Minutes

XACML meeting

19-20th June 2002

Present:

Anne Anderson

Tim Moses

Daniel Engovatov

Bill Parducci

Simon Godik

Michiharu Kudoh

Agenda:

Wednesday June 19th 2002

9:00am - 9:05am Appoint chair (pro-tem) Bill and secretary Tim

9:05am - 10:00am Agenda

10:00am - 12:00am: Typing

12:00am - 12:30pm: Send minutes

12:30pm - 2:00pm: Lunch

2:00pm - 5:00pm: Context

5:00pm - 5:30pm Send minutes

Thursday June 20th 2002

8:30am - 9:30am Teleconference (formal TC meeting)

9:30am - 11:30am: Typing

11:30am - 12:00pm: Send minutes

12:00pm - 1:30pm: Lunch

1:30pm - 2:30pm Teleconference

2:30pm - 4:30pm: Context

4:30pm - 5:30pm Wrap-up

1. Agenda discussion

Typing

Daniel recommends having extensibility points for types in predicates and functions. Proposing a binding to a general-purpose language implementation (e.g. LISP). Suggest including an XML attribute for "predicate" that conveys the type of the arguments.

Simon suggests that LDAP will be a common solution for retrieving attributes. So, we need an LDAP profile for retrieving them. i.e. sitting LDAP between the PDP and the PIP, as well as sitting it between the PDP and the PRP. We decided to address LDAP at the next face-toface.

Context

Decided to wait for Michiharu to arrive, later in the morning.

2. Typing

Daniel wants a way to define a way of binding to programming languages.

Simon argues for keeping things simple. Anne describes how mapping to Java is taking place. They simply need a common policy that is understood by all users (e.g. OS, DBS, etc.) independent of programming language. Bill makes the point that we define some parts (but not all) of a programming language. Everyone will have to extend, so why even include the basic operations?

Anne suggesting that we define "predicate" in the core, but not the actual predicates. Daniel suggests cutting the spec into two parts: the first has the framework, the second has the general predicates and functions. Daniel says that date comparisons (for instance) are not the same for all customers. We could make operations on dates illegal for the spec-defined predicates and functions. Simon suggests that we can confine the predicates and functions to the types defined in XML schema.

It was suggested that we have a vote in the Thursday teleconference on splitting the spec into a "framework" and "constraint language".

3 External functions

Simon presented his proposal (of 3 May) on external functions. We may or may not want to use the same approach for internal functions. Types are defined by uri, which may be built-in XML schema types or private types.

Simon talks about the "conversion" function. Daniel says that Simon's proposal is fine, except, he would like to be able to place another function where currently only an argument is allowed. Also, he would like to be able to specify a default value for the case where the attribute value cannot be retrieved. Daniel says that if a function can substitute for an argument, then the "outer" function could be the conversion function.

In version 14, the extensibility of attribute functions is achieved by an empty abstract type (AttributeFunctionAbstractType). This does not recognize that functions share common characteristics (e.g. a return value and a list of arguments).

Consensus seems to be that Simon's basic proposal is fine. But, there were some uncertainties: do we need the conversion function (for instance)?

We seem to need the policy to specify types that go beyond those defined in XML schema. For instance, "xs:duration" may not be adequate, you may need "days in custody". Is the conversion function determined by the input and output type definitions?

Summary: We want to define a general function-structure. The operation performed by a particular function is associated with its "name" attribute. The name is a urn. The same function on different types have different names. We may provide another (optional) attribute for a locator of the function. And we will provide an attribute for its return value type. We will define "some" functions and their urns. Others may define other functions and urns. Functions contain arguments and other functions. The type of an argument will be explicitly included in the argument's schema. If the raw attribute is only available as a different type, then a type conversion must be performed. The type conversion operation for each possible input type is optionally identified in the function's schema.

