returns to the Requester.

[image: image4]
In the Sender-Vouches: Signed scenario the basis of trust is the Requester’s certificate. The Requester private key is used to sign both the SAML Assertion and the message Body. The Responder relies on the Requester who vouches for the contents of the User message and the SAML Assertion. In typical scenarios the Requester and Assertion Issuer may be the same party however this is not a requirement and does not impact the interoperability characteristics of this scenario.

In the following sequence, steps 1,2,3,6 are for illustrative purposes only and represent a potential before and after context for the operability test which only includes steps 4 and 5.

1. User sends a SOAP request to the Requester

2. Requester requests a SAML assertion for this user from the Assertion Issuer.

3. Assertion Issuer returns a Sender-Vouches SAML assertion to the Requester.

4. Requester inserts the Assertion to a wsse:Security header in the SOAP message and signs the Assertion and message Body as described in the “First Message” section below and sends the Request to the Responder.

5. Responder processes Request as described in “Message Processing” section below and returns Response to Requester as described in “Second Message” section below.

6. Requester returns Response to User.

5.4 First Message - Request

5.4.1 Message Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	Timestamp
	Mandatory

	Assertion
	Mandatory

	 Conditions
	Mandatory

	 SubjectStatement
	Mandatory

	 Subject
	Mandatory

	 SubjectConfirmation
	Mandatory

	Signature
	Mandatory

	 SignedInfo
	Mandatory

	 CanonicalizationMethod
	Mandatory

	 SignatureMethod
	Mandatory

	 Reference
	Mandatory

	 SignatureValue
	Mandatory

	 KeyInfo
	Mandatory

	Body
	Mandatory

5.4.2 Message Creation

5.4.2.1 Security

The Security element MUST contain the mustUnderstand=“1” attribute.

5.4.2.2 Timestamp

The Created element within the Timestamp SHOULD contain the current local time at the sender.
5.4.2.3 Assertion

The Assertion MUST be signed and be labeled with an ID (AssertionID) that is referenced in a SignedInfo Reference element of the Signature in the Security element.

5.4.2.3.1 Conditions

The Conditions element MUST be present and contain valid NotBefore and NotOnOrAfter attributes

5.4.2.3.2 SubjectStatement

A SubjectStatement element MUST be present and MUST contain a SubjectConfirmation element which MUST contain a ConfirmationMethod element with a value of “urn:oasis:names:tc:SAML:2.0:cm:sender-vouches”.

5.4.2.4 Signature

The signature is over the entire SOAP Body plus over the SAML Assertion.

5.4.2.4.1 SignedInfo

The SignatureMethod MUST be RSA-SHA1. The DigestMethod MUST be SHA-1. The CanonicalizationMethod MUST be Exclusive Canonicalization. There MUST be 2 Reference elements, one of which MUST specify a relative URI that refers to the SOAP Body element, and the other which MUST specify a relative URI that refers to the Assertion element.

5.4.2.4.2 SignatureValue

The SignatureValue MUST be calculated as specified by the SignatureMethod element, using the private key corresponding to the public key specified in the certificate identified by the KeyInfo element.

5.4.2.4.3 KeyInfo

The KeyInfo element must contain a SecurityTokenReference that contains a wsse:Reference with a URI attribute that must have a value equal to the wsu:Id of a BinarySecurityToken that has a ValueType attribute with a value of "...#X509v3" containing the Requester certificate, which will be used for signature verification.
5.4.2.5 Body

The Body element MUST be signed.

5.4.3 Message Processing

This section describes the processing performed by the Responder. If an error is detected, the Responder MUST cease processing the message and issue a Fault with a value of InvalidSecurityToken.

5.4.3.1 Security

5.4.3.2 Timestamp

The Timestamp element MUST be ignored.
5.4.3.3 Signature

The Requester certificate MUST be obtained based on the KeyInfo/SecurityTokenReference and be validated against the Signature Trust Root. The Body and Assertion MUST be verified against the signature using the specified algorithms and transforms and the retained public key.

5.4.3.4 Assertion

The Assertion element MUST be validated. The value of the Issuer attribute MAY match the Subject of the certificate in the X509SubjectName. If it does not, then the value of the Issuer attribute MUST match an entry in the ISSUERNAME-LIST.
5.4.3.5 Body

The body is passed to the application without modification.

5.4.4 Example (Non-normative)

Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<S12:Envelope

 xmlns:S12="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsse=="http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-
 wss-wssecurity-secext-1.1.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

 <S12:Header>

 <wsse:Security S12:mustUnderstand="1">

 <wsu:Timestamp>

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>
 <saml:Assertion

 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"

 IssueInstant="2003-04-17T00:46:02Z"

 Issuer="www.opensaml.org"

 MajorVersion="2"

 MinorVersion="0">

 <saml:Conditions

 NotBefore="2002-06-19T16:53:33.173Z"

 NotOnOrAfter="2002-06-19T17:08:33.173Z"/>

 <saml:AttributeStatement>

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format="">

 uid=joe,ou=people,ou=saml-demo,o=example.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:2.0:cm:sender-vouches

 </saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Attribute>

 ...

 </saml:Attribute>

 ...

 </saml:AttributeStatement>

 </saml:Assertion>

 <wsse:SecurityTokenReference wsu:id="STR1">

 <wsse:KeyIdentifier wsu:id="..."

 ValueType=”http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-1.0#SAMLAssertionID”>

 _a75adf55-01d7-40cc-929f-dbd8372ebdfc

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 <wsse:BinarySecurityToken

 wsu:Id="attesterCert"

 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#STR1">

 <ds:Transforms>

 <ds:Transform Algorithm="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform">

 <wsse:TransformationParameters>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </wsse:TransformationParameters>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm= "http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>HJJWbvqW9E84vJVQk...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference wsu:id="STR2">

 <wsse:Reference wsu:id="..." URI="#attesterCert"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S12:Header>

 <S12:Body wsu:Id="MsgBody">

 <ReportRequest>

 <TickerSymbol>SUNW</TickerSymbol>

 </ReportRequest>

 </S12:Body>

</S12:Envelope>
5.5 Second Message - Response

5.5.1 Message Elements and Attributes

Items not listed in the following table MUST NOT be created or processed. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Body
	Mandatory

5.5.2 Message Creation

The response message must not contain a <wsse:Security> header. Any other header elements MUST NOT be labeled with a mustUnderstand=“1” attribute.

5.5.3 Message Processing

The body is passed to the application without modification.

5.5.4 Example (Non-normative)

Here is an example response.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <PingResponse xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </PingResponse>

 </soap:Body>

</soap:Envelope>

5.6 Other processing

This section describes processing that occurs outside of generating or processing a message.

5.6.1 Requester

No additional processing is required.

5.6.2 Responder

5.7 Expected Security Properties

Use of the service is restricted to Requesters that can obtain and include a SAML assertion with an Issuer name that is on the Responder’s ISSUERNAMELIST. In addition, the Requester must sign both the assertion and the body using the Requester’s private key and certificate, which will protect the message against modification if it is intercepted or replayed.

6 Scenario #4 – Holder-of-Key

The request contains a holder-of-key SAML assertion. The assertion is signed by the assertion issuer with an enveloped signature. The certificate used to verify the issuer signature is contained within the assertion signature. The message body is signed by the Requester. The certificate used to verify the Requester’s signature is contained in the assertion SubjectConfirmation. The response does not contain a security header.
6.1 Agreements

This section describes the agreements that must be made, directly or indirectly between parties who wish to interoperate.

6.1.1 ISSUERNAME-LIST

This is a list of trusted issuers of SAML assertions.
6.1.2 ASSERTIONISSUER-CERT-VALUE

This is an opaque identifier indicating the X.509 certificate to be used by the Assertion Issuer. The Responder MUST have the necessary trusted certificates in the Signature Trust Root to validate the Assertion Issuer certificate, which in turn is used to validate the User certificate which is contained in the assertion.
6.1.3 Signature Trust Root

This refers generally to agreeing on at least one trusted key and any other certificates and sources of revocation information sufficient to validate certificates sent for the purpose of signature verification.
6.2 Parameters

This section describes parameters that are required to correctly create or process messages, but not a matter of mutual agreement.

No parameters are required.

6.3 General Message Flow

This section provides a general overview of the flow of messages.

This contract covers a request/response MEP over the http binding. SOAP 1.1 MUST be used. As required by SOAP 1.1, the SOAPAction HTTP header MUST be present. Any value, including a null string may be used. The recipient SHOULD ignore the value. The request contains a plain text signed SAML assertion containing the User certificate. The Responder validates the assertion data, verifies the signature on the assertion, validates the issuer certificate contained in that signature, and verifies the signature on the Body using the user certificate/public key which is in the assertion. The order of the previous steps is not significant, although all steps MUST be performed. If no errors are detected, the message is delivered to the application and the application returns the response without any security mechanisms.

6.3.1 Message exchange overview

This section contains a high level diagram of the scenario including the actors and the basis of trust. Interoperability for all scenarios is between the Requester and Responder. For each scenario, a hypothetical set of actions that take place prior to the Requester sending the request will be described in order to give some context for the assembly of the request and to show where the basis of trust lies for the Responder. However, the interoperability aspect of each scenario consists solely of the Request that the Requester sends to the Responder and the Response that the Responder returns to the Requester.

[image: image5]
In the Holder-of-Key: Signed scenario the basis of trust is the Assertion Issuer’s certificate. The Assertion Issuer’s private key is used to sign the SAML Assertion for the User. The Responder relies on the Assertion Issuer to have issued the assertion to an authorized User. In typical scenarios the User and Requester may be the same party however this is not a requirement and does not impact the interoperability characteristics of this scenario.

1. User sends a request for a SAML assertion to the Assertion Issuer.
2. The Assertion Issuer authenticates the User and returns a SAML assertion containing the User certificate and signed with the Assertion Issuer private key.
3. User inserts the Assertion to a wsse:Security header in the SOAP message and signs the message Body with the User private key, and sends the message to the Requester.
4. Requester receives message from User which has form as described in the “First Message” section below and sends the Request to the Responder.
5. Responder processes Request as described in “Message Processing” section below and returns Response to Requester as described in “Second Message” section below.
6. Requester returns Response to User.

6.4 First Message - Request

6.4.1 Message Elements and Attributes

Items not listed in the following table MAY be present, but MUST NOT be marked with the mustUnderstand=”1” attribute. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Security
	Mandatory

	 mustUnderstand=“1”
	Mandatory

	Timestamp
	Mandatory

	Assertion
	Mandatory

	 Conditions
	Mandatory

	 SubjectStatement
	Mandatory

	 Subject
	Mandatory

	 SubjectConfirmation
	Mandatory

	 ConfirmationMethod
	Mandatory

	 KeyInfo
	Mandatory

	 Signature (Assertion)
	Mandatory

	 SignedInfo
	Mandatory

	 SignatureValue
	Mandatory

	 KeyInfo
	Mandatory

	Signature (Body)
	Mandatory

	 SignedInfo
	Mandatory

	 SignatureValue
	Mandatory

	 KeyInfo
	Mandatory

	Body
	Mandatory

6.4.2 Message Creation

6.4.2.1 Security

The Security element MUST contain the mustUnderstand=“1” attribute.

6.4.2.2 Timestamp

The Created element within the Timestamp SHOULD contain the current local time at the sender.

6.4.2.3 Assertion

The Assertion MUST contain an ISSUER attribute, whose value MUST match an Issuer value in the ISSUERNAME-LIST.

6.4.2.3.1 Conditions

The Conditions element MUST be present and contain valid values for the NotBefore and NotOnOrAfter attributes.

6.4.2.3.2 SubjectConfirmation

The SubjectConfirmation element MUST contain both a ConfirmationMethod element and a KeyInfo element.

6.4.2.3.2.1 ConfirmationMethod

The ConfirmationMethod element MUST have a value of “urn:oasis:names:tc:SAML:1.0:cm:holder-of-key”.

6.4.2.3.2.2 KeyInfo

The KeyInfo element MUST contain the user’s public key, which MUST be contained in either an X509Data element or a KeyValue element. (Note: because this KeyInfo is part of the SAML assertion token, it is outside the direct scope of WS-Security and does not contain a SecurityTokenReference.)
6.4.2.3.3 Signature (Assertion)

This Signature element is a child of the Assertion element and the signature is over the Assertion element

6.4.2.3.3.1 SignedInfo

The SignatureMethod MUST be RSA-SHA1. The DigestMethod MUST be SHA-1. The CanonicalizationMethod SHOULD be Exclusive Canonicalization. If not, the Assertion element MAY need to be removed from the request before the signature is verified. There MUST be 1 Reference element. The Reference element MUST contain a Transform element with an Algorithm attribute with the value “http://www.w3.org/2000/09/xmldsig#enveloped-signature”.

6.4.2.3.3.2 SignatureValue

The SignatureValue MUST be calculated as specified by the SignatureMethod element, using the private key corresponding to the public key contained in the KeyInfo element in this Signature element.

6.4.2.3.3.3 KeyInfo

This KeyInfo element MUST contain a Base 64 representation of the Issuer’s certificate. The certificate MUST contain the Issuer’s public key, which can be used to verify the SignatureValue in this Signature element. (Note: because this KeyInfo is part of the SAML assertion token, it is outside the direct scope of WS-Security and does not contain a SecurityTokenReference.)
6.4.2.4 Signature (Body)
This Signature element is a child of the Security element and the signature is over the entire SOAP body.

6.4.2.4.1 SignedInfo

The SignatureMethod MUST be RSA-SHA1. The DigestMethod MUST be SHA-1. The CanonicalizationMethod MUST be Exclusive Canonicalization. There MUST be 1 Reference element which MUST specify a relative URI that refers to the SOAP Body element.
6.4.2.4.2 SignatureValue

The SignatureValue MUST be calculated as specified by the SignatureMethod element, using the private key corresponding to the public key specified in the KeyInfo element that is in the Assertion element.
6.4.2.4.3 KeyInfo

This KeyInfo element must contain a SecurityTokenReference that contains a wsse:Reference that has a ValueType attribute with a value of "...#SAMLAssertion2.0". The URI attribute must have a value equal to the AssertionID attribute of the Assertion containing the Requester certificate, which will be used for signature verification.
6.4.2.5 Body

The body element MUST be signed.

6.4.3 Message Processing

This section describes the processing performed by the Responder. If an error is detected, the Responder MUST cease processing the message and issue a Fault with a value of FailedAuthentication.

6.4.3.1 Timestamp

The Timestamp element MUST be ignored.

6.4.3.2 Security

6.4.3.3 Assertion

The Assertion element MUST be validated. The value of the Issuer attribute SHOULD match the Subject of the certificate used to verify the signature contained in the assertion. If it does not, the not, then the value of the Issuer attribute MUST match an entry in the ISSUERNAME-LIST. The user public key or certificate MUST be obtained from the KeyInfo element of the SubjectConfirmation element and retained for verification of the Body signature.

6.4.3.3.1 Signature (Assertion)

The Assertion MUST be verified against the signature it contains, using the specified algorithms and transforms and the public key that can be obtained from the assertion issuer certificate contained in the Signature element. The issuer certificate MUST be validated against the Signature Trust Root.

6.4.3.4 Signature (Body)

The Body MUST be verified against the Signature element that is a child of the Security element using the user public key that was retained from the Assertion.
6.4.3.5 Body

The Body is passed to the application without modification.

6.4.4 Example (Non-normative)

Here is an example request.

<?xml version="1.0" encoding="utf-8" ?>

<S12:Envelope

 xmlns:S12="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsse=="http://docs.oasis-open.org/wss/2005/xx/oasis-2005xx-
 wss-wssecurity-secext-1.1.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <S12:Header>

 <wsse:Security S12:mustUnderstand="1">

 <wsu:Timestamp>

 <wsu:Created>2003-03-18T19:53:13Z</wsu:Created>

 </wsu:Timestamp>

 <saml:Assertion

 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc"

 IssueInstant="2003-04-17T00:46:02Z"

 Issuer="www.opensaml.org"

 MajorVersion="1"

 MinorVersion="1"

 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

 <saml:Conditions

 NotBefore="2002-06-19T16:53:33.173Z"

 NotOnOrAfter="2002-06-19T17:08:33.173Z"/>

 <saml:AttributeStatement>

 <saml:Subject>

 <saml:NameIdentifier

 NameQualifier="www.example.com"

 Format="">

 uid=joe,ou=people,ou=saml-demo,o=example.com

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>

 urn:oasis:names:tc:SAML:2.0:cm:holder-of-key

 </saml:ConfirmationMethod>

 <ds:KeyInfo>

 <ds:KeyValue>...</ds:KeyValue>

 </ds:KeyInfo>

 </saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Attribute

 AttributeName="MemberLevel"

 AttributeNamespace="http://www.oasis-open.org/Catalyst2002/attributes">

 <saml:AttributeValue>gold</saml:AttributeValue>

 </saml:Attribute>

 <saml:Attribute

 AttributeName="E-mail"

 AttributeNamespace="http://www.oasis-

 open.org/Catalyst2002/attributes">

 <saml:AttributeValue>joe@yahoo.com</saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

 <ds:Signature>...</ds:Signature>

 </saml:Assertion>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#MsgBody">

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>GyGsF0Pi4xPU...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>HJJWbvqW9E84vJVQk...</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference wsu:id="STR1">

 <wsse:KeyIdentifier wsu:id="..."

 ValueType=”http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-1.0#SAMLAssertionID”>
 _a75adf55-01d7-40cc-929f-dbd8372ebdfc
 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S12:Header>

 <S12:Body wsu:Id="MsgBody">

 <ReportRequest>

 <TickerSymbol>SUNW</TickerSymbol>

 </ReportRequest>

 </S12:Body>

</S12:Envelope>

6.5 Second Message - Response

6.5.1 Message Elements and Attributes

Items not listed in the following table MUST NOT be created or processed. Items marked mandatory MUST be generated and processed. Items marked optional MAY be generated and MUST be processed if present. Items MUST appear in the order specified, except as noted.

	Name
	Mandatory?

	Body
	Mandatory

6.5.2 Message Creation

The response message must not contain a <wsse:Security> header. Any other header elements MUST NOT be labeled with a mustUnderstand=“1” attribute.

6.5.3 Message Processing

The body is passed to the application without modification.

6.5.4 Example (Non-normative)

Here is an example response.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <PingResponse xmlns="http://xmlsoap.org/Ping">

 <text>EchoString</text>

 </PingResponse>

 </soap:Body>

</soap:Envelope>

6.6 Other processing

This section describes processing that occurs outside of generating or processing a message.

6.6.1 Requester

No additional processing is required.

6.6.2 Responder

6.7 Expected Security Properties

Use of the service is restricted to authorized parties that sign the Body of the request. The Body of the request is protected against modification and interception. The authorized party must also obtain a signed SAML assertion containing the authorized party’s certificate and include the assertion in the request as the basis for trust of the authorized party’s certificate.
7 References

7.1 Normative

[SAMLProf]
Oasis Committee Specification 01, P. Hallam-Baker, C. Kaler, R. Monzillo, A. Nadalin (Editors), Web Services Security: SAML Token Profile WD 13, 30-Jun-04.
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

Appendix A. Ping Application WSDL File

<definitions xmlns:tns="http://xmlsoap.org/Ping" xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" targetNamespace="http://xmlsoap.org/Ping" name="Ping">

<types>

<schema targetNamespace="http://xmlsoap.org/Ping" xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="ping">

<sequence>

<element name="text" type="xsd:string" nillable="true"/>

</sequence>

</complexType>

<complexType name="pingResponse">

<sequence>

<element name="text" type="xsd:string" nillable="true"/>

</sequence>

</complexType>

<element name="Ping" type="tns:ping"/>

<element name="PingResponse" type="tns:pingResponse"/>

</schema>

</types>

<message name="PingRequest">

<part name="ping" element="tns:Ping"/>

</message>

<message name="PingResponse">

<part name="pingResponse" element="tns:PingResponse"/>

</message>

<portType name="PingPort">

<operation name="Ping">

<input message="tns:PingRequest"/>

<output message="tns:PingResponse"/>

</operation>

</portType>

<binding name="PingBinding" type="tns:PingPort">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="Ping">

<soap:operation/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="PingService">

<port name="PingPort" binding="tns:PingBinding">

<soap:address location="http://localhost:8080/pingejb/Ping"/>

</port>

</service>
</definitions>
Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	wss-saml2-01
	2005-08-18
	Abbie Barbir
	Initial version

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

User

Assertion Issuer

Requester	

Responder

1

2

3

4

5

6

Interoperability Scope

User

Assertion Issuer

Requester	

Responder

Interoperability Scope

1

2

3

4

5

6

SSL Link

User

Assertion Issuer

Requester	

Responder

Interoperability Scope

1

2

3

4

5

6

User

Assertion Issuer

Requester	

Responder

Interoperability Scope

3

1

2

4

5

6

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 41
2
wss-saml2-interop-draft-1.doc

18-Augl-2005
Copyright © OASIS Open 2005. All Rights Reserved.

Page 7 of 35

