[image: image1.jpg]ACCELERATINGSELECTRONIC BUSINESS

The OASIS XML-based Access-Control Markup Language (XACML)

Document identifier: draft-xacml-v0.8.1

Location: http://www.oasis-open.org/committees/xacml/docs

Publication date: 3 Feb 2002
Maturity Level: Committee Draft

Send comments to: xacml-comment@lists.oasis-open.org
Editors:

Tim Moses, Entrust

Contributors:

Anne Anderson, Sun Microsystems

Bill Parducci, Bill Parducci

Carlisle Adams, Entrust

Ernesto Damiani, University of Milan

Hal Lockhart, Entegrity

Ken Yagen, Crosslogix

Michiharu Kudo, IBM, Japan

Pierangela Samarati, University of Milan

Polar Humenn, University of Syracuse

Sekhar Vajjhala, Sun Microsystems

Simon Godik, Crosslogix
Table of contents

1The OASIS XML-based Access-Control Markup Language (XACML)

1.
Glossary (non-normative)
5
1.1.
Preferred terms
5
1.2.
Related terms
6
2.
Introduction (non-normative)
6
2.1.
Notation
6
2.2.
Schema Organization and Namespaces
7
3.
Example (non-normative)
7
3.1.
Introduction to the example
7
3.2.
Example medical record instance
7
3.3.
Example plain-language policies
9
3.4.
Example XACML policy instances
9
3.4.1.
Policy 1
9
3.4.2.
Policy 2
10
3.4.3.
Policy 3
11
3.4.4.
Policy 4
12
3.4.5.
Policy 5
12
3.4.6.
Policy 6
13
4.
Models (non-normative)
14
4.1.
Data-flow model
14
4.2.
Policy composition
15
4.2.1.
Composition by inclusion
16
4.2.2.
Composition by reference
17
4.3.
Policy language model
17
4.3.1.
Principal/role/attribute
18
4.3.2.
Resource/classification/attribute
19
4.3.3.
Environment/attribute
20
4.3.4.
Action/resource/classification
20
4.3.5.
Policy/rule/pre-condition/predicate
21
4.3.6.
Post-condition
22
4.3.7.
Attribute identification
22
4.4.
Administrative model
23
5.
Policy syntax (normative, with the exception of the schema fragments)
23
5.1.
Policy statement
23
5.2.
ResourceAbstractType
24
5.3.
SubjectAbstractType
24
5.4.
PolicyType
24
5.5.
RuleType
25
5.6.
RuleAbstractType
25
5.7.
Predicate
25
5.8.
Equal
26
5.9.
Greater or equal
26
5.10.
Less or equal
26
5.11.
Sub-set
26
5.12.
Superset
27
5.13.
Pattern match
27
5.14.
Non-null set interscetion
27
5.15.
Policy Reference
27
5.16.
PresentType
27
5.17.
CompareType
28
5.18.
AttributeRef
28
5.19.
Attribute value
29
6.
Profiles (non-normative)
29
6.1.
XACML
29
6.2.
SAML
29
6.3.
XML Digital Signature
29
6.4.
LDAP
29
7.
XACML extension points (non-normative)
29
8.
Security and privacy (non-normative)
29
9.
References
29
10.
Schema (normative)
30
11.
Conformance (normative)
32
Appendix A. Notices
34

1. Glossary (non-normative)
1.1. Preferred terms

Access - Performing an action on a resource
Access control - Controlling access in accordance with policy
Action - Operation that may be performed on resource
Attribute - Characteristic of a principal, resource or environment that may be referenced by a pre-condition
Authorization decision - The result of evaluation of policy. A function with BOOLEAN range and, optionally, a set of post-conditions
Classification - A set of attributes relevant to a resource

Context - The intended use of information revealed as a result of access.

Decision request - The request by a PEP to a PDP to render an authorization decision
Environment - The set of attributes that may be referenced by pre-conditions and that are independent of a particular principal and resource
Information request - The request by the PDP to the PIP for one or more environment attributes
Policy - The complete set of rules that governs access for a specific resource
Policy administration point (PAP) - The system entity that creates policy
Policy decision point (PDP) - The system entity that evaluates policy
Policy enforcement point (PEP) - The system entity that performs access control, by enforcing authorization decisions
Policy information point (PIP) - The system entity that acts as the source of environment attributes
Policy mediation point (PMP) - The system entity that resolves policy conflict
Policy retrieval point (PRP) - The system entity that ensures applicable policy is complete
Post-condition - A process specified in a rule that must be completed in conjunction with access. There are two types of post-condition: an internal post-condition must be performed by the PDP in conjunction with the issuance of a "permit" response, and an external post-condition must be performed by the PEP in conjunction with permitting access
Predicate - A statement about attributes whose truth can be evaluated
Pre-condition - A predicate or logically-combined set of predicates
Principal - A system entity that can be referenced by a pre-condition
Resource - Data, service, or system component

Resource mapping - The process of confirming that a specified resource occupies a specific classification

Role - A set of attributes relevant to a principal

Role mapping - The process of confirming that a specified principal occupies a specific role

Rule - The combination of a pre- and zero or more post-conditions

Target - The set of principals, resources and actions to which an policy applies

Target mapping - The process of confirming that a policy is applicable to a given target.
1.2. Related terms

In the field of access control and authorization there are several closely related terms in common use. For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: privilege, permission, right, authorization and entitlement.

The terms "subject" and "user" are also in common use. But, we use the term principal in this specification.

The term "object" is also in common use, but we use the term resource in this specification.

While the term "group" is commonly used with a meaning that is distinct from that of role, the distinction has no significance in the domain of XACML, therefore, the term group is not used here.

2. Introduction (non-normative)
This specification defines the syntax and semantics for XML-encoded policy statements. The XACML schema is an extension schema for SAML.

The following sections describe how to understand the rest of this specification.

2.1. Notation

This specification contains schema conforming to W3C XML Schema and normative text to describe the syntax and semantics of XML-encoded policy statements.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 rfc2119:

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of XACML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces (see Section 2.2) as follows, whether or not a namespace declaration is present in the example:

· The prefix saml: stands for the SAML assertion namespace.

· The prefix ds: stands for the W3C XML Signature namespace.

· The prefix xs: stands for the W3C XML Schema namespace in example listings. In schema listings, this is the default namespace and no prefix is shown.

This specification uses the following typographical conventions in text: <SAMLElement>, <ns:ForeignElement>, Attribute, Datatype, OtherCode.

2.2. Schema Organization and Namespaces

The XACML policy statement structures are defined in a schema associated with the following XML namespace:

http://www.oasis-open.org/committees/xacml/docs/draft-xacml-schema-081.xsd

Note: The XACML namespace names are temporary and may change when XACML 1.0 is finalized.

The SAML assertion schema is imported into the XACML schema. Also imported is the schema for XML Signature XMLSigXSD, which is associated with the following XML namespace:

http://www.w3.org/2000/09/xmldsig#

3. Example (non-normative)

3.1. Introduction to the example

This section contains an example of the application of XACML policies to a medical record. Six separate policies are defined.

3.2. Example medical record instance

Following is an instance of a medical record to which the example policies can be applied. The "record" schema is defined in the registered namespace administered by "medico.com".

<?xml version="1.0" encoding="UTF-8"?>

<record xmlns="medico.com/records.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="medico.com/records.xsd

D:\MYDOCU~1\Standards\XACML\record.xsd">

<patient>

<patientName>

<first>Bartholomew</first>

<last>Simpson</last>

</patientName>

<patientContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email/>

</patientContact>

<patientDoB xsi:type="date">1992-03-21</patientDoB>

<patientGender xsi:type="string">male</patientGender>

<policyNumber xsi:type="string">555555</policyNumber>

</patient>

<parentGuardian>

<parentGuardianName>

<first>Homer</first>

<last>Simpson</last>

</parentGuardianName>

<parentGuardianContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email>homers@aol.com</email>

</parentGuardianContact>

</parentGuardian>

<primaryCarePhysician>

<physicianName>

<first>Julius</first>

<last>Hibbert</last>

</physicianName>

<physicianContact>

<street>1 First St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.9012</phone>

<fax>555.123.9013</fax>

<email/>

</physicianContact>

<registrationID>ABC123</registrationID>

</primaryCarePhysician>

<insurer>

<name>Blue Cross</name>

<street>1234 Main St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.5678</phone>

<fax>555.123.5679</fax>

<email/>

</insurer>

<medical>

<treatment>

<drug>

<name>methylphenidate hydrochloride</name>

<dailyDosage>30mgs</dailyDosage>

<startDate>1999-01-12</startDate>

</drug>

<comment>patient exhibits side-effects of skin coloration and carpal degeneration</comment>

</treatment>

<result>

<test>blood pressure</test>

<value>120/80</value>

<date>2001-06-09</date>

<performedBy>Nurse Betty</performedBy>

</result>

</medical>

</record>

3.3. Example plain-language policies

The following plain-language policies are to be enforced:

1. A person may read any record for which he or she is the designated patient.

2. A person may read any record for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age.

3. A physician may read any record and write any medical element for which he or she is the designated primary care physician, provided an email notification is sent to the patient or the parent/guardian, in case the patient is under 16.

4. An administrator may read and write any record during office hours and from a designated IP address sub-space.

5. Administrators shall not be permitted to read or write a medical element.

6. A researcher may read a medical element and the patient's date of birth and gender.

These policies may be written by different PAPs, operating independently, or by a single PAP.

3.4. Example XACML policy instances

3.4.1. Policy 1

Here is the XACML policy instance for Policy 1.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="patients can read their own records" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<and>

<equal>

<valueRef entity="principal" AttributeName="saml://AttributeStatement/AttributeName[@name=''][@Name='policyNumber']/AttributeValue[@xsi:type='rec:patient/policyNumber']"/>

<valueRef entity="resource" attributeName="rec:patient/policyNumber"/>

</equal>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:patient/patientName"/>

</equal>

</and>

</policy>

</applicablePolicy>

Notes:

The "resource classification" expression is a regular expression, including the unique identifier for the root of the record and indicating that it applies to all descendant elements.

There are two pre-conditions, both of which must be satisfied. The first is that the identifier for the requestor must be the same as the identifier for the patient. The first identifier is obtained from a SAML attribute assertion. The second identifier is obtained from the policy number in the medical record. The second pre-condition is that the name of the principal, as determined by the SAML authentication assertion, must be the same as the name of the patient, as determined by the record.

Instead of the "entity" attribute, different type identifiers can be used for the two types of policy number. Then the valueRef "entity" attribute can be omitted.

Issue: the "rec:patient/patientName" element is a complex type. So, how should we indicate the required type in the policy?

3.4.2. Policy 2

Here is the XACML policy instance for Policy 2.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="parents and guardians can read records if the patient is under sixteen" issueInstant="2002-01--8">

<target resourceClassification="medico.com/record.*" resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<and>

<greaterOrEqual>

<valueRef attributeName="rec:patient/patientDoB"/>

<value xsi:type="date">1986-01-08</value>

</greaterOrEqual>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:parentGuardian/parentGuardianName"/>

</equal>

</and>

</policy>

</applicablePolicy>

Notes:

The approach to the patient's age is clearly unsatisfactory as it stands, because it requires the policy to be updated daily with a new date. It will be necessary to include arithmetic operators in the language. Another option is to use an external function for the calculation.

3.4.3. Policy 3

Here is the XACML policy instance for Policy 3.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="primary care physician may read and write, provided the patient is notified" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:primaryCarePhysician/physicianName"/>

</equal>

<postCondition>

<internalPostCondition>

wsdl

</internalPostCondition>

</postCondition>

</policy>

</applicablePolicy>

Notes:

The post condition applies only to its immediately preceding sibling rule. While it may seem more desirable to have an element that explicitly encloses the post-condition with the rule to which it applies, this solution would lead to the inclusion of unnecessary tags in XACML instances when no post-condition is present.

3.4.4. Policy 4

Here is the XACML policy instance for Policy 4.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="administrators may read and write records during office hours from an office location" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

<greaterOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">08:00</value>

</greaterOrEqual>

<lessOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">17:00</value>

</lessOrEqual>

<patternMatch>

<valueRef attributeName="saml:authenticationLocality/IPAddress</valueRef>

<value xsi:type="string">123.*</value>

</patternMatch>

</and>

</policy>

</applicablePolicy>

Notes:

Pattern match uses the regular expression syntax.

Attributes of type "rec:role" may be found in a SAML attribute assertion that links to the principal.

3.4.5. Policy 5

Here is the XACML policy instance for Policy 5.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="administrators shall not read or write a medical element" issueInstant="2002-01--8">

<target

resourceClassification="medico.com/record/medical.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read write

</target>

<policy>

<not>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

</not>

</policy>

</applicablePolicy>

Notes:

The target of Policy 5 is more specific than the target of Policy 4.

This is an example of a "deny" policy.

3.4.6. Policy 6

Here is the XACML policy instance for Policy 6.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" policyName="researchers may read medical elements and the patient's date of birth and gender" issueInstant="2002-01--8">

<!-- -->

<target

resourceClassification="medico.com/record/medical.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<target

resourceClassification="medico.com/record/patient/patientDoB.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<target

resourceClassification="medico.com/record/patient/patient/gender.*"

resourceClassificationTransform="http://www.oasis-open.org/committees/

accessControl/docs/transforms/regularExpression">

read

</target>

<policy>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">researcher</value>

</equal>

</policy>

</applicablePolicy>

Notes:

4. Models (non-normative)

The context and schema of XACML are described in three models that describe different aspects of its operation. These models are: the data-flow model, the policy language model and the administrative model. They are described in the following sub-sections.

4.1. Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.

[image: image2.wmf]PEP

PDP

2.saml authorization

query

Web service

PRP/PMP

3. classification

action

PIP

5. saml attribute

query

9. saml authorization

response + external post-condition

8 internal post-condition

4. applicable

policy

7. saml attribute

assertion

classification

environment

role

6a. attribute

6c. attribute

6b. attribute

PAP

1. applicable policy

Figure 1 - Data-flow diagram
Some of the data-flows shown in the diagram may be facilitated by a repository. For instance, the communications between the PDP and the PIP may be facilitated by a repository, or the communications between the PDP and the PRP may be facilitated by a repository or the communication between the PAP and the PRP may be facilitated by a repository. The XACML specification is not intended to place restrictions on the location of any such repository, or indeed to prescribe a particular communication protocol for any of the data-flows.

The model operates by the following steps.

1. PAPs write policy statements and make them available to the PRP. From the point of view of an individual PAP, the policy statements may be the complete policy for a particular resource. However, the PRP may be aware of other PAPs that it consider authoritative for the resource. In which case, it is the PRP's job to obtain all the policies and (if necessary) use a PMP to remove any conflict amongst the various policies. The result should be a self-consistent policy statement.

2. The PEP sends a decision request to the PDP, in the form of a SAML [SAML] requests of the authorization decision query type. The decision request contains some or all of the attributes required by the PDP to render a decision, in accordance with policy.

3. The PDP locates and retrieves the policy instance applicable to the decision request from the PRP. It uses the resource classification and the requested action to identify the correct policy. The means by which the PDP determines the classification of the resource is out of scope for this specification. However, in the case where the resource is an XML document, its classification may be an attribute of the top-level element of the resource. Alternatively, the classification element of the policy could be a regular expression that matches the resource name (however, this approach only helps the PDP to verify the policy, it does not help it to locate and retrieve it).

4. The PRP returns the complete policy to the PDP in the form of an XACML instance.

5. The PDP examines the decision request and the policy to ascertain whether it has all the attribute values required to render an authorization decision. If it does not, then it requests attributes from suitable PIPs in the form of SAML requests of the attribute query type [SAML].

6. The PIP (which may be a SAML attribute authority) may locate and retrieve the requested attributes from other systems by a means, and in a form, that is out of scope for this specification.

7. The PIP returns the requested attributes to the PDP in the form of SAML responses containing SAML attribute assertions.

8. The PDP evaluates the policy instance. In the case where the policy instance contains internal post-conditions, the PDP executes those post-conditions.

9. If the policy were to evaluate to TRUE, and the internal post-conditions were to execute successfully, then the PDP returns an authorization decision, in the form of a SAML response, to the PEP containing the "permit" decision attribute and any external post-conditions.

4.2. Policy composition

More than one policy may apply to a given resource. For instance, taking the example policies described in Section 3, the "date of birth" element is governed by policies 1,2,3,4 and 6. Therefore, in plain language, the read policy applicable to "date of birth" is that at lease one of the following conditions must hold:

· The requestor is the patient;

· The requestor is the parent or guardian and the patient is under 16;

· The requestor is the primary care physician and a notification is sent to the patient;

· The requestor is a researcher; or

· The requestor is an administrator working from the office inside office hours.

4.2.1. Composition by inclusion

The complete XACML policy for "date of birth" may be formed by including the individual policies in a single combined policy, as shown here.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" issueInstant="2002-01--8">

<target resourceClassification="medico.com/record/patient/patientDoB>

read

</target>

<policy>

<or>

<and>

<equal>

<valueRef entity="principal" attributeName="rec:patient/policyNumber"/>

<valueRef entity="resource" attributeName="rec:patient/policyNumber"/>

</equal>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:patient/patientName"/>

</equal>

</and>

<and>

<greaterOrEqual>

<valueRef attributeName="rec:patient/patientDoB"/>

<value xsi:type="date">1986-01-08</value>

</greaterOrEqual>

<equal>

<valueRef attributename="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:parentGuardian/parentGuardianName"/>

</equal>

</and>

<equal>

<valueRef attributeName="saml:NameIdentifier/Name"/>

<valueRef attributeName="rec:primaryCarePhysician/physicianName"/>

</equal>

<postCondition>

<internalPostCondition>

wsdl

</internalPostCondition>

</postCondition>

<and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">administrator</value>

</equal>

<greaterOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">08:00</value>

</greaterOrEqual>

<lessOrEqual>

<valueRef attributeName="rec:timeOfDay"/>

<value xsi:type="time">17:00</value>

</lessOrEqual>

<patternMatch>

<valueRef attributeName="saml:authenticationLocality/IPAddress"/>

<value xsi:type="string">123.*</value>

</patternMatch>

</and>

<equal>

<valueRef attributeName="rec:role"/>

<value xsi:type="string">researcher</value>

</equal>

</or>

</policy>

</applicablePolicy>

Notes:

The resource classification element contains the resource identity. Therefore, the resource classification transform is not required.

If the composed policy is signed, then it must be signed by the PRP, not the original PAPs.

4.2.2. Composition by reference

Alternatively, the complete policy may be formed by creating a new policy statement that references all the individual policies.

<?xml version="1.0" encoding="UTF-8"?>

<applicablePolicy xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record" xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22" xsi:schemaLocation="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd" majorVersion="0" minorVersion="8" issuer="medico.com" issueInstant="2002-01--8">

<target resourceClassification="medico.com/record/patient/patientDoB>

read

</target>

<policy>

<or>

<policyRef policyID="Policy1" authority="medico.com"/>

<policyRef policyID="Policy2" authority="medico.com"/>

<policyRef policyID="Policy3" authority="medico.com"/>

<policyRef policyID="Policy4" authority="medico.com"/>

<policyRef policyID="Policy6" authority="medico.com"/>

</or>

</policy>

</applicablePolicy>

4.3. Policy language model

The policy language model is shown in Figure 2.

[image: image3.wmf]policy statement

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

role attribute

attribute

«subclass»

«subclass»

«subclass»

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

1

*

Figure 2 - Policy language model
For purposes of explanation, the language model divides into six parts. These are each described in the following sub-sections.

4.3.1. Principal/role/attribute

The principal/role/attribute section of the language model is shown in grey in Figure 3.

[image: image4.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 3 - Principal/role/attribute section of the language model
A SAML authorization decision request relates to a single principal. XACML policy instances may reference attributes of a particular principal, or a role of the principal. The PDP should use attribute assertions to confirm whether the principal occupies a role specified in policy. Both the principal and the role may have attributes. For instance, the principal "Joe" may have an attribute of type "role" set equal to the value "purchasing officer". Alternatively, the role "purchasing officer" may have an attribute of type "signing limit" set equal to the value "US$100,000". Principal and role attributes are asserted by authorities and distributed in the form of SAML attribute assertions. The PDP is responsible for checking that the attribute values it operates upon are asserted by suitable authorities.

4.3.2. Resource/classification/attribute

The resource/classification/attribute section of the language model is shown in grey in Figure 4.

[image: image5.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 4 - Resource/classification/attribute section of the language model
A SAML authorization decision request relates to a single resource. XACML policies may reference attributes of a particular resource or a classification of the resource. The PDP is responsible for confirming that the resource occupies the required classification and for locating and retrieving the resource attributes referenced by the XACML policy instance. The PDP is responsible for checking that the attribute values it operates upon are asserted by suitable authorities. In the case where the resource is an XML document, the resource classification may be an attribute or element within the resource itself. In other cases, resource and classification attributes may be asserted by authorities and distributed in the form of SAML attribute assertions.

Both the resource and classification may have attributes. For instance, a purchase order may have an attribute of type "total price" set equal to the value "US$87,750.00". Alternatively, the classification "capital equipment" may have an attribute of type "category of goods" set equal to the value "computer equipment".

4.3.3. Environment/attribute

The environment/attribute section of the language model is shown in grey in Figure 5.

[image: image6.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 5 - Environment/attribute section of the language model
XACML policy instances may reference attributes that are not directly associated either with the principal or the resource. These attributes are called environment attributes. For instance, the "current time of day" is an environment attribute that may be referenced by a policy instance. Environment attributes are asserted by authorities and distributed in the form of SAML attribute assertions. The PDP must check that the attribute values it operates upon are asserted by suitable authorities.

4.3.4. Action/resource/classification

The action/classification section of the language model is shown in grey in Figure 6.

[image: image7.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 6 - Target/action/resource/classification section of the language model
Policy instances may be identified with a classification/action pair. The PDP is responsible for checking that the policy instance it uses to compute the authorization decision is applicable to the authorization request. It may do this by verifying that the action identified in the authorization request is the same as the action identified in the policy instance, and that the resource identified in the authorization request belongs to the classification identified in the policy instance. The algorithm for mapping a resource name to a classification name is identified by a URI. Regular expression may be used for resources in the URI namespace.

4.3.5. Policy/rule/pre-condition/predicate

The policy/rule/pre-condition/predicate section of the language model is shown in grey in Figure 7.

[image: image8.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 7 - Policy/rule/pre-condition/predicate section of the language model
XACML policy instances are built from a logical combination of rules. Each rule comprises one pre-condition and zero or more post-conditions. A pre-condition is a logical operator or predicate. A predicate is a statement about attributes that can be verified by the PDP. If the policy instance applicable to an authorization decision request evaluates to TRUE, and all internal post-conditions are satisfied, then the PDP may return an authorization decision attribute with the value "permit" to the PEP.

4.3.6. Post-condition

The post-condition section of the language model is shown in grey in Figure 8.

[image: image9.wmf]applicable policy

rule

pre-condition

post-condition

predicate

classification attribute

environment attribute

principal attribute

attribute

«subclass»

«subclass»

«subclass»

target

resource

1

1

1

*

1

*

1

*

1

1

1

*

1

*

1

*

1

*

1

1

1

*

principal

classification

1

*

policy

1

*

action

1

*

role

1

*

Figure 8 - Post-condition section of the language model

Post-conditions are actions specified in an XACML policy instance. Post-conditions are of two types. Internal post-conditions must be successfully executed in conjunction with returning an authorization decision attribute with the value "permit". External post-conditions must be returned by the PDP to the PEP and an authorization decision attribute with the value "permit" may be issued without confirmation that the condition has been successfully executed.

4.3.7. Attribute identification

Attribute specifiers are formed of two components: a list of authorities and an attribute name. The first component identifies the authority for the attribute and the second component identifies the attribute type. In the case where a suitable attribute assertion is provided by the PEP in the decision request, the PDP identifies the appropriate assertion by comparing the authorities list with the issuer field of the assertion. In the case where no suitable assertion is provided by the PEP, then the authorities list can be used to locate a suitable attribute authority to which to send a SAML attribute request.

Sometimes principals and resources possess attributes of the same type that must both be referenced by policy. For instance, in the example given in Section 3, the "policy number" attribute of the requestor has to be compared with the "policy number" attribute in the record. If both attributes have the same identifier, confusion results. Therefore, the policy must make it clear which "policy number" attribute is intended. Two options exist for discriminating between the same attribute of different entities:

· Elements of the policy that identify attributes, themselves, have attributes or element tags that indicate which entity is the intended holder of the attribute;

· The attributes have different identifiers that discriminate the attribute holders.

In the current version of XACML we provide an optional attribute of the attributeRef element to differentiate, in the case where the same attribute of different model entities have the same identifier. This approach also allows distinct attribute identifiers to be used if the policy writer so prefers.

4.4. Administrative model

It is essential that XACML policy instances only contain references to attributes and post-conditions that are accessible by the PDP or PEP and actions that are appropriate to the resource. The administrative model, shown in Figure 9, illustrates how this is achieved. The various SAML attribute authorities involved must provide an interface by which the policy administration point can discover the attribute types available from it.

[image: image10.wmf]Attribute

authority

(role)

Attribute

authority

(classification)

Attribute

authority

(environment)

Attribute

authority

(resource)

Post-

conditions

PAP

PRP

applicable policy

available post conditions

post condition

environment attribute types

environment attribute values

classification attribute types

classification attribute values

resource attribute types

resource attribute values

role attribute types

role attribute values

Attribute

authority

(principal)

principal attribute types

principal attribute values

PDP/PEP

applicable policy

Figure 9 - Administrative model
5. Policy syntax (normative, with the exception of the schema fragments)

5.1. Element <policyStatement>

"Policy statement" is the top-level element. It extends the SAML StatementAbstractType schema. It contains "resource" and "subject" elements, which indicate the resources and subjects to which the policy statement applies, and a "policy" element, which contains the actual policy.

<xs:element name="policyStatement" type="xacml:PolicyStatementType"/>

<xs:complexType name="PolicyStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element name="comment" type="xs:string" minOccurs="0"/>

<xs:element name="resource" type="xacml:ResourceAbstractType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="subject" type="xacml:SubjectAbstractType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="policy" type="xacml:PolicyType"/>

</xs:sequence>

<xs:attribute name="policyId" type="xs:anyURI" use="required"/>

<xs:attribute name="policyName" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.2. Complex type ResourceAbstractType

"ResourceAbstractType" is an XACML extensibility point. Elements of type "ResourceAbstractType" contain a description of the target resources to which the policy statement applies, in the form of "resource classification" and "saml:Actions" elements. PDPs MAY use the "resource" element to locate, retrieve and verify the policy required for processing a particular samlp:authorizationQuery. Verification means confirming that the value of the "saml:Actions" elements in the "resource" element includes all the values of the "saml:Actions" element in the samlp:authorizationQuery. Resources may be aggregated under a common resource classification, and policy may be targeted at a classification. The "resource classification transform" defines the mapping rules between a resource identifier and a resource classification identifier. XACML will define, at least, a transform algorithm for regular expressions.

<xs:complexType name="ResourceAbstractType" abstract="true">

<xs:sequence>

<xs:element ref="saml:Actions" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="resourceClassification" type="xs:anyURI"/>

<xs:attribute name="resourceToClassificationTransform" type="xs:anyURI" use="optional"/>

<!-- One transform algorithm could be "regular expression" -->

</xs:complexType>

5.3. Complex type SubjectAbstractType

"SubjectAbstractType" is an XACML extensibility point. Elements of type "SubjectAbstractType" contain a description of the target subjects to which the policy statement applies. PDPs SHOULD use the "subject" element to locate, retrieve and verify the policy required for processing a particular SAMLp:authorizationQuery.

<xs:complexType name="SubjectAbstractType" abstract="true"/>

5.4. Complex type PolicyType

The "PolicyType" element is a logical combinatino of rules.

<xs:complexType name="PolicyType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

5.5. Complex type RuleType

The "RuleType" derives from the RuleAbstractType by restricting the number of elements to just one of the choices. This enforces the combination of predicates using explicit logical operators, not merely by listing.

<xs:complexType name="RuleType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

5.6. Complex type RuleAbstractType

The "RuleAbstractType" contains either a logical operator or predicate. The logical operators derive from the "RuleType", with the effect that the logical operators can be nested indefinitely, terminating in a predicate. The associated class is of type "boolean". If it evaluates to TRUE, then the PDP MAY return the "permit" value in the SAML decision attribute. Otherwise, it MUST return the "deny" value.

If an "and" or "or" construct contains no attributes, then the associated class method SHALL evaluate to TRUE. If it contains a single attribute, then the associated class method SHALL evaluate to the value of the attribute.

<xs:complexType name="RuleAbstractType" abstract="true">

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

5.7. Element <predicate>

The "predicate" element contains one of the predicates defined here, including an external function.

This is an XACML extensibility point. New predicates may be added in the substitution group of "predicate".

<xs:element name="predicate" type="xacml:PredicateAbstractType" abstract="true"/>

<!--This is an XACML extensibility point. New predicates may be added in the

substitution group of "predicate"-->

<xs:complexType name="PredicateAbstractType"/>

<xs:element name="present" type="xacml:PresentType" substitutionGroup="xacml:predicate"/>

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="subset" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="superset" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="policyRef" type="xacml:policyRefType" substitutionGroup="xacml:predicate"/>

5.8. Element <equal>

The "equal" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is equal to the value referenced by the second element.

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

Issue: Should we require XML elements compared in this way to include an xsi:type attribute?

5.9. Element <greaterOrEqual>

The "greaterOrEqual" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is greater than or equal to the value referenced by the second element. The elements must be of the same type, which may be string, normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger, int, unsignedInt, long, unsignedLong, short, unsignedShort, decimal, float, double, time, dateTime, duration, date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name or Qname.

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.10. Element <lessOrEqual>

The "lessOrEqual" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is less than or equal to the value referenced by the second element. The elements must be of the same type, which may be string, normalizedString, byte, unsignedByte, base64Binary, hexBinary, integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger, int, unsignedInt, long, unsignedLong, short, unsignedShort, decimal, float, double, time, dateTime, duration, date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name or Qname.

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.11. Element <subset>

The "subset" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element is amongst the set of values referenced by the second element.

<xs:element name="subset" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.12. Element <superset>

The "superset" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the value referenced by the first element of the compareType is amongst the set of values referenced by the second element.

<xs:element name="supersetOf" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.13. Element <patternMatch>

The "patternMatch" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the string referenced by the first element of the "compareType" matches the pattern defined in the string referenced by the second element. The pattern must be defined as a regular expression.

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.14. Element <nonNullSetInterscetion>

The "nonNullSetIntersection" element contains an element of type "compareType". The associated class is of type "boolean". It MUST evaluate to TRUE only if the set of values referenced by the two elements of the "compareType" have at least one value in common.

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

5.15. Complex type PolicyRefType

The "policyRefType" type contains an identifier of an external policy statement. The target of the external policy SHOULD intersect with the target of the XACML policy statement in which it is referenced. PDPs MUST test for loops and return an error if a loop is detected.

<xs:complexType name="policyRefType">

<xs:sequence>

<xs:element name="policyID" type="xs:anyURI"/>

<xs:element name="authority" type="xs:anyURI"/>

</xs:sequence>

</xs:complexType>

5.16. Complex type PresentType

Elements of type "PresentType" contain an element of type "valueRef". The associated class is of type "boolean". It MUST evaluate to TRUE only if the element obtained by resolving the "valueRef" element exists.

<xs:complexType name="PresentType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:attributeRef"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.17. Complex type CompareType

Elements of the type "CompareType" contain a pair of elements. The first is a "attributeRef" element and the second is either a "attributeRef" or "value" element. The elements contained in a "attributeValue" element or obtained by resolving a "attributeRef" element MUST be of identical type.

<xs:complexType name="CompareType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:attributeRef"/>

<xs:choice>

<xs:element ref="xacml:attributeRef"/>

<xs:element ref="xacml:attributeValue"/>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

<!-- XML operands in "set" operations MUST be of type xs:list -->

<!-- XML operands in "inequality" operations MUST contain an xsi:type attribute for which

XACML defines a comparison algorithm -->

</xs:complexType>

5.18. Element <attributeRef>

The "AttributeRef" element contains the unique identifier of an attribute in the form of a string. The attribute value may be supplied in a SAML authorization request message or assertion. If the required attribute is not provided to the PDP by the PEP in the SAML authorization request message, then the PDP SHOULD send a SAML attribute request to the attribute authority identified by one of the authority elements. The request SHOULD identify the principal as the holder of the attribute.

In cases where the source of the attribute value is ambiguous, an attribute can be added to the element. If the "principal" attribute is present, then the PDP must use a value of the attribute type that is linked to the principal. Likewise, if the "resource" attribute is present, the PDP must use a value of the attribute type that is linked to the resource.

<xs:element name="attributeRef" type="AttributeRefAbstractType"/>

<xs:complexType name="AttributeRefAbstractType" abstract="true">

<xs:sequence>

<xs:element name="authority" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attributeName" type="xacml:AttributeNameType"/>

</xs:sequence>

<xs:attribute name="entity" type="EntityType" use="optional"/>

</xs:complexType>

<xs:simpleType name="EntityType">

<xs:restriction base="string">

<xs:enumeration value="principal"/>

<xs:enumeration value="resource"/>

<xs:enumeration value="environment"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="AttributeNameType">

<xs:complexContent>

<xs:restriction base="saml:AttributeValueType">

<xs:sequence>

<xs:any namespace="##any" processContents="lax"/>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

5.19. Element <attributeValue>

The "attributeValue" element contains a value written directly into the policy instance. Its type must be identical to that of any element with which it is paired in a predicate sub-element.

<xs:element name="attributeValue" type="xs:anyType"/>

This element SHOULD include an xsi:type attribute, indicating the xml type of the element contents.

6. Profiles (non-normative)

Information in this section is normative, but not mandatory to implement.

6.1. XACML

Describes subsets of XACML appropriate to general classes of problem

6.2. SAML

Describes the subset of SAML that is relevant to XACML

We need to specify SAML status codes for situations specific to XACML, such as:

· PDP has no policy for the requested target

· PDP cannot retrieve the required attributes

6.3. XML Digital Signature

Describes how XACML instances shall be integrity-protected in the case where XML DSig is used. PAPs MAY sign applicable policy. When a PRP combines applicable policies, it MAY sign the resulting applicable policy.

Issue: Should the identities and/or signatures of the PAPs be preserved in the composed policy?

6.4. LDAP

Describes an LDAP schema for the case where LDAP is used to distribute XACML

7. XACML extension points (non-normative)

Describes the points within the XACML model and schema where extensions can be added

8. Security and privacy (non-normative)

Vulnerabilities and safeguards

9. References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997
[SAML]

[XMLSig]
D. Eastlake et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

[XMLSig-XSD]
XML Signature Schema available from http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd.

10. Schema (normative)

This appendix contains the XACML schema definition.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.oasis-open.org/committees/xacml/docs/draft-xacml-schema-policy-09.xsd" xmlns:xacml="http://www.oasis-open.org/committees/xacml/docs/draft-xacml-schema-policy-09.xsd" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:saml="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-21" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:import namespace="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-21" schemaLocation="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-25.xsd"/>

<xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>

<xs:element name="policyStatement" type="xacml:PolicyStatementType"/>

<xs:complexType name="PolicyStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element name="comment" type="xs:string" minOccurs="0"/>

<xs:element name="resource" type="xacml:ResourceAbstractType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="subject" type="xacml:SubjectAbstractType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="policy" type="xacml:PolicyType"/>

</xs:sequence>

<xs:attribute name="policyId" type="xs:anyURI" use="required"/>

<xs:attribute name="policyName" type="xs:string" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ResourceAbstractType" abstract="true">

<xs:sequence>

<xs:element ref="saml:Actions" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="resourceClassification" type="xs:anyURI"/>

<xs:attribute name="resourceToClassificationTransform" type="xs:anyURI" use="optional"/>

<!-- One transform algorithm could be "regular expression" -->

</xs:complexType>

<xs:complexType name="SubjectAbstractType" abstract="true"/>

<xs:complexType name="PolicyType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="RuleAbstractType" abstract="true">

<xs:sequence maxOccurs="unbounded">

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="RuleType">

<xs:complexContent>

<xs:restriction base="xacml:RuleAbstractType">

<xs:sequence>

<xs:choice>

<xs:element name="and" type="xacml:RuleType"/>

<xs:element name="or" type="xacml:RuleType"/>

<xs:element name="not" type="xacml:RuleType"/>

<xs:element ref="xacml:predicate"/>

</xs:choice>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element name="predicate" type="xacml:PredicateAbstractType" abstract="true"/>

<!--This is an XACML extensibility point. New predicates may be added in the

substitution group of "predicate"-->

<xs:complexType name="PredicateAbstractType"/>

<xs:element name="present" type="xacml:PresentType" substitutionGroup="xacml:predicate"/>

<xs:element name="equal" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="greaterOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="lessOrEqual" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="subset" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="superset" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="patternMatch" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="nonNullSetIntersection" type="xacml:CompareType" substitutionGroup="xacml:predicate"/>

<xs:element name="policyRef" type="xacml:policyRefType" substitutionGroup="xacml:predicate"/>

<xs:complexType name="PresentType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:attributeRef"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CompareType">

<xs:complexContent>

<xs:extension base="xacml:PredicateAbstractType">

<xs:sequence>

<xs:element ref="xacml:attributeRef"/>

<xs:choice>

<xs:element ref="xacml:attributeRef"/>

<xs:element ref="xacml:attributeValue"/>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

<!-- XML operands in "set" operations MUST be of type xs:list -->

<!-- XML operands in "inequality" operations MUST contain an xsi:type attribute for which

XACML defines a comparison algorithm -->

</xs:complexType>

<xs:element name="attributeRef" type="AttributeRefAbstractType"/>

<xs:complexType name="AttributeRefAbstractType" abstract="true">

<xs:sequence>

<xs:element name="authority" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attributeName" type="rec:AttributeNameType"/>

</xs:sequence>

<xs:attribute name="entity" type="EntityType" use="optional"/>

</xs:complexType>

<xs:simpleType name="EntityType">

<xs:restriction base="string">

<xs:enumeration value="principal"/>

<xs:enumeration value="resource"/>

<xs:enumeration value="environment"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="AttributeNameType">

<xs:complexContent>

<xs:restriction base="saml:AttributeValueType">

<xs:sequence>

<xs:any namespace="##any" processContents="lax"/>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element name="attributeValue" type="xs:anyType"/>

<xs:complexType name="policyRefType">

<xs:sequence>

<xs:element name="policyID" type="xs:anyURI"/>

<xs:element name="authority" type="xs:anyURI"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

11. Conformance (normative)

Not the test cases themselves, but a description of how the test cases should be used. The test cases will be a set of files on the XACML Web site

Conformance claims MAY be made by either one of two components in the XACML model:

1. An implementation of a policy administration points that produces policy statements that conform with the XACML schema; and

2. An implementation of a policy decision point that produces decisions in response to decision requests on the basis of XACML policy statements that conform with the XACML schema.

In the current version of the specification, implementations of a policy retrieval point that produce policy statements that confomr with the XACML schema by combining XACML applicable policies are treated in the same way as policy administration points, from the point of view of conformance.

Policy administration points MAY claim conformance with the XACML specification provided merely that they produce schema-compliant policy statements.

Policy decision points MAY claim conformance with the XACML specification provided that they correctly execute the XACML conformance test suite provided:

http://www.oasis-open.org/ …

XACML Test Suite

The test suite comprises three directories:

· Decision requests

· Policies

· Authentication and attribute assertions

· Decision assertions

The decision requests directory contains a set of text/xml/samlp files that are valid SAML authorization decision request messages.

The polices directory contains precisely one XACML policy file whose target includes includes each of the decision requests.

The assertions directory contains an unordered set of text/xml/saml files containing the attributes required to evaluates the policies in the policies directory.

The decisions directory contains an unordered set of tect/xml/samlp files that are valid SAML authorization decision responses.

A conformant XACML PDP implementation shall create a decision assertion in response to each and every decision request. The decision responses are linked to the corresponding decision requests by the request ID attribute.

XACML implementations that target an application domain other than SAML may use a tool or process that is not an integral part of the implementation to convert between the SAML test vectors and its private data representation.

Disclaimer: Implementors SHALL NOT consider the test cases provided in the XACML conformance test suite as providing 100% test coverage. OASIS does not represent that a conformant implementation will operate correctly in all respects nor that it is fit for its purpose.
Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�PAGE \# "'Page: '#'�'" �Page: 1��� This will need to be edited before final release

draft-sstc-core-22
80
12 December 2001
draft-xacml-v0.8.1
17
02/02/03

