OASIS ebXML Registry

Access Control Related Use Cases

July 16, 2001

V 0.5

Author: Suresh Damodaran

Status of this Document

This document is created to present the access control related use cases in OASIS ebXML Registry to OASIS XACML TC to start discussions.

1 Overview

We provide a grossly simplified description of the Registry, followed by the information model relevant to security. These should provide enough background information on the registry. The use cases follow.

2 Registry Basics

OASIS ebXML Registry (“the Registry”) supports sharing of information among Principals by storing RegistryObjects (XML artifacts, UML diagrams, and in general any type of content) in an ebXML Registry and associating each such RegistryObject with one or more Classification Schemes. Principals may access information about or in
 RegistryObjects by querying the Registry.

Here is a grossly simplified version of the Registry Information Model. For a detailed description of the Registry Information Model, see [ebRIM].

Corresponding to each instance of RegistryObject (the content stored), there is an instance of RegistryEntry (metadata related to content). RegistryEntry is mapped to one or more ClassificationNodes. This mapping is stored in Classification.

[image: image13.emf]RegistryEntry

Classification

ClassificationNode

Association

RegistryObject

*

classifiedBy

classifiedObject

1

1

0..*

0..*

Figure 1 Simplified Registry Information Model
A RegistryEntry may be associated to another RegistryEntry through an Association. Association, Classification, and ClassificationNode inherit from RegistryEntry.

3 Security View of Registry Information Model [ebRIM, Section 12]

This section describes the aspects of the information model that relate to the security features of the Registry.

Figure 2 shows the view of the objects in the Registry from a security perspective. It shows object relationships as a UML Class diagram. It does not show Class attributes or Class methods that will be described in subsequent sections. It is meant to be illustrative not prescriptive.

[image: image1.png]interface
Role

roles

interface

|AccessContropoticy] 0.”
s
interface interface
otject \Permission
o
priviege
s
interface intertace
|privilegeatiibute | 0. _privigeattibutes 0. | privitege
intertace
Group interface
1dentity
o
T
groups
0
interface
0" | princigar | 0" identiies

Figure 2: Information Model: Security View

3.1 Interface AccessControlPolicy

Every RegistryObject is associated with exactly one AccessControlPolicy which defines the policy rules that govern access to operations or methods performed on that RegistryObject. Such policy rules are defined as a collection of Permissions.

[image: image2]
Method Summary of AccessControlPolicy

 Collection
getPermissions()
 Gets the Permissions defined for this AccessControlPolicy. Maps to attribute named permissions.

3.2 Interface Permission

[image: image3]
The Permission object is used for authorization and access control to RegistryObjects in the Registry. The Permissions for a RegistryObject are defined in an AccessControlPolicy object.

A Permission object authorizes access to a method in a RegistryObject if the requesting Principal has any of the Privileges defined in the Permission.

See Also:
Privilege, AccessControlPolicy
[image: image4]
Method Summary of Permission

 String
GetMethodName()
 Gets the method name that is accessible to a Principal with specified Privilege by this Permission. Maps to attribute named methodName.

 Collection
GetPrivileges()
 Gets the Privileges associated with this Permission. Maps to attribute named privileges.

3.3 Interface Privilege

[image: image5]
A Privilege object contains zero or more PrivilegeAttributes. A PrivilegeAttribute can be a Group, a Role, or an Identity.

A requesting Principal MUST have all of the PrivilegeAttributes specified in a Privilege in order to gain access to a method in a protected RegistryObject. Permissions defined in the RegistryObject's AccessControlPolicy define the Privileges that can authorize access to specific methods.

This mechanism enables the flexibility to have object access control policies that are based on any combination of Roles, Identities or Groups.

See Also:
PrivilegeAttribute, Permission
[image: image6]
Method Summary of Privilege

 Collection
getPrivilegeAttributes()
 Gets the PrivilegeAttributes associated with this Privilege. Maps to attribute named privilegeAttributes.

3.4 Interface PrivilegeAttribute

All Known Subinterfaces:

Group, Identity, Role
[image: image7]
PrivilegeAttribute is a common base Class for all types of security attributes that are used to grant specific access control privileges to a Principal. A Principal may have several different types of PrivilegeAttributes. Specific combination of PrivilegeAttributes may be defined as a Privilege object.

See Also:
Principal, Privilege
3.5 Interface Role

All Superinterfaces:

PrivilegeAttribute
[image: image8]
A security Role PrivilegeAttribute. For example a hospital may have Roles such as Nurse, Doctor, Administrator etc. Roles are used to grant Privileges to Principals. For example a Doctor Role may be allowed to write a prescription but a Nurse Role may not.

3.6 Interface Group

All Superinterfaces:

PrivilegeAttribute
[image: image9]
A security Group PrivilegeAttribute. A Group is an aggregation of users that may have different Roles. For example a hospital may have a Group defined for Nurses and Doctors that are participating in a specific clinical trial (e.g. AspirinTrial group). Groups are used to grant Privileges to Principals. For example the members of the AspirinTrial group may be allowed to write a prescription for Aspirin (even though Nurse Role as a rule may not be allowed to write prescriptions).

3.7 Interface Identity

All Superinterfaces:

PrivilegeAttribute
[image: image10]
A security Identity PrivilegeAttribute. This is typically used to identify a person, an organization, or software service. Identity attribute may be in the form of a digital certificate.

3.8 Interface Principal

[image: image11]
Principal is a completely generic term used by the security community to include both people and software systems. The Principal object is an entity that has a set of PrivilegeAttributes. These PrivilegeAttributes include at least one identity, and optionally a set of role memberships, group memberships or security clearances. A principal is used to authenticate a requestor and to authorize the requested action based on the PrivilegeAttributes associated with the Principal.

See Also:
PrivilegeAttributes, Privilege, Permission
[image: image12]
Method Summary of Principal

 Collection
getGroups()
 Gets the Groups associated with this Principal. Maps to attribute named groups.

 Collection
getIdentities()
 Gets the Identities associated with this Principal. Maps to attribute named identities.

 Collection
getRoles()
 Gets the Roles associated with this Principal. Maps to attribute named roles.

4 Roles and Default Access Control Policy [ebRS, Section 9.4]

There are predefined roles for Registry Users. There are also default access control policies for each RegistryObject.

4.1.1 Pre-defined Roles For Registry Users

The following roles must be pre-defined in the Registry:

Role
Description

ContentOwner
The submitter or owner of a Registry content. Submitting Organization (SO) in ISO 11179

RegistryAdministrator
A “super” user that is an administrator of the Registry. Registration Authority (RA) in ISO 11179

RegistryGuest
Any unauthenticated user of the Registry. Clients that browse the Registry do not need to be authenticated.

4.1.2 Default Access Control Policies

The Registry must create a default AccessControlPolicy object that grants the default permissions to Registry users based upon their assigned role.

The following table defines the Permissions granted by the Registry to the various pre-defined roles for Registry users based upon the default AccessControlPolicy.

Role
Permissions

ContentOwner
Access to all methods on Registry Objects that are owned by the ContentOwner.

RegistryAdministrator
Access to all methods on all Registry Objects

RegistryGuest
Access to all read-only (getXXX) methods on all Registry Objects (read-only access to all content).

The following list summarizes the default role-based AccessControlPolicy:

· The Registry must implement the default AccessControlPolicy and associate it with all Objects in the Registry

· Anyone can publish content, but needs to be authenticated

· Anyone can access the content without requiring authentication

· The ContentOwner has access to all methods for Registry Objects owned by them

· The RegistryAdministrator has access to all methods on all Registry Objects

· Unauthenticated clients can access all read-only (getXXX) methods

· At the time of content submission, the Registry must assign the default ContentOwner role to the Submitting Organization (SO) as authenticated by the credentials in the submission message. In the current version of this specification, it will be the DN as identified by the certificate

Clients that browse the Registry need not use certificates. The Registry must assign the default RegistryGuest role to such clients.

There is a predefined access control policy associated with each RegistryObject.

5 Use Cases

5.1 Restricting Read-Only Access

A Submitting Organization (SO) submits a RegistryObject to a Registry. SO also submits an AccessControlPolicy associated with a RegistryObject. This AccessControlPolicy allows only selected partners of SO to have read-only access to the RegistryObject. All objects in the registry have a unique id specified by Universally Unique Identifier (UUID) and must conform to the format of a URN that specifies a DCE 128 bit UUID as specified in UUID [ebRS:Section 7.3.1, UUDI].The partners (Principal) may be specified in the AccessControlPolicy using Identity, Role, or Group of Users in Organizations (see Section 3). It is assumed that the partner information is available through Organization for all authenticated Users. Partner may also be a RegistryGuest.

5.2 Write-Access beyond the Owner

A Submitting Organization (SO) submits a RegistryObject to a Registry. SO also submits an AccessControlPolicy associated with a RegistryObject. This AccessControlPolicy allows write (modify/deprecate/delete) access to some of the partners of SO. All objects in the registry have a unique id specified by Universally Unique Identifier (UUID) and must conform to the format of a URN that specifies a DCE 128 bit UUID as specified in UUID [ebRS:Section 7.3.1, UUDI].The partners (Principals) may be specified in the AccessControlPolicy using Identity, Role, or Group (see Section 3). It is assumed that the partner information is available as Organization (is a RegistryEntry) for all authenticated Users.

6 Issues

Some of the issues are below. Most of these are for ebXML Registry TC, though some might be interesting to XACML.

1. The relationship between the security information model and RIM is not specified now. E.g.,

a. Can an AccessControlPolicy be a RegistryEntry? What would be the AccessControlPolicy for such a RegistryEntry?

b. What are the rights of RegistryAdministrator on the AccessControlPolicy?

2. Should AccessControlPolicy .dtd/schema be integrated with Registry.dtd/schema? If so how?

3. What are the bindings for accessing AccessControlPolicy? What is the mechanism of enforcement?

4. How do the RegistryObjects share an AccessControlPolicy?

5. Can Roles/Groups be defined dynamically? If so what are implications on AccessControlPolicy?

6. “For every object, the access controller will iterate through all the AccessControlPolicy objects with the object and see if there is a chain through the permission objects to verify that the requested method is permitted for the Principal. If any of the permission objects which the object is associated with has a common role, or identity, or group with the principal, the action is permitted [ebRS: Appendix E2]” Overprescription?

7 References
[FNPRO1] Proposal for Authorization Policy Administration

http://lists.oasis-open.org/archives/regrep/200107/msg00005.html
[ebRS] ebXML Registry Services Specification

http://www.ebxml.org/specs/ebRS.pdf
[ebRIM] ebXML Registry Information Model 1.0

http://www.ebxml.org/specs/ebRIM.pdf
[UUID]
 DCE 128 bit Universal Unique Identifier

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml"

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml

� Proposed for V2 (Contend based Query)

� Read “Object” as “RegistryObject”

Suresh Damodaran
Page 9
07/16/01

_1056623923.doc
[image: image1.png]interface
Role

roles

interface

|AccessContropoticy] 0.”
s
interface interface
otject \Permission
o
priviege
s
interface intertace
|privilegeatiibute | 0. _privigeattibutes 0. | privitege
intertace
Group interface
1dentity
o
T
groups
0
interface
0" | princigar | 0" identiies

