
A Proposal For 1

2

3

4

5
6
7
8
9

10

11

12

13
14
15

16
17

18
19
20

21
22
23

24
25
26

27
28

XACML Extension Model and Its Schema

December 24, 2001

Author: Michiharu Kudo

This document proposes an XACML Extension Model that defines what portion of the XACML
specification is a core and to what extent the XACML specification can be extended. Based on this
proposal, XACML policy administrators can represent much broader access control policies by
extending the core portion of the XACML specification. This extension model is designed to
support an XACML extensibility property stated in the XACML charter. This proposal is based on
the current language proposal document [2] but includes several modifications.

1. Glossary

(Terms described here are described for further communication in TC. Definitions may change.)

XACML Core - XACML Core represents a mandatory set of the XACML specification that must
be supported in every XACML system. XACML Core consists of XACML Core Semantics and
XACML Core Schema.

XACML Core Grant Policy - A policy that XACML Core Semantics supports. The semantics is
defined as “if one or more rule(s) holds, then access is grant, otherwise access is denied.”

XACML Core Schema - A set of the XACML policy primitives that consists of applicablePolicy,
policy, rule, precondition, postCondition, and other useful primitives such as principal and resource.
(Appendix A shows a proposed XACML Core Schema.)

XACML Core Semantics - The semantics that determines the meaning of access control policies
defined in the XACML Core. One instance of the XACML Core Semantics is XACML Core Grant
Policy.

XACML Extension - XACML Extension represents a class of extensible XACML access control
policies and semantics. XACML Extension (?MUST, SHOULD, MAY) support XACML Core.
XACML Extension consists of XACML Extension Semantics and XACML Extension Schema.

XACML Extension Model - XACML Extension Model defines what portion of XACML
specification is a core and to what extent the XACML specification can be extended.

 1

XACML Extension Schema - Any XML schema that can be defined as an extension of XACML
Core Schema. XACML Extension Schema is defined by policy administrators. An extended
schema MAY differ from another extended schema. (Appendix B shows several extension
examples.)

29
30
31
32

33
34
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50
51
52

53
54
55
56
57

XACML Extension Semantics - Semantics that determines the meaning of the user-defined
access control policies. XACML Extension Semantics is defined by policy administrators. An
extended semantic basis MAY differ from another extended semantic basis.

2. XACML Extension Model

Figure 1 shows an XACML Extension Model.

XACML Core

XACML Extension

-Core Semantics
- Core Schema

-Extension Semantics
- Extension Schema

XACML Core

XACML Extension

-Core Semantics
- Core Schema

-Extension Semantics
- Extension Schema

Figure 1. XACML Extension Model

An XACML Core is a part of the XACML specification that consists of an XACML Core
Semantics and an XACML Core Schema. The XACML Core itself CANNOT be extended. The
XACML Core MAY not describe any specific algorithm that implements the XACML Core
Semantics. Algorithms for the XACML Core depend on each implementation.

An XACML Extension represents a class of extensible XACML-based access control policies.The
XACML Extension consists of an XACML Extension Semantics and an XACML Extension
Schema. The XACML Specification does not define any specific extension instance but only
defines a framework how to extend the XACML Core. Each policy instance extended from the
XACML Core is an instance of the XACML Extension. By this extension model, any policy

 2

administrator who needs to specify local access control policies can define the semantics and the
schema of their policies that conform to the XACML Specification. For the purpose of the XACML
conformance, the algorithm implemented by each policy administrator (?MUST, SHOULD, MAY)
support the XACML Core Semantics in addition to their local semantics. This restriction guarantees
that every XACML system supports at least the semantcs of the XACML Core. The extension
schema MUST be an extension of the XACML Core Schema.

58
59
60
61
62
63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

2.1 Overview of XACML Extensibility Property

The figure 2 shows the overview of the XACML Core and its extensibility property proposed in this
document.

<applicablePolicy>
<properties> // meta information
<ds:signature> // XML DSig
<applicability>

<resourceClassification>
<resourceAction>

<policy policyURI = “http://alice.org/policyA”>

<grant>
<rule name=“rule-1”>

<principal>
<resource> repeat
<preCondition>
<postCondition>
<purpose>

<negative>
<rule name=“rule-2”>

…

<my-rule-category>
<rule name=“rule-3” xsi:type=“MyRule”>

<my-primitive>

Core 4
-generic vocabulary-

Extensibility 2
-user’s vocabulary-

Extensibility 1
-user’s semantics-

Core 3
-useful vocabulary-

Core 2
-core category-

Extensibility 3
-user’s category-

Extensibility 4
-user’s syntax-

Core 1
-core property-

Information
needed before
decision
computation

Information
used for
decision
computation

<applicablePolicy>
<properties> // meta information
<ds:signature> // XML DSig
<applicability>

<resourceClassification>
<resourceAction>

<policy policyURI = “http://alice.org/policyA”>

<grant>
<rule name=“rule-1”>

<principal>
<resource> repeat
<preCondition>
<postCondition>
<purpose>

<negative>
<rule name=“rule-2”>

…

<my-rule-category>
<rule name=“rule-3” xsi:type=“MyRule”>

<my-primitive>

Core 4
-generic vocabulary-

Core 4
-generic vocabulary-

Extensibility 2
-user’s vocabulary-
Extensibility 2
-user’s vocabulary-

Extensibility 1
-user’s semantics-
Extensibility 1
-user’s semantics-

Core 3
-useful vocabulary-

Core 3
-useful vocabulary-

Core 2
-core category-

Core 2
-core category-

Extensibility 3
-user’s category-

Extensibility 3
-user’s category-

Extensibility 4
-user’s syntax-

Extensibility 4
-user’s syntax-

Core 1
-core property-

Core 1
-core property-

Information
needed before
decision
computation

Information
needed before
decision
computation

Information
used for
decision
computation

Information
used for
decision
computation

Figure 2. Overview of XACML Extensibility Property

2.2. Design Principles

Design principles of the XACML Extension Model is the following:

1. The XACML Core stringently defines the semantics and the schema of access control policy
rules.

 3

2. The XACML Core represents common functionalities described in the XACML Use Case
Summary document [1] and mailing-list discussion in proper, concise, and integral manner.

83
84

85
86
87

88
89

90

91

92
93
94
95
96
97
98
99

100
101

102
103
104
105
106
107
108
109
110

111

112
113
114
115

116

3. The XACML Extension provides a maximum extensibility with the XACML enough for as yet
unknown features. For this purpose, we assume a model of how should policies be extended.
This model avoids ad hoc extensions that might be done by users.

4. The extension to the XACML Core Schema is realized by the extensible functions of XML
Schema. It is desirable to apply flexible object-oriented design scheme.

2.3. XACML Core

The XACML Core consists of the XACML Core Semantics and the XACML Core Schema.

The XACML Core Semantics basically corresponds to the one described in the current XACML
language proposal [2]. The grant-based policy is stated as “if one or more rule(s) holds, then access
is grant, otherwise access is denied.” The semantic basis of each rule is represented as a set of
Boolean expressions such as equality and inequality. This intuitively means that if a set of Boolean
expressions of the specific rule holds, then that rule holds. If at least one rule in the policy holds,
then the PDP determines that access is grant. If none of the rule holds, then the PDP determines that
access is denied. We call this semantics an XACML Core Grant Policy. The XACML Core only
supports the XACML Core Grant Policy because most of the access control policies described in
the XACML Use Case Document can be described using only the XACML Core Grant Policy. This
decision is made to address the second design principle of the XACML Extension Model.

For the XACML Core Schema, we definitely need more schema primitives than the current draft
defines, because almost all the policies included in the XACML Use Case Summary document
consist of the equalities on principal attributes and resource attributes. A kind of the access-triple
syntax that consists of equality conditions of principal attributes and resource attributes make the
access control policy look more proper, concise, and familiar (we assume that an action classifiction
is specified in the applicability element.) The above primitives are created to address this issue.
Since the meaning of the added primitives is defined based on the Boolean semantics, it does not
destroy the XACML Core Semantics that corresponds to the semantic basis defined in the current
language proposal.

2.4. XACML Extension

The XACML Extension consists of an XACML Extension Semantics and an XACML Extension
Schema. The XACML Specification does not define any specific extension instance but only
defines a framework how to extend the XACML Core. It would be nice to include useful extension
examples.

The XACML Extension Semantics and Schema consists of the following extension points.

 4

z XACML Extension Semantics
1. User-defined semantics extension (mandatory)
2. User-defined algorithm extension (optional)

117
118
119

120
121
122
123
124
125

126
127
128
129
130

131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154

155
156

z XACML Extension Schema
1. Rule category extension
2. Rule extension
3. Parameter restriction
4. Function/Predicate extension
5. Macro extension

The XACML Extension Semantics allows policy administrators to define the meaning of their local
access control policy. It consists of a mandatory user-defined semantics extension and an optional
algorithm extension. The user-defined semantic basis is identified by a unique URI. While there is
no need to specify algorithm information, policy administrators can specify implementation specific
information identified by a unique URI. Such flexibility satisfies the third design principle.

The XACML Extension Schema allows policy administrators to define the extended format of their
local access control policy. It consists of a rule category extension, a rule extension, a parameter
restriction, function/predicate extension, and a macro extension. This flexibility satisfies the third
design principle. We explain each extension point below.

1. The rule category extension is a first extensible point of the XACML Schema. The rule
category means a primitive element of the user-defined semantic basis and it allows policy
administrators to specify several semantic primitives under the policy element. Intuitively
speaking, the name of the rule category corresponds to a returned value of the policy
evaluation. For instance, the XACML Core uses the “grant” element for the default rule
category because “grant” is the result of the policy evaluation if at least one rule holds. In other
access control policies, “positive” and “negative” rule categories can represent the policy that
allows policy administrators to specify an explicit negative permission in the rule in addition to
the positive permission. In this case, the rule category could be defined as “positive” and
“negative”. More concrete examples are described in Appendix B.2, B.3, and B.4. Note that the
semantics of the extended rule category must be unambiguously handled by the user-defined
algorithm.

2. The rule extension is the second extensible point of the XACML Schema. The rule extension
means that policy administrators can add new elements in the rule element. For instance, the
XACML Core allows only “principal”, “resource”, “preCondition”, and “postCondition”
elements in the rule element. Using the rule extension, policy administrators can add arbitrary
elements such as “codeSource” and “purpose” in the rule element. This extension allows policy
administrators to use a local vocabulary of their policy domain. It could greatly improve
readability of the policy as well. Note that the semantics of the added elements in the rule
element must be unambiguously handled by the user-defined algorithm.

3. The parameter restriction is the third extensible point of the XACML Schema. The parameter
restriction allows policy administrators to specify this kind of restrictions on parameters in the

 5

XACML Extension Schema. The notion of the parameter restriction is represented by XML
Schema Derivation function. (this proposal needs concrete examples for this extension)

157
158

159
160

161

162

163
164
165
166
167
168
169

170

171
172
173
174
175
176
177
178
179
180

181

182
183
184
185

186

187
188

4. The function and/or predicate extension are the fourth extensible point of XACML Schema. It
is defined in the current language proposal.

5. The macro extension is also mentioned in the current language proposal.

2.5 Rule Priority

When policy administrators think of the semantics of their access control policy rules, there is a
case that a priority is assigned to each rule to solve conflicts if multiple rules return different
decision values such as a positive and a negative. The XACML Extension does not provide any
functionality for implementing this kind of semantic basis. Instead, the XACML Core supports
more fundamental way to realize such semantics. In the XACML Core, each rule can have a name
attribute. Using this attribute, the user-defined algorithm can use the rule name to map to the rule
priorities locally defined in their algorithm.

2.6 Policy Property

Basically it is necessary to support user-defined meta-information about the policy. A few examples
of such meta-information would be 1) a list of the events when the access control policy can be
legally bypassed (this addresses the “breaking the class” requirement in the Clinical Record use
case), 2) a list of the exceptions that access control policy may return to the PDP, and 3) a condition
when and how the access control policy description should be digitally signed. They are so
application-specific that the contents of the meta-information are outside the scope of the XACML
Core. The XACML Core only provides a space for describing such meta-information. In this
proposal, a property element is added under the applicablePolicy element. Policy administrators can
put any information under the property element. The notion of this “any” information is represented
by “any” element placeholder of the XML Schema.

2.7 XACML Extension Suite

A XACML Extension Suite represents a notion of application-specific reusable policy components.
For example, if there is a useful set of policy components that works on a tree-based resource
hierarchy, people may use the whole extension components for their specific target domain. A set of
those components can be called XACML Extension Suite for AAA.

2.8 Interoperability

For the XACML Core, the interoperability is defined as “every XACML Core implementation must
output the same access decision in response to the same access request and environment values

 6

based on the same access control policy rules.” Since the semantics and the schema are stringently
defined and no extension is allowed, the interoperability can be easily achieved.

189
190

191
192
193
194
195
196

197

198
199
200
201

202

203
204

205

206
207
208
209
210
211
212
213
214
215
216
217
218

For the XACML Extension, the situation is the opposite to the XACML Core because policy
administrators can extend the semantics of the policy as well as the schema of the policy. However,
two implementations A and B outputs the same access decision in response to the same access
request and environment values based on the same access control policy rules provided, the
implementations of A and B have the same value for the policy URI attribute specified in the policy
element and they shares the same XACML Extension schema.

3. XACML Schema Representation

We present each XACML schema primitive.The proposed XACML Schema is designed particularly
for supporting the extensible points in the schema described in the Section 2.4. For example, the
rule category extension is realized in the Rule Category element. The rule extension is realized in
the Rule element.

3.1 Applicable Policy

Applicable policy is identical to the one in the current language proposal except for the property
element described in the Section 2.6.

3.2 Policy

The policy element is an aggregation point of rule categories. This element determines a semantics
(and optionally an algorithm) and a schema for every rule described under this element. The
semantics of the policy is specified by a policyURI attribute. When the policyURI attribute is
omitted, the default XACML Core Grant Policy is assumed. The algorithm is optionally specified
by an algoURI attribute. The policy schema and its exact location can be identified using a
namespace definition and location definition of the XML Schema. The following schema defines
the policy element.

<xs:element name="policy" type="Policy"/>
<xs:complexType name="Policy">
 <xs:sequence>
 <xs:element name="ruleCategory" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="policyURI" type="xs:anyURI" default=”http://www.xacml.org/grantpolicy"/> 219

220
221

222
223

 <xs:attribute name="algoURI" type="xs:anyURI"/>
</xs:complexType>

A sample policy instance is described below:

<policy policyURI=”http://www.xacml.com/grantpolicy” algoURI=”http://www.xacml.com/algo”/> 224

 7

http://www.xacml.org/grantpolicy
http://www.xacml.com/

3.3 Rule Category 225

226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241
242
243
244

245
246
247
248
249
250

The rule category element is an important extension point of the XACML Schema as well as an
aggregation point of one or more rules. This element symbolically groups a set of rules that belongs
to a specific rule category such as “grant”, “positive”, “negative” and “onlyif”. The following
schema defines the rule category element.

<xs:element name="ruleCategory" type="RuleCategory" abstract="true"/>
<xs:complexType name="RuleCategory">
 <xs:sequence>
 <xs:element name="rule" type="Rule" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Note that the rule category element is defined as “abstract”. Thus, policy administrators MUST
substitute this element if they need to extend the semantics of the policies. Thus, the notion of the
rule category is represented by XML Schema Element Substitiongroup function. Concrete extension
examples are described in Appendix B.2, B.3, and B.4. If the policy administrator uses the XACML
Core Grant Policy (XACML default rule category), no substitution is required. The XACML Core
has a pre-defined rule category “grant”.

<xs:element name="grant" type="RuleCategory" substitutionGroup="ruleCategory"/>

The XACML Core Semantics defines the meaning of this “grant” rule category as “if at least one
rule in the policy holds, then the PDP determines that access is grant. if none of the rule holds, then
the PDP determines that access is denied.” If policy administrators need to modify the semantics of
this grant policy, the grant rule category element MUST not be used. A sample policy instance is
described below:

<policy policyURI=”http://www.xacml.com/grantpolicy” /> 251

252
253
254
255
256
257

258
259
260

261

262
263
264
265
266

<grant>
<rule name=”rule-1” >
 <preCondition>…
 …
</rule>

</grant>

If the policy administrator does not need to extend the XACML Core Grant Policy but wants to
extend the XACML Core Schema by adding a new element e.g. “codesource”, it is required to
substitute the rule element. The rule element is described in the next section.

3.4 Rule

The rule element is an extension point of XACML Schema as well as an aggregation point of a set
of rule primitives. This element groups a set of rule primitives such as “principal” and
“preCondition” elements. The pre-defined rule elements consist of “principal”, “resource”,
“preCondition”, and “postcondition”. The following schema defines the rule element:

 8

http://www.xacml.com/

<xs:element name="rule" type="Rule"/> 267
268
269
270
271
272
273
274
275
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

292
293

<xs:complexType name="Rule">
 <xs:sequence>
 <xs:element name="principal" type="PreconditionAlias" minOccurs="0" maxOccurs="1"/>
 <xs:element name="resource" type="PreconditionAlias" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preCondition" type="PreCondition" minOccurs="0" maxOccurs="1"/>
 <xs:element name="postCondition" type="PostCondition" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

If you need to add a new element, you MUST derive a new rule element by substituting the Rule
type. The notion of the rule extension is represented by XML Schema Type Substitution function.
The derived rule can contain the added element as well as all the pre-defined elements. Each
pre-defined primitive is optional. The example below shows how to derive the new rule that
contains “purpose” element:

<xs:complexType name="PrivacyRule">
 <xs:complexContent>
 <xs:extension base="Rule">
 <xs:sequence>
 <xs:element name="purpose" type="Purpose”/>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

A sample policy instance is described below:

<policy policyURI=”http://www.privacy.com/” algoURI=”http://www.privacy.com/algo”/> 294

295
296
297
298
299
300
301

302

303

304
305
306
307
308
309
310
311
312
313

<grant>
<rule name=”rule-1” xsi:type=”PrivacyRule”>

<purpose>fulfilment</purpose>
<resource>…
<preCondition>…

</rule>
</grant>

A concrete example is described in Appendix B.1.

3.5 Principal

This elememt is created to address the second design principle of the XACML Extension Model.
The principal element specifies conditions on the principal using simplified Boolean expression that
supports the conjunctive and/or disjunctive formula of equalities and/or inequalities. Note that this
limitation is not intrinsic, but rather derived from the use cases described in the XACML Use Case
Summary document and mailing list discussions. Almost all the policies can be specified only using
these simplified Boolean expressions. The semantics of this element is defined as a subset of the
semantics of the preCondition element. The preCondition is capable of specifying more
complicated conditions if the policy administrator needs to write them. The following schema
defines the principal element.

 9

http://www.privacy.com/

<xs:element name="principal" type="PreconditionAlias" minOccurs="0" maxOccurs="1"> 314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346

347
348

349

350
351
352
353
354
355
356
357
358
359

360
361

<xs:complexType name="PreconditionAlias">
<xs:sequence>

 <xs:element name="simpleLogicalOperator" type="SimpleLogicalOperator" minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
</xs:complexType>

<xs:element name=”simpleLogicalOperator” type=”SimpleLogicalOperator” abstract=”true”/>
<xs:complexType name="SimpleLogicalOperator">
 <xs:sequence>
 <xs:element name="simpleExpression" type="SimpleExpression" minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
</xs:complexType>
<xs:element name="and" type="SimpleLogicalOperator" substitutionGroup="simpleLogicalOperator"/>
<xs:element name="or" type="SimpleLogicalOperator" substitutionGroup="simpleLogicalOperator"/>

<xs:element name=”simpleExpression” type=”SimpleExpression” abstract=”true”/>
<xs:complexType name="SimpleExpression">
 <xs:sequence>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string"/>
 <xs:attribute name="value" type="xs:string"/>
</xs:complexType>
<xs:element name="equality" type="SimpleExpression" substitutionGroup="simpleExpression"/>
<xs:element name="inequality" type="SimpleExpression" substitutionGroup="simpleExpression"/>

A sample principal expression is described below:

<principal>

<and>
<equality type=”saml/Attribute/AttributeName/Role” value=”InternalUser”/>
<equality type=”saml/Attribute/AttributeName/Role” value=”Manager”/>

</and>
</principal>

The above policy means that the principal should be an internal user and a manager at the same
time.

3.6 Resource

The resource element specifies one or more simplified Boolean expressions of the resource
condition. The element definition is similar to that of the principal element. A sample resource
expression is:

<resource>

<or>
<equality type=”environment/targetXML“ value=”//confidential”/>
<equality type=”environment/targetXML” value=”//secret”/>

</or>
</resource>

The above policy means that the target XML element is confidential or secret at any level of the
target XML resource.

 10

3.7 Pre-condition 362

363

364

365
366
367
368
369
370
371
372
373
374
375

376

Precondition is identical to the one in the current language proposal with minor modifications.

3.8 Post-condition

The semantics of the postcondition is not defined in the XACML Schema because people has not
yet been familiar with this notion. However, two use cases in [1] definitely require the
postcondition. Thus, the XACML Schema defines just a space for this notion as an optional
element called post condition that can contain any elements. The definition is:

<xs:element name="postCondition" type="PostCondition" />
<xs:complexType name="PostCondition">
 <xs:sequence>
 <xs:any namespace="##any" processContents="skip"/>
 </xs:sequence>
</xs:complexType>

References

[1] XACML Use Case Summary, http://lists.oasis-open.org/archives/xacml/200110/msg00073.html 377

[2] XACML Language Proposal v0.7, http://lists.oasis-open.org/archives/xacml/
200111/msg00039.html

378
 379

[3] XACL, http://www.trl.ibm.com/projects/xml/xacl/index.htm and http://alphaworks.ibm.com/
tech/xmlsecuritysuite

380
381

[4] An Access Control Model for Data Archives, http://sansone.crema.unimi.it/
~samarati/Papers/sec01.ps

382
 383

384
385

386

387

[5] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian, “A Logical Language for
Expressing Authorizations,” IEEE Security and Privacy, 1997.

[6] J2SE Use Case, http://lists.oasis-open.org/archives/xacml/200112/msg00045.html

 11

http://lists.oasis-open.org/archives/xacml/200110/msg00073.html
http://lists.oasis-open.org/archives/xacml/ 200111/msg00039.html
http://lists.oasis-open.org/archives/xacml/ 200111/msg00039.html
http://www.trl.ibm.com/projects/xml/xacl/index.htm
http://alphaworks.ibm.com/
http://sansone.crema.unimi.it/ ~samarati/Papers/sec01.ps
http://sansone.crema.unimi.it/ ~samarati/Papers/sec01.ps

Appendix A - XACML Schema 387

388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

A.1 XACML Core Schema

The following schema defines the XACML Core Schema. Since many schema definitions are
overlapping with the current lanaguage proposal, we omit several type definitions such as
PreCondision type.

<xs:element name="applicablePolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties" type=”Properties” minOccurs="0" maxOccurs="1”/>
 <!—ds:signature element may be located here -->
 <xs:element name="applicability" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>

<xs:sequence>
 <xs:element name="resourceClassification" type="xs:anyURI"/>

 <xs:element name="resourceAction" type="saml:Actions" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>
 </xs:element>
 <xs:element name="policy" type="Policy"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="Properties">
 <xs:sequence>
 <xs:any namespace="##any" processContents="skip"/>
 </xs:sequence>
</xs:complexType>

<xs:element name="policy" type="Policy"/>
<xs:complexType name="Policy">
 <xs:sequence>
 <xs:element name="ruleCategory" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="policyURI" type="xs:anyURI" default=”http://www.xacml.org/grantpolicy"/> 422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

 <xs:attribute name="algoURI" type="xs:anyURI"/>
</xs:complexType>

<xs:element name="ruleCategory" type="RuleCategory" abstract="true"/>
<xs:complexType name="RuleCategory">
 <xs:sequence>
 <xs:element name="rule" type="Rule" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:element name="grant" type="RuleCategory" substitutionGroup="ruleCategory"/>

<xs:element name="rule" type="Rule"/>
<xs:complexType name="Rule">
 <xs:sequence>
 <xs:element name="principal" type="PreconditionAlias" minOccurs="0" maxOccurs="1"/>
 <xs:element name="resource" type="PreconditionAlias" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preCondition" type="PreCondition" minOccurs="0" maxOccurs="1"/>

 12

http://www.xacml.org/grantpolicy

 <xs:element name="postCondition" type="PostCondition" minOccurs="0" maxOccurs="1"/> 440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476

477

478
479

480
481
482
483
484

485
486

 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

<xs:element name="postCondition" type="PostCondition" />
<xs:complexType name="PostCondition">
 <xs:sequence>
 <xs:any namespace="##any" processContents="skip"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="PreconditionAlias">

<xs:sequence>
 <xs:element name="simpleLogicalOperator" type="SimpleLogicalOperator" minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
</xs:complexType>

<xs:element name=”simpleLogicalOperator” type=”SimpleLogicalOperator” abstract=”true”/>
<xs:complexType name="SimpleLogicalOperator">
 <xs:sequence>
 <xs:element name="simpleExpression" type="SimpleExpression" minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>
</xs:complexType>
<xs:element name="and" type="SimpleLogicalOperator" substitutionGroup="simpleLogicalOperator"/>
<xs:element name="or" type="SimpleLogicalOperator" substitutionGroup="simpleLogicalOperator"/>

<xs:element name=”simpleExpression” type=”SimpleExpression” abstract=”true”/>
<xs:complexType name="SimpleExpression">
 <xs:sequence>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string"/>
 <xs:attribute name="value" type="xs:string"/>
</xs:complexType>
<xs:element name="equality" type="SimpleExpression" substitutionGroup="simpleExpression"/>
<xs:element name="inequality" type="SimpleExpression" substitutionGroup="simpleExpression"/>

Appendix B - XACML Extension Examples

B.1 J2SE Policy

J2SE policy is based on the use case description posted on the XACML mailing-list [6]. Their
requirements are:

1. There must be a way in the policy language to express both a signer as well as a principal
within a rule. It has been suggested that one of the existing XACML attributes - environment,
resource, principal attributes could be used. Of the three the most logical one seems to be
principal attribute. But overloading of a principal attribute for both principals and signers makes
the authorization rules less clear.

2. There must be a way to express CodeSource (i.e. URL from where the code originated from
and/or the certificates used to sign the code).

 13

This example shows a solution to the above requirements by adding three new primitives
“codesource”, “signer”, and “permission” elements in the rule element. The following schema
extension shows how to extend XACML Core Schema:

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

502
503

<xs:complexType name="J2SE">
 <xs:complexContent>
 <xs:extension base="Rule">
 <xs:sequence>
 <xs:element name="codesource" type="Codesource”/>

 <xs:element name="signer" type="Signer">
 <xs:element name="permission" type="Permission">
 </xs:sequence>

 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The example below shows a J2SE policy instance.

<policy policyURI=”http://www.j2se.com/” algoURI=”http://www.j2se.com/algo”/> 504

505
506
507
508
509
510
511
512

513
514
515

516

517
518
519
520
521
522

523
524
525
526
527
528
529
530
531
532
533

<grant>
<rule name=”rule-1” xsi:type=”J2SE”>

<codesource>file:c:/programs/myprogram.jar</codesource>
<principal>com.j2se.com.J2SEPrincipal</principal>
<signer>ABC.com</signer>
<permission>javax.security.auth.AuthPermission "doAs"</permission>

</rule>
</grant>

(Since we assume here that the semantics of the J2SE policy is identical to the XACML Core Grant
Policy, there is no need to extend the rule category element. If not, a proper rule category must be
defined.)

B.2 Restriction-based Policy

An access control policy that allows a restriction-based control is described in [4]. It allows policy
administrators to specify “onlyif” rule. Since it needs a different semantic basis than the XACML
Core Grant Policy, the rule category element must be substituted. The example below shows a
substitution.

<xs:element name="onlyif" type="RuleCategory" substitutionGroup="ruleCategory"/>

Since the “onlyif” rule category needs an extended rule syntax, the rule element must also be
substituted. The example below shows a substitution.

<xs:complexType name="OnlyIf">
 <xs:complexContent>
 <xs:extension base="Rule">
 <xs:sequence>
 <xs:element name="restrictionCondition" type="PreCondition"/>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>

 14

http://www.j2se.com/

</xs:complexType> 534

535
536

The example below shows a policy instance of the “onlyif” rule category.

<policy policyURI=”http://www.onlyif.com/” algoURI=”http://www.onlyif.com/algo”/> 537

538
539
540
541
542
543
544
545
546

547

548
549
550
551
552
553
554
555

556

557

<onlyif>
<rule name=”rule-2” xsi:type=”OnlyIf”>

<restrictionCondition>citizenship is ’UK’</restrictionCondition>
<principal>…
<resource>…
<preCondition>…

</rule>
</onlyif>

B.3 Policy for XML Resources

A fine-graind access control policy specification language for XML resource is proposed in [3]. It
allows policy administrators to specify “positive” and “negative” permissions. Final access decision
is determined by using user-defined meta policies such as a denial-takes precedence policy. The
XACML Extension allows policy administrators to write such policy by substituting the rule
category element. The example below shows the substitution.

<xs:element name="positive" type="RuleCategory" substitutionGroup="ruleCategory"/>
<xs:element name="negative" type="RuleCategory" substitutionGroup="ruleCategory"/>

The example below shows an policy instance.

<policy policyURI=”http://www.xacl.com/policy/dtp” algoURI=”http://www.xacl.com/algo”/> 558

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

575

576
577
578

<positive>
<rule name=”rule-1”>

<principal>…
<resource>…
<preCondition>…
<postCondition>…

</rule>
</positive>
<negative>

<rule name=”rule-2”>
<principal>…
<resource>…
<preCondition>…
<postCondition>…

</rule>
</negative>

B.4 Logic-based Flexible Access Control Policy

A logic-based flexible authoriztion framework and Authorization Specification Langauge (ASL) are
proposed in [5]. Multiple access control policies are described based on the semantics of the locally
stratified datalog. The XACML Extension allows policy administrators to write ASL-based policies

 15

http://www.onlyif.com/
http://www.xacl.com/

by substituting the rule category element by “cando”, “dercando”, and “do”. We need to extend the
rule element for the sign element. The example below shows the substitution.

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596
597

<xs:element name="cando" type="RuleCategory" substitutionGroup="ruleCategory"/>
<xs:element name="dercando" type="RuleCategory" substitutionGroup="ruleCategory"/>
<xs:element name="do" type="RuleCategory" substitutionGroup="ruleCategory"/>

<xs:complexType name="ASL">
 <xs:complexContent>
 <xs:extension base="Rule">
 <xs:sequence>
 <xs:element name="sign" type="Sign"/>
 <xs:element name="action" type="Action"/>

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

The example below shows an policy instance of this rule category.

<policy policyURI=”http://www.asl.com/” algoURI=”http://www.asl.com/algo”/> 598

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

<cando>
<rule name=”cando(Alice, //secret, +r) :- conditionA.” xsi:type=”ASL”>

<principal>Alice</principal>
<resource>//secret</resource>
<sign>+</sign>
<action>r</action>
<preCondition>conditionA</preCondition>

</rule>
</cando>
<dercando>

<rule name=”dercando(X,Y,+Z) :- conditionB” xsi:type=”ASL”>
<principal>X</principal>
<resource>Y</resource>
<sign>+</sign>
<action>Z</action>
<preCondition>conditionB</preCondition>

</rule>
</dercando>
<do>

<rule name=”do(X,Y,+Z) :- conditionC.” xsi:type=”ASL”>
<principal>X</principal>
<resource>Y</resource>
<sign>+</sign>
<action>Z</action>
<preCondition>conditionC</preCondition>

</rule>
</do>

 16

http://www.asl.com/

	1. Glossary
	2. XACML Extension Model
	2.1 Overview of XACML Extensibility Property
	2.2. Design Principles
	2.3. XACML Core
	2.4. XACML Extension
	2.5 Rule Priority
	2.6 Policy Property
	2.7 XACML Extension Suite
	2.8 Interoperability

	3. XACML Schema Representation
	3.1 Applicable Policy
	3.2 Policy
	3.3 Rule Category
	3.4 Rule
	3.5 Principal
	3.6 Resource
	3.7 Pre-condition
	3.8 Post-condition

	References
	Appendix A - XACML Schema
	A.1 XACML Core Schema

	Appendix B - XACML Extension Examples
	B.1 J2SE Policy
	B.2 Restriction-based Policy
	B.3 Policy for XML Resources
	B.4 Logic-based Flexible Access Control Policy

