[image: image1.png]OASIS




OASIS eXtensible Access Control Markup Language (XACML)

Working Draft 16a, 10 September 2002

Document identifier: draft-xacml-specification-16.doc

Location: http://www.oasis-open.org/committees/xacml/docs/

Send comments to: xacml-comment@lists.oasis-open.org

Editors:

Simon Godik, Overxeer (simon.godik@overxeer.com)

Tim Moses, Entrust (tim.moses@entrust.com)

Contributors:

Anne Anderson, Sun Microsystems

Bill Parducci, Overxeer

Carlisle Adams, Entrust

Daniel Engovatov, Crosslogix

Don Flinn, Hitachi

Ernesto Damiani, University of Milan

James MacLean, Affinitex

Hal Lockhart, Entegrity

Ken Yagen, Crosslogix

Konstantin Besnozov, Hitachi

Michiharu Kudo, IBM, Japan

Pierangela Samarati, University of Milan

Polar Humenn, Syracuse University

Sekhar Vajjhala, Sun Microsystems

Gerald Brose, Xtradyne

Abstract:

This specification defines an XML schema for an extensible access-control policy language.

Status:

This version of the specification is a working draft of the committee.  As such, it is expected to change prior to adoption as an OASIS standard.
If you are on the xacml@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright (C) OASIS Open 2002. All Rights Reserved.

Table of contents

111.
Glossary (non-normative)

1.1.
Preferred terms
11
1.2.
Related terms
12
2.
Introduction (non-normative)
12
2.1.
Notation
12
2.2.
Background
13
2.3.
Requirements
13
2.4.
Rule and policy combining
14
2.5.
Combining algorithms
15
2.6.
Policies based on subject and resource attributes
15
2.7.
Policies based on resource contents
15
2.8.
Operators
16
2.9.
Policy distribution
16
2.10.
Policy indexing
17
2.11.
Abstraction layer
17
2.12.
Actions performed in conjunction with enforcement
18
2.13.
Schema organization and namespaces
18
3.
Examples (non-normative)
19
3.1.
Example one
19
3.2.
Example two
21
3.2.1
Example medical record instance
21
3.2.2
Example request context
23
3.2.3
Example plain-language rules
24
3.2.4
Example XACML rule instances
24
4.
Models (non-normative)
30
4.1.
Data-flow model
30
4.2.
XACML context
32
4.3.
Policy language model
32
4.3.1
Rule
34
4.3.2
Policy
36
4.3.3
Policy set
39
5.
Functional requirements (normative)
40
5.1.
Policy Decision Point
40
5.2.
Hierarchical resources
41
6.
Policy syntax (normative, with the exception of the schema fragments)
42
6.1.
Element <PolicySet>
42
6.2.
Element <Description>
43
6.3.
Element <PolicySetDefaults>
44
6.4.
Element <Target>
44
6.5.
Element <Subjects>
45
6.6.
Element <Subject>
45
6.7.
Element <SubjectMatch>
46
6.8.
Element <Resources>
46
6.9.
Element <Resource>
47
6.10.
Element <ResourceMatch>
47
6.11.
Element <Actions>
48
6.12.
Element <Action>
48
6.13.
Element <ActionMatch>
48
6.14.
Element <PolicySetIdReference>
49
6.15.
Element <PolicyIdReference>
49
6.16.
Element <Policy>
49
6.17.
Element <Rule>
51
6.18.
Simple type EffectType
51
6.19.
Element <Condition>
52
6.20.
Element <Apply>
52
6.21.
Complex type AttributeDesignatorType
53
6.22.
Element <SubjectAttributeDesignator>
53
6.23.
Element <ResourceAttributeDesignator>
54
6.24.
Element <ActionAttributeDesignator>
54
6.25.
Element <EnvironmentAttributeDesignator>
54
6.26.
Element <SubjectAttributeDesignatorWhere>
55
6.27.
Element <AttributeSelector>
55
6.28.
Element <AttributeValue>
56
6.29.
Element <Obligations>
56
6.30.
Element <Obligation>
57
6.31.
Element <AttributeAssignment>
57
7.
Context syntax (normative with the exception of the schema fragments)
58
7.1.
Element <Request>
58
7.2.
Element <Subject>
59
7.3.
Element <Resource>
59
7.4.
Element <ResourceContent>
60
7.5.
Element <Action>
60
7.6.
Element <Environment>
60
7.7.
Element <Attribute>
61
7.8.
Element <AttributeValue>
61
7.9.
Element <Response>
61
7.10.
Element <Result>
62
7.11.
Element <Decision>
63
7.12.
Element <Status>
63
7.13.
Element <StatusCode>
63
7.14.
Element <StatusMessage>
64
7.15.
Element <StatusDetail>
64
8.
XACML extensibility points (non-normative)
66
8.1.
URIs
66
9.
Security and privacy considerations (non-normative)
66
9.1.
Threat model
66
9.1.1
Unauthorized disclosure
67
9.1.2
Impersonation
67
9.1.3
Message replay
67
9.1.4
Message insertion
67
9.1.5
Message deletion
67
9.1.6
Message modification
67
9.1.7
Resource matching
68
9.1.8
Negative rules
68
9.2.
Safeguards
69
9.2.1
Authentication
69
9.2.2
Confidentiality
69
9.2.3
Policy integrity
70
9.2.4
Message freshness
70
9.2.5
Policy identifiers
70
9.2.6
Trust model
71
9.2.7
Privacy
71
10.
Conformance (normative)
74
10.1.
Introduction
74
10.2.
XACML test suite
75
10.3.
Conformance tables
75
10.3.1
Schema elements
75
10.3.2
Algorithms
76
10.3.3
Identifiers
77
10.3.4
Function identifier
78
11.
References
80
Appendix A. Function names and legal type combinations
81
A.1.
Functions
81
Appendix B. XACML identifiers (normative)
86
B.1.
XACML namespaces
86
B.2.
Authentication locality
86
B.3.
Access subject categories
86
B.4.
XACML functions
87
B.5.
Data types
87
B.5.1.
X.500 distinguished name
87
B.5.2.
RFC822 Name
87
B.5.3.
Unix file-system path
87
B.5.4.
Numeric
87
B.6.
Environment attributes
88
B.7.
Subject attributes
88
B.8.
Resource attributes
88
B.9.
Status codes
89
B.10.
Combining algorithms
89
B.10.
Identifiers used only in XACML conformance tests
89
B.11.
Attributes used in examples
90
B.12.
Actions used in examples
90
Appendix C. Combining algorithms (normative)
91
C.1.
Deny-overrides
91
C.2.
Permit-overrides
93
C.3.
First-applicable
95
Appendix D. Acknowledgments
97
Appendix E. Revision history
98
Appendix F. Notices
99


















































































































































1. Glossary (non-normative)
1.1. Preferred terms

Access - Performing an action
Access control - Controlling access in accordance with a policy
Action - An operation on a resource

Applicable policy - The policy that governs access for a specific decision request
Attribute - Characteristic of a subject, resource, action or environment that may be referenced in a predicate or target
Authorization decision - The result of evaluating applicable policy.  A function that evaluates to "permit, deny or indeterminate", and (optionally) a set of obligations
Condition - An expression of predicates.  A function that evaluates to "True" or "False"
Context - The canonical representation of a decision request and an authorization decision
Decision request - The request by a PEP to a PDP to render an authorization decision
Effect - The intended consequence of a satisfied condition (either "Permit" or "Deny")
Environment - The set of attributes that are independent of a particular subject, resource or action
Obligation - An operation specified in a policy or policy set that should be performed in conjunction with the issuance of an authorization decision  

Policy - A set of rules, an identifier for the rule-combining algorithm and (optionally) a set of obligations

Policy administration point (PAP) - The system entity that creates a policy or policy set
Policy-combining algorithm - The procedure for combining the target, obligations and conditions from multiple policies

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an authorization decision
Policy enforcement point (PEP) - The system entity that performs access control, by enforcing authorization decisions
Policy information point (PIP) - The system entity that acts as a source of attribute values

Policy set - A set of policies, other policy sets, a policy-combining algorithm and (optionally) a set of obligations

Predicate - A statement about attributes whose truth can be evaluated
Resource - Data, service or system component

Rule - A target, an effect and a condition
Rule-combining algorithm - The procedure for combining the target, effect and conditions from multiple rules

Subject - An actor whose attributes may be referenced by a predicate
Target - The set of decision requests, identified by definitions for resource, subject and action, that a rule, policy or policy set is intended to evaluate

1.2. Related terms

In the field of access control and authorization there are several closely related terms in common use.  For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: group and role.

In place of the terms: privilege, permission, authorization, entitlement and right, we use the term rule.
The term object is also in common use, but we use the term resource in this specification.

Requestors and initiators are covered by the term subject.

2. Introduction (non-normative)

2.1. Notation

This specification contains schema conforming to W3C XML Schema and normative text to describe the syntax and semantics of XML-encoded policy statements.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 rfc2119:

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of XACML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

· The prefix saml: stands for the SAML assertion namespace.

· The prefix ds: stands for the W3C XML Signature namespace.

· The prefix xs: stands for the W3C XML Schema namespace.

This specification uses the following typographical conventions in text: <XACMLElement>, <ns:ForeignElement>, Attribute, Datatype, OtherCode.  Terms in italic bold-face are intended to have the meaning defined in the Glossary.

2.2. Background

The "economics of scale" have driven computing platform vendors to develop products with very generalized functionality, so that they can be used in the widest possible range of situations.  "Out of the box", these products have the maximum possible privilege for accessing data and executing software, so that they can be used in as many application environments as possible, including those with the most permissive security policies.  In the more common case of a relatively restrictive security policy, the platform's inherent privileges must be constrained, by configuration.

The security policy of a large enterprise has many elements and many points of enforcement.  Elements of policy may be managed by the Information Systems department, by Human Resources, by the Legal department and by the Finance department.  And the policy may be enforced by the extranet, mail, WAN and remote-access systems; platforms which inherently implement a permissive security policy.  The current practice is to manage the configuration of each point of enforcement independently in order to implement the security policy as accurately as possible.  Consequently, it is an expensive and unreliable proposition to modify the security policy.  And, it is virtually impossible to obtain a consolidated view of the safeguards in effect throughout the enterprise to enforce the policy.  At the same time, there is increasing pressure on corporate and government executives from consumers, shareholders and regulators to demonstrate "best practice" in the protection of the information assets of the enterprise and its customers.

For these reasons, there is a pressing need for a common language for expressing security policy.  If implemented throughout an enterprise, a common policy language allows the enterprise to manage the enforcement of all the elements of its security policy in all the components of its information systems.  Managing security policy may include some or all of the following steps: writing, reviewing, testing, approving, issuing, combining, analyzing, modifying, withdrawing, retrieving and enforcing policy.

XML is a natural choice as the basis for the common security-policy language, due to the ease with which its syntax and semantics can be extended to accommodate the unique requirements of this application, and the widespread support that it enjoys from all the main platform and tool vendors.

2.3. Requirements

The basic requirements of a policy language for expressing information system security policy are:

· To provide a method for combining individual rules and policies into a single policy set that applies to a given action.

· To provide a method for flexible definition of the procedure by which rules and policies are combined.

· To provide a method for basing an authorization decision on attributes of the subject and resource.

· To provide a method for basing an authorization decision on the contents of an information resource.

· To provide a set of logical and mathematical operators on attributes of the subject, resource and environment.

· To provide a method for distribution of policies by means of an enterprise repository, or their attachment to the resources to which they apply.

· To provide a method for rapidly identifying the policy that applies to a given action, based either on the identity or attributes of either the subject or the resource.

· To provide an abstraction-layer that insulates the policy-writer from the details of the application environment.

· To provide a method for specifying a set of actions that must be performed in conjunction with policy enforcement.

The motivation behind XACML is to express these well-established ideas in the field of access-control policy using an extension language of XML.  The XACML solutions for each of these requirements are discussed in the following sections.

2.4. Rule and policy combining

The complete policy applicable to a particular decision request may be composed of a number of individual rules or policies, specified by different policy writers.  For instance, in a personal privacy application, the owner of the personal information may define certain aspects of disclosure policy, whereas the enterprise that holds the information may define certain other aspects.  In order to render an authorization decision, it must be possible to combine the two separate policies to form the single policy applicable to the request.

XACML defines three top-level policy elements: <Rule>, <Policy> and <PolicySet>.  The <Rule> element contains a boolean expression that can be evaluated in isolation, but that is not intended to be passed between the major actors in the XACML architectural model.  So, it is not intended to form the basis of an authorization decision by itself.  It is intended to exist in isolation only within an XACML PAP, where it may form the basic unit of management, and be re-used in multiple policies.

The <Policy> element contains a set of <Rule> elements and a specified procedure for combining the results of their evaluation.  It is the basic unit of policy that may be exchanged between the major actors in the XACML architectural model, and so it is intended to form the basis of an authorization decision.

The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements and a specified procedure for combining the results of their evaluation.  It is the standard means for combining separate policies into a single combined policy.

Hinton et al [Hinton94] discuss the question of the compatibility of separate policies applicable to the same decision request.

2.5. Combining algorithms

XACML defines a number of combining algorithms that can be identified by a RuleCombiningAlgId or PolicyCombiningAlgId attribute of the <Policy> or <PolicySet> elements, respectively.  The rule-combining algorithm defines a procedure for arriving at an authorization decision given the individual results of evaluation of a set of rules.  Similarly, the policy-combining algorithm defines a procedure for arriving at an authorization decision given the individual results of evaluation of a set of policies.  Standard combining algorithms are defined for:

· Deny-overrides,

· Permit-overrides and

· First applicable.

In the first case, if a single <Rule> or <Policy> element is encountered that evaluates to "Deny", then, regardless of the evaluation result of the other <Rule> or <Policy> elements in the applicable policy, the combined result is "Deny".  Likewise, in the second case, if a single "Permit" result is encountered, then the combined result is "Permit".  In the case of the "First applicable" combining algorithm, the combined result is the same as the result of evaluating the first rule in the list of rules whose target is applicable to the decision request.

Users of the standard may, if necessary, define their own combining algorithms.  However, this approach is harmful to interoperability.  User defined combining algorithms should specify how the combined result is to be derived from separate evaluation of the individual <Rule> or <Policy> elements.

2.6. Policies based on subject and resource attributes

Another common requirement is to base an authorization decision on some characteristic of the subject other than its identity.  Perhaps, the most common application of this idea is the subject's role [RBAC].  XACML provides facilities to support this approach.  Attributes of subjects are identified by the <SubjectAttributeDesignator> element.  This element may contain a URN that identifies the attribute, or an XPath expression over the request context to identify a particular subject attribute value by its location in the context (see section 2.11 for an explanation of context).  XACML provides a standard way to reference the attributes defined in the LDAP series of specifications [LDAP].  This is intended to encourage implementers to use standard attribute identifiers for some common subject attributes.

2.7. Policies based on resource contents

In many applications, it is required to base an authorization decision on data contained in the information resource to which access is requested.  For instance, a common component of privacy policy is that a person should be allowed to read records for which he or she is the subject.  The corresponding policy must contain a reference to the subject identified in the information resource itself.

XACML provides facilities for doing this when the information resource can be represented as an XML document.  The <AttributeSelector> element may contain an XPath expression over the request context to identify data in the information resource to be used in the policy evaluation.

In cases where the information resource is not an XML document, specified attributes of the resource can be referenced.

2.8. Operators

Information security policies operate upon attributes of subjects and resources and the action to be performed on the resource in order to arrive at an authorization decision.  In the process of arriving at the authorization decision, attributes of many different types may have to be compared or computed.  For instance, in a financial application, a person's available credit may have to be calculated by adding their credit limit to their account balance.  The result may then have to be compared with the transaction value.  This sort of situation gives rise to the need for arithmetic operations on attributes of the subject (account balance and credit limit) and the resource (transaction value).

Even more commonly, a policy may identify the set of roles that are permitted to perform a particular action.  The corresponding operation involves checking whether there is a non-empty intersection between the set of roles occupied by the subject and the set of roles identified in the policy.  Hence the need for set operations.

XACML includes a number of built-in functions and a method of adding non-standard functions.  These functions may be applied recursively to build arbitrarily complex expressions.  This is achieved with the <Apply> element. The <Apply> element has an XML attribute called FunctionId that identifies the function to be applied to the contents of the element.  Each standard function is defined for specific argument type combinations, and its return value is also specified.  Therefore, type consistency of the policy can be checked at the time the policy is written.  And, the types of the data values presented in the request context can be checked against the values expected by the policy to ensure a predictable outcome.

In addition to operators on numerical and set arguments, operators are defined for date, time and duration arguments.  Date operations are notoriously difficult to standardize, due to local rules for handling weekends, statutory holidays, etc..  Therefore, the first level of XACML conformance does not require support for date operations.

Relationship operators (equality and inequality) are also defined for a number of data-types, including the RFC822 and X.500 name-forms, strings, URIs, etc..

Also noteworthy are the operators over boolean data types, which permit the logical combination of predicates in a rule.  For example, a rule may contain the statement that access may be permitted during business hours AND from a terminal on business premises.

The XACML method of representing functions borrows heavily from MathML [MathML].

2.9. Policy distribution

In a distributed system, individual policy statements may be written by several policy writers and enforced at several enforcement points.  In addition to facilitating the collection and combination of independent policy components, this approach allows policies to be updated as required.  XACML policy statements may be distributed in any one of a number of ways.  But, XACML does not describe any normative way to do this.  Regardless of the means of distribution, PDPs are expected to confirm, by examining the policy's <Target> element that the policy is applicable to the decision request that it is processing.

<Policy> elements may be attached to the information resources to which they apply, as described by Perritt [Perritt93].  Alternatively, <Policy> elements may be maintained in a central location from which they are retrieved for evaluation.  In such cases, the applicable policy may be referenced by an identifier or locator closely associated with the information resource.

2.10. Policy indexing

For efficiency of evaluation and ease of management, the overall security policy in force across an enterprise may be expressed as multiple independent policy components.  In this case, it is necessary to identify and retrieve the applicable policy statement and verify that it is the correct one for the requested action before evaluating it.  This is the purpose of the <Target> element in XACML.  

Two approaches are supported:

1. Policy statements may be stored in a database, whose data-model is congruent with that of the <Target> element.  The PDP should use the contents of the decision request that it is processing to form the database read command by which the applicable policy statement is retrieved.  Nevertheless, the PDP should still evaluate the <Target> element of the policy statement returned as a result of the read command as defined by the XACML specification.

2. Alternatively, the PDP may evaluate the <Target> element from each of the policies that it has available to it, in the context of a particular decision request, in order to identify the single policy that is applicable to that request.  

In either case, it is the policy writer's responsibility to ensure that only one policy statement applies to a particular decision request.

The use of constraints limiting the applicability of a policy were described by Sloman [Sloman94]. 

2.11. Abstraction layer

PEPs come in many forms.  For instance, a PEP may be part of a remote-access gateway, part of a Web server or part of an email user-agent, etc..  It is unrealistic to expect that all PEPs in an enterprise do currently, or will in the future, issue decision requests to a PDP in a common format.  Nevertheless, a particular policy may have to be enforced by multiple PEPs.  It would be inefficient to force a policy writer to write the same policy several different ways in order to accommodate the format requirements of each PEP.  Therefore, there is a need for a canonical form of the request and response handled by an XACML PDP.  This canonical form is called the XACML "Context".  Its syntax is defined in XML schema.

Naturally, XACML-conformant PEPs may issue requests and receive responses in the form of an XACML context.  But, where this situation does not exist, an intermediate step is required to convert between the request/response format understood by the PEP and the XACML context format understood by the PDP.

The benefit of this approach is that policies may be written and analyzed independent of the specific environment in which they are to be enforced.

In the case where the native request/response format is specified in XML Schema (e.g. a SAML-conformant PEP), the transformation between the native format and the XACML context may be specified in the form of an Extensible Stylesheet Language Transformation [XSLT].

Similarly, in the case where the resource to which access is requested is an XML document, the resource itself may be included in, or referenced by, the request context.  Then, through the use of XPath expressions [XPath] in the policy, values in the resource may be included in the policy evaluation.

2.12. Actions performed in conjunction with enforcement

In many applications, policies specify actions that MUST be performed, either instead of, or in addition to, actions that MAY be performed.  This idea was described by Sloman [Sloman94].  XACML provides facilities to specify actions that MUST be performed in conjunction with policy evaluation in the <Obligations> element.  There are no standard definitions for these actions in version 1.0 of XACML.  Therefore, bilateral agreement between a PAP and the PEP that will enforce its policies is required for correct interpretation.  PEPs that conform with v1.0 of XACML are required to deny access unless they understand all the <Obligations> elements associated with the applicable policy.  <Obligations> elements are returned to the PEP for enforcement.

2.13. 







· 
· 
· 

2.14. Schema organization and namespaces

The XACML policy syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:1.0:policy

The XACML context syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:1.0:context

XACML functions have the following namespace prefix.

urn:oasis:names:tc:xacml:1.0:function
Note: The XACML namespace names are temporary and may change when XACML 1.0 is finalized.

The XML Signature XMLSigXSD is imported into the XACML schema and is associated with the following XML namespace:

http://www.w3.org/2000/09/xmldsig#

3. Examples (non-normative)

This section contains two examples of the use of XACML for illustrative purposes. The first example is a relatively simple one to illustrate the function of target, context, matching functions and subject attributes.  The second example additionally illustrates the use of the rule-combining algorithm and obligations.

3.1. Example one 

Assume that a corporation named Medi Corp (medico.com) has an access control policy that states, in English:
Any user with an e-mail name in the "medico.com" namespace is allowed to perform any action on any resource.

In XACML, this policy is expressed as follows:

<?xml version=1.0" encoding="UTF-8"?>

<Policy

   xmlns="urn:oasis:names:tc:xacml:1.0:context"

   xmlns:function="urn:oasis:names:tc:xacml:1.0:function"

   xmlns:identifier="urn:oasis:names:tc:xacml:1.0"

   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

   xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy

      http://www.oasis-open.org/tc/xacml/1.0/cs-xacml-schema-policy-01.xsd"

   PolicyId="identifier:example:SimplePolicy1"

   RuleCombiningAlgId="identifier:rule-combining-algorithm:deny-overrides">

  <Description>

    Medi Corp access control policy

  </Description>

  <Target>

    <Subjects>

      <AnySubject/>

    </Subjects>

    <Resources>

      <AnyResource/>

    </Resources>

    <Actions>

      <AnyAction/>

    </Actions>

  </Target>

  <Rule

     RuleId="identifier:example:SimpleRule1"

     Effect="Permit">

    <Description>

      Any subject with an e-mail name in the medico.com domain

      can perform any action on any resource.

    </Description>

    <Target>

      <Subjects>

        <Subject>

          <SubjectMatch MatchId="function:rfc822name-match">

            <SubjectAttributeDesignator

               AttributeId="identifier:subject:subject-id"

               DataType="identifier:datatype:rfc822name"/>

            <AttributeValue

               DataType="identifier:datatype:rfc822name">

              *@medico.com

            </AttributeValue>

          </SubjectMatch>

        </Subject>

      </Subjects>

      <Resources>

        <AnyResource/>

      </Resources>

      <Actions>

        <AnyAction/>

      </Actions>

    </Target>

  </Rule>

</xacml:Policy>

If Bart Simpson, with e-mail name "bs@simpsons.com", attempts to read his medical record at Medi Corp, the corresponding request context looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Request

   xmlns="urn:oasis:names:tc:xacml:1.0:context"

   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

   xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context

    http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd">

  <Subject>

    <Attribute

       AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

       DataType="identifier:rfc822name">

      <AttributeValue>

        bs@simpsons.com

      </AttributeValue>

    </Attribute>

  </Subject>

  <Resource>

    <Attribute

       AttributeId="identifier:resource:resource-uri"

       DataType="xs:anyURI">

      <AttributeValue>

        http://medico.com/record/patient/BartSimpson

      </AttributeValue>

    </Attribute>

  </Resource>

  <Action>

    <Attribute

       AttributeId="identifier:example:action"

       DataType="xs:string">

      <AttributeValue>

        read

      </AttributeValue>

    </Attribute>

  </Action>

</Request>

The PDP processing this request context locates the policy in its policy repository.  It compares the subject, resource and action in the request context with the subjects, resources and actions in the policy target.  Since the policy target matches the <AnySubject/>, <AnyResource/> and <AnyAction/> elements, the policy mathces this context.

The PDP now compares the subject, resource and action in the request context with the target of the one rule in this policy.  The requested resource matches the <AnyResource/> element and the requested action matches the <AnyAction/> element, but the requesting subject-id attribute does not match "*@medico.com".

As a result, there is no rule in this policy that returns a "Permit" result for this request.  The rule-combining algorithm for the policy specifies that, in this case, a result of "Deny" should be returned.  The response context looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Response

    xmlns="urn:oasis:names:tc:xacml:1.0:context"

    xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context

        http://www.oasis-open.org/tc/xacml/1.0/sc-xacml-schema-context-01.xsd">

  <Result>

    <Decision>

      Deny

    </Decision>

  </Result>

</Response>
3.2. Example two

This section contains an example XML document, an example request context and example XACML rules.  The XML document is a medical record.  Four separate rules are defined.  These illustrate rule-combining and obligations.

3.2.1 Example medical record instance

Following is an instance of a medical record to which the example XACML rules can be applied.  The <record> schema is defined in the registered namespace administered by "//medico.com".

<?xml version="1.0" encoding="UTF-8"?>

<record xmlns="medico.com/records.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="medico.com/records.xsd http://www.medico.com/schema/record.xsd">


<patient>



<patientName>




<first>Bartholomew</first>




<last>Simpson</last>



</patientName>



<patientContact>




<street>27 Shelbyville Road</street>




<city>Springfield</city>




<state>MA</state>




<zip>12345</zip>




<phone>555.123.4567</phone>




<fax/>




<email/>



</patientContact>



<patientDoB xsi:type="date">1992-03-21</patientDoB>



<patientGender xsi:type="string">male</patientGender>



<policyNumber xsi:type="string">555555</policyNumber>


</patient>


<parentGuardian>



<parentGuardianName>




<first>Homer</first>




<last>Simpson</last>



</parentGuardianName>



<parentGuardianContact>




<street>27 Shelbyville Road</street>




<city>Springfield</city>




<state>MA</state>




<zip>12345</zip>




<phone>555.123.4567</phone>




<fax/>




<email>homers@aol.com</email>



</parentGuardianContact>


</parentGuardian>


<primaryCarePhysician>



<physicianName>




<first>Julius</first>




<last>Hibbert</last>



</physicianName>



<physicianContact>




<street>1 First St</street>




<city>Springfield</city>




<state>MA</state>




<zip>12345</zip>




<phone>555.123.9012</phone>




<fax>555.123.9013</fax>




<email/>



</physicianContact>



<registrationID>ABC123</registrationID>


</primaryCarePhysician>


<insurer>



<name>Blue Cross</name>



<street>1234 Main St</street>



<city>Springfield</city>



<state>MA</state>



<zip>12345</zip>



<phone>555.123.5678</phone>



<fax>555.123.5679</fax>



<email/>


</insurer>


<medical>



<treatment>




<drug>





<name>methylphenidate hydrochloride</name>





<dailyDosage>30mgs</dailyDosage>





<startDate>1999-01-12</startDate>




</drug>




<comment>patient exhibits side-effects of skin coloration and carpal degeneration</comment>



</treatment>



<result>




<test>blood pressure</test>




<value>120/80</value>




<date>2001-06-09</date>




<performedBy>Nurse Betty</performedBy>



</result>


</medical>

</record>

3.2.2 Example request context

The following example illustrates a request context to which the example rules are intended to be applicable.  It represents a request by the physician Julius Hibbert to read the patient date of birth in the record of Bartholomew Simpson.  
<?xml version="1.0" encoding="UTF-8"?>

<Request xmlns="urn:oasis:names:tc:xacml:0.16f:context" xmlns:identifier="urn:oasis:names:tc:xacml:identifier" xmlns:xacml="urn:oasis:names:tc:xacml:0.16f:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.16f:context draft-xacml-schema-context-16f.xsd">


<Subject>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-category" Issuer="www.medco.com" 




IssueInstant="2001-12-17T09:30:47-05:00">




<AttributeValue>urn:oasis:names:tc:xacml:1.0:subjectcategory:access-subject</AttributeValue>



</Attribute>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" Issuer="www.medco.com" 




IssueInstant="2001-12-17T09:30:47-05:00">




<AttributeValue>Julius Hibbert</AttributeValue>



</Attribute>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:name-format" Issuer="www.medco.com" 




IssueInstant="2001-12-17T09:30:47-05:00">




<AttributeValue>urn:oasis:names:tc:xacml:1.0:datatype:x500name</AttributeValue>



</Attribute>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:role" Issuer="www.medco.com" 




IssueInstant="2001-12-17T09:30:47-05:00">




<AttributeValue>physician</AttributeValue>



</Attribute>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:physician-id" Issuer="www.medco.com" 




IssueInstant="2001-12-17T09:30:47-05:00">




<AttributeValue>jh1234</AttributeValue>



</Attribute>


</Subject>


<Resource>



<ResourceContent>




<md:record xmlns:md="http:www.medco.com/shemas/record.xsd">





<md:patient>






<md:patientDoB>1992-03-21</md:patientDoB>





</md:patient>





<!-- other fields -->




</md:record>



</ResourceContent>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-uri">




<AttributeValue>





//medco.com/records/bart-simpson.xml#


xmlns(md=http:www.medico.com/schemas/record.xsd)xpointer(/md:record/md:patient/md:patientDoB)




</AttributeValue>



</Attribute>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:xpath">




<AttributeValue>


xmlns(md=http:www.medico.com/schemas/record.xsd)xpointer(/md:record/md:patient/md:patientDoB)




</AttributeValue>



</Attribute>


</Resource>


<Action>



<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action">




<AttributeValue>read</AttributeValue>



</Attribute>


</Action>

</Request>

3.2.3 Example plain-language rules

The following plain-language rules are to be enforced:

1. A person may read any record for which he or she is the designated patient.

2. A person may read any record for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age.

3. A physician may write any medical element for which he or she is the designated primary care physician, provided an email is sent to the patient. 

4. An administrator shall not be permitted to read or write medical elements of a patient record.

These rules may be written by different PAPs, operating independently, or by a single PAP.

3.2.4 Example XACML rule instances

3.2.4.1 Rule 1

Rule 1 illustrates a simple rule with a single <Condition> element.  The following XACML <Rule> instance expresses Rule 1.

<?xml version="1.0" encoding="UTF-8"?>

<Rule xmlns="urn:oasis:names:tc:xacml:0.16f:policy" xmlns:function="urn:oasis:names:tc:xacml:0.16f:function" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.16f:policy draft-xacml-schema-policy-16f.xsd" xmlns:ctx="urn:oasis:names:tc:xacml:0.16f:context" xmlns:md="http:www.medco.com/schemas/record.xsd" RuleId="urn:oasis:names:tc:xacml:examples:ruleid:1" Effect="Permit">


<Description>



A person may read any record defined by the http://www.medco.com/scheams/record.xsd namespace



for which he or she is a designated patient


</Description>


<Target>



<Subjects>




<AnySubject/>



</Subjects>



<Resources>




<Resource>





<ResourceMatch MatchId="function:string-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:target-namespace"







DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">http://www.medco.com/schemas/record.xsd</AttributeValue>





</ResourceMatch>





<ResourceMatch MatchId="function:node-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:xpath"







 DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">/md:record</AttributeValue>





</ResourceMatch>




</Resource>



</Resources>



<Actions>




<Action>





<ActionMatch MatchId="function:string-equal">






<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:action" DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">read</AttributeValue>





</ActionMatch>




</Action>



</Actions>


</Target>


<Condition FunctionId="function:string-equal">



<SubjectAttributeDesignatorWhere 




AttributeId="urn:oasis:names:tc:xacml:examples:attribute:policy-number" DataType="xsi:string"/>



<AttributeSelector RequestContextPath=




"/ctx:Request/ctx:Resource/ctx:ResourceContent/md:record/md:patient/md:policyNumber"




DataType="xsi:string"/>


</Condition>

</Rule>

3.2.4.2 Rule 2

Rule 2 illustrates the use of a mathematical function, i.e. the <Apply> element with functionId value of "function:date-subtract" to calculate age.  It also illustrates the use of predicate expressions, with the functionId value of "function:and".

<?xml version="1.0" encoding="UTF-8"?>

<Rule xmlns="urn:oasis:names:tc:xacml:0.16f:policy" xmlns:function="urn:oasis:names:tc:xacml:0.16f:function" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.16f:policy

draft-xacml-schema-policy-16f.xsd" xmlns:ctx="urn:oasis:names:tc:xacml:0.16f:context" xmlns:md="http:www.medco.com/schemas/record.xsd" RuleId="urn:oasis:names:tc:xacml:examples:ruleid:2" Effect="Permit">


<Description>



A person may read any medical record defined by the http://www.medco.com/records.xsd namespace



for which he or she is the designated patient or guardian, and for which the patient is under 16 years of age


</Description>


<Target>



<Subjects>




<AnySubject/>



</Subjects>



<Resources>




<Resource>





<ResourceMatch MatchId="function:string-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:target-namespace"







DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">http://www.medco.com/schemas/record.xsd</AttributeValue>





</ResourceMatch>





<ResourceMatch MatchId="function:node-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:xpath"







 DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">/md:record</AttributeValue>





</ResourceMatch>




</Resource>



</Resources>



<Actions>




<Action>





<ActionMatch MatchId="function:string-equal">






<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:action" DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">read</AttributeValue>





</ActionMatch>




</Action>



</Actions>


</Target>


<Condition FunctionId="function:and">



<Apply FunctionId="function:string-equal">




<SubjectAttributeDesignatorWhere AttributeId="urn:oasis:names:tc:xacml:examples:attribute:parent-guardian-id"





DataType="xs:string"/>




<AttributeSelector RequestContextPath=





"/ctx:Request//ctx:ResourceContent/md:record/md:parentGuardian/md:parentGuardianId"





DataType="xs:string"/>



</Apply>



<Apply FunctionId="function:dayTimeDuration-greater-than">




<Apply FunctionId="function:date-substract">





<EnvironmentAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:env:date"






DataType="xs:date"/>





<AttributeSelector RequestContextPath=






"/ctx:Request//ctx:ResourceContent/md:patient/md:patientDoB"






DataType="xs:date"/>




</Apply>




<AttributeValue DataType="xs:dateTimeDuration">16-0-0</AttributeValue>



</Apply>


</Condition>

</Rule>

3.2.4.3 Rule 3

Rule 3 illustrates the use of an obligation.  The XACML <Rule> element syntax does not include an element suitable for carrying an obligation, therefore Rule 3 has to be formatted as a <Policy> element.

<?xml version="1.0" encoding="UTF-8"?>

<Policy xmlns="urn:oasis:names:tc:xacml:0.16f:policy" xmlns:function="urn:oasis:names:tc:xacml:0.16f:function" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.16f:policy draft-xacml-schema-policy-16f.xsd" xmlns:ctx="urn:oasis:names:tc:xacml:0.16f:context" xmlns:md="http:www.medco.com/schemas/record.xsd" PolicyId="urn:oasis:names:tc:xacml:examples:policyid:3" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">


<Description>



Policy for any medical record defined by the http://www.medco.com/schemas/record.xsd namespace


</Description>


<Target>



<Subjects>




<AnySubject/>



</Subjects>



<Resources>




<Resource>





<ResourceMatch MatchId="function:string-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:target-namespace"







DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">http://www.medco.com/schemas/record.xsd</AttributeValue>





</ResourceMatch>




</Resource>



</Resources>



<Actions>




<AnyAction/>



</Actions>


</Target>


<Rule RuleId="urn:oasis:names:tc:xacml:examples:ruleid:3" Effect="Permit">



<Description>




A physician may write any medical element is a record for which he or she is the designated primary




care physician, provided an email is sent to the patient



</Description>



<Target>




<Subjects>





<Subject>






<SubjectMatch MatchId="function:string-match">







<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:examples:attribute:group"








DataType="xsi:string"/>







<AttributeValue DataType="xs:string">physician</AttributeValue>






</SubjectMatch>





</Subject>




</Subjects>




<Resources>





<Resource>






<ResourceMatch MatchId="function:node-match">







<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:xpath"







 
DataType="xsi:string"/>







<AttributeValue DataType="xsi:string">/md:record/md:medical</AttributeValue>






</ResourceMatch>





</Resource>




</Resources>




<Actions>





<Action>






<ActionMatch MatchId="function:string-equal">







<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:action" DataType="xsi:string"/>







<AttributeValue DataType="xsi:string">write</AttributeValue>






</ActionMatch>





</Action>




</Actions>



</Target>



<Condition FunctionId="function:string-equal">




<SubjectAttributeDesignatorWhere 





AttributeId="urn:oasis:names:tc:xacml:examples:attribute:physician-id" DataType="xsi:string"/>




<AttributeSelector RequestContextPath=





"/ctx:Request/ctx:Resource/ctx:ResourceContent/md:record/md:primaryCarePhysician/md:physicianId"





DataType="xsi:string"/>



</Condition>


</Rule>


<Obligations>



<Obligation ObligationId="urn:oasis:names:tc:xacml:examples:obligation:email" FulfilOn="Permit">




<AttributeAssignment AttributeId="urn:oasis:names:tc:xacml:examples:attribute:mailto" DataType="xs:string">





<AttributeSelector RequestContextPath=






"/ctx:Request//ctx:ResourceContent/md:/record/md:patient/md:patientContact/md:email"






DataType="xs:string"/>




</AttributeAssignment>




<AttributeAssignment AttributeId="urn:oasis:names:tc:xacml:examples:attribute:text" DataType="xs:string">





<AttributeValue DataType="xs:string">Your medical record has been accessed by:</AttributeValue>




</AttributeAssignment>




<AttributeAssignment AttributeId="urn:oasis:names:tc:xacml:examples:attribute:text" DataType="xs:string">





<SubjectAttributeDesignator AttributeId="urn:osasis:names:tc:xacml:subject:subject-id" DataType="xs:string"/>




</AttributeAssignment>



</Obligation>


</Obligations>

</Policy>

3.2.4.4 Rule 4

Rule 4 illustrates the use of the "Deny" effect value, and a <Rule> with no <Condition> element.

<?xml version="1.0" encoding="UTF-8"?>

<Rule xmlns="urn:oasis:names:tc:xacml:0.16f:policy" xmlns:function="urn:oasis:names:tc:xacml:0.16f:function" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.16f:policy

draft-xacml-schema-policy-16f.xsd" xmlns:ctx="urn:oasis:names:tc:xacml:0.16f:context" xmlns:md="http:www.medco.com/schemas/record.xsd" RuleId="urn:oasis:names:tc:xacml:example:ruleid:4" Effect="Deny">


<Description>



An Administrator shall not be permitted to read or write medical elements of a patient record defined by



the http://www.medico.com/records.xsd namespace.


</Description>


<Target>



<Subjects>




<Subject>





<SubjectMatch MatchId="function:string-equal">






<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:role"







DataType="xs:string"/>






<AttributeValue DataType="xs:string">administrator</AttributeValue>





</SubjectMatch>




</Subject>



</Subjects>



<Resources>




<Resource>





<ResourceMatch MatchId="function:string-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:target-namespace"







DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">http://www.medco.com/schemas/record.xsd</AttributeValue>





</ResourceMatch>





<ResourceMatch MatchId="function:node-match">






<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:resource:xpath"







 DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">/md:record/md:medical</AttributeValue>





</ResourceMatch>




</Resource>



</Resources>



<Actions>




<Action>





<ActionMatch MatchId="function:string-equal">






<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:action" DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">read</AttributeValue>





</ActionMatch>




</Action>




<Action>





<ActionMatch MatchId="function:string-equal">






<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:action" DataType="xsi:string"/>






<AttributeValue DataType="xsi:string">write</AttributeValue>





</ActionMatch>




</Action>



</Actions>


</Target>

</Rule>

4. Models (non-normative)

The domain model and language model of XACML are described in the following sub-sections.

4.1. Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.

[image: image2.wmf]PEP

context

handler

8. request

context

PIP

4. attribute

query

9. response

context

1. policy

6. attribute

environment

resource

subjects

5b. envrionment

attributes

PAP

obligations

service

11. obligations

PDP

access

requester

2. access request

7. resource

3. request

10. response

5c. resource

attributes

5a. subject

attributes


Figure 1 - Data-flow diagram
Note: some of the data-flows shown in the diagram may be facilitated by a repository.  For instance, the communications between the context handler and the PIP or the communications between the PDP and the PAP may be facilitated by a repository.  The XACML specification is not intended to place restrictions on the location of any such repository, or indeed to prescribe a particular communication protocol for any of the data-flows.

The model operates by the following steps.

1. PAPs write policies and make them available to the PDP.  Its policies represent the complete policy for a particular target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native request format.  The context handler constructs a request context in accordance with steps 4,5,6 and 7.

4. Subject, resource and environment attributes are requested from a PIP.

5. The PIP obtains the requested attributes.

6. The PIP returns the requested attributes to the context handler.

7. Optionally, the context handler includes the resource in the context.

8. The context handler sends the request context to the PDP.  The PDP identifies the policy applicable to the request context.  The PDP evaluates the policy.

9. The PDP returns the response context to the context handler.

10. The context handler translates the response context to the native response format of the PEP.  The context handler returns the response to the PEP.

11. The PEP fulfills the obligations.

12. If access is permitted, then PEP permits access to the resource.

4.2. XACML context

XACML is designed to be applicable to a variety of application environments.  The core language is insulated from the application environment by the XACML context, as shown in Figure 2, in which the scope of the XACML specification is indicated by the shaded area.  The XACML context is defined in XML schema, describing a canonical representation for the inputs and outputs of the PDP.  Attributes referenced by an instance of XACML may be in the form of XPath expressions on the context.  Implementations must convert between the attribute representations in the application environment (e.g., SAML, J2SE, CORBA, and so on) and the attribute representations in the XACML context.  How this is achieved is outside the scope of the XACML specification.  In some cases, such as SAML, this conversion may be accomplished in an automated way through the use of an XSLT transformation.

[image: image3.wmf]domain-specific

inputs

domain-specific

outputs

xacmlContext/

request.xml

xacmlContext/

response.xml

PDP

xacml.xml


Figure 2 - XACML context

4.3. Policy language model

The policy language model is shown in Figure 3.  The main components of the model are:

· Rule;

· Policy; and

· Policy set.

These are described in the following sub-sections.

[image: image4.wmf]1

1..*

1

1..*

1

1..*

Condition

Target

Rule

1

0..1

Policy

1

1

Obligations

1

1

1

0..*

1

0..1

Action

Resource

Subject

PolicySet

1

0..*

1

1

Policy

Combining

Alogorithm

1

0..*

Rule

Combining

Algorithm

1

0..*

1

0..1

1

0..1

Effect

1

1


Figure 3  - Policy language model
4.3.1 Rule

The main components of a rule are:

· a target;

· an effect; and

· a condition.

These are discussed in the following sub-sections.

4.3.1.1 Rule target

The target defines the set of:

· resources;

· subjects; and

· actions
to which the rule is intended to apply.  If the rule is intended to apply to all entities of a particular type, then an empty element named <AnySubject/>, <AnyResource/> or <AnyAction/> is used.  An XACML PDP verifies that the resources, subjects and actions identified in the request context are all present in the target of the rules that it uses to evaluate the decision request.  Target definitions are discrete, in order that they may be indexed by the PDP.
The <Target> element may be absent from a <Rule>.  In this case, the <Rule> inherits its target from the parent <Policy> element.
4.3.1.2 Effect

The effect of the rule indicates the rule-writer's intended consequence of a "True" evaluation for the rule.  Two values are allowed: "Permit" and "Deny".

4.3.1.3 Condition

Condition is a general expression of predicates of attributes.  It should not duplicate the exact predicates implied by the target.  Therefore, it may be absent.

4.3.1.4 Rule evaluation

A rule has a value that can be calculated by evaluating its contents.  Rule evaluation involves separate evaluation of the rule's target and condition.  The rule truth table is shown in Table 1.

Target
Condition
 Rule

Match
True
Effect

Match
False
Not applicable

Match
Indeterminate
Indeterminate

No-match
True
Not applicable

No-match
False
Not applicable

No-match
Indeterminate
Not applicable

Table 1 - Rule truth table
The target value is "Match" if the resource, subject and action specified in the request context are all present in the target defined in the rule.  Otherwise, its value is "No-match".

The condition value is "True" if the <Condition> element is absent, or if it evaluates to "True" for the attribute values supplied in the request context.  Its value is "False" if the <Condition> element evaluates to "False" for the attribute values supplied in the request context.  If any attribute value referenced in the condition cannot be obtained, then the condition evaluates to "Indeterminate".

4.3.2 Policy 

From the data-flow model one can see that rules are not exchanged amongst system entities.  Therefore, a PAP combines rules in a policy.  A policy comprises four main components:

· a target;

· a rule-combining algorithm-identifier; 

· a set of rules; and

· obligations.

Rules are described above.  The remaining components are described in the following sub-sections.

4.3.2.1 Policy target

The target of a policy must include all the decision requests that the policy is intended to evaluate.  The target may be declared by the writer of the policy, or computed from the targets of its component rules.

If the target of the policy is computed from the targets of the component rules, two approaches are permitted:

· the target of the policy may be the union of the target definitions for resource, subject and action that are contained in the component rules; or

· the target of the policy may be the intersection of the target definitions for resource, subject and action that are contained in the component rules.

In the case where the policy target is computed as the union of the targets of the individual rules, the target may be omitted from the individual rules, and the targets from the component rules must be included in the form of conditions in their respective rules.  As an example, the following rule target and condition may be merged in a single condition.

Target

<Target>


<Subjects MatchId="function:rfc822Name-equal" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:rfc822Name']" DataType="identifier:rfc822Name"/>



<Attribute DataType="identifier:rfc822Name">@</Attribute>


</Subjects>


<Resources MatchId="function:string-match" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>



<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>


</Resources>


<Actions MatchId="function:subset" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>



<Attribute DataType="xs:string">read</Attribute>


</Actions>

</Target>

Condition
<Condition FunctionId="function:string-equal" DataType="xs:boolean">


<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:patientName']" DataType="xs:string"/>


<AttributeDesignator Designator="//xacmlContext/Request/Resource/patientName" DataType="xs:string"/>

</Condition>

merged Condition.

<Condition FunctionId="function:and" DataType="xs:boolean">


<Function FunctionId="function:string-match" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>



<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>


</Function>


<Function FunctionId="function:subset" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>



<Attribute DataType="xs:string">read</Attribute>


</Function>


<Function FunctionId="function:string-equal" DataType="xs:boolean">



<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:patientName']" DataType="xs:string"/>



<AttributeDesignator Designator="//xacmlContext/Request/Resource/patientName" DataType="xs:string"/>


</Function>

</Condition>

In the case where the policy target is computed as the intersection of the targets of the individual rules, the targets may be omitted from the individual rules.

In the case that a rule target is present, the rule is evaluated according to the truth table of Table 1.

4.3.2.2 Rule-combining algorithm

The rule-combining algorithm specifies the procedure by which the results of evaluating the component rules are combined, when evaluating the policy.

The result of evaluating the policy is defined by the rule-combining algorithm.  In the case that the PDP uses a policy to determine its response to a decision request, the Decision value is the value of the policy, as defined by the rule-combining algorithm.

See Appendix C for an example of a rule-combining algorithm.

4.3.2.3 Obligations

The XACML <Rule> syntax does not contain an element suitable for carrying obligations, therefore, if required in a policy, obligations must be added by the writer of the policy.

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to the PEP in its response context.  The obligations that it returns to the PEP are those whose xacml:FulfilOn attributes have the same value as the result of evaluating the policy.

4.3.2.4 Example policy 
This section uses the example of Section 3 to illustrate the process of combining rules.  The policy governing read access to medical elements of a record is formed from each of the four rules described in Section 3.2.4.  In plain language, the combined rule is: 

· Either the requestor is the patient; or

· the requestor is the parent or guardian and the patient is under 16; or

· the requestor is the primary care physician and a notification is sent to the patient; and

· the requestor is not an administrator.  

The following XACML <Policy> illustrates the combined rules.  Rules 1 and 4 are included by reference, rule 2 is included as a digest and rule 3 is explicitly included.

<?xml version="1.0" encoding="UTF-8"?>

<saml:Assertion MajorVersion="0" MinorVersion="28" AssertionID="A7F34K90" Issuer="medico.com" IssueInstant="2002-03-22T08:23:47-05:00">


<PolicyStatement PolicyId="//medico.com/rules/policy5" RuleCombiningAlgId="urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:denyOverrides" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

D:\MYDOCU~1\Standards\XACML\v15\draft-xacml-schema-policy-15i.xsd">



<Target>




<Subjects MatchId="function:superset" DataType="xs:boolean">





<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:role']" DataType="xs:string"/>





<Attribute DataType="xs:string"></Attribute>




</Subjects>




<Resources MatchId="function:anyURI-equal" DataType="xs:boolean">





<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>





<Attribute DataType="xs:anyURI">//medico.com/record/medical.*</Attribute>




</Resources>




<Actions MatchId="function:subset" DataType="xs:boolean">





<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>





<Attribute DataType="xs:string">read</Attribute>




</Actions>



</Target>



<RuleSet>




<RuleDesignator>





<RuleId>//medico.com/rules/rule1</RuleId>




</RuleDesignator>




<RuleDesignator>





<RuleDigest Base64Digest="H7jiE0+jwkn63k/JhB3+D9aI4V3J9z/o0"/>




</RuleDesignator>




<Rule RuleId="//medico.com/rules/rule3" Effect="Permit">





<Description>A physician may write any medical element for which he or she is the designated primary care physician</Description>





<Condition FunctionId="function:and" DataType="xs:boolean">






<Function FunctionId="function:string-equal" DataType="xs:boolean">







<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>







<AttributeDesignator Designator="//xacmlContext/Request/Resource/physicianName" DataType="xs:string"/>






</Function>






<Function FunctionId="function:present" DataType="xs:boolean">







<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>






</Function>





</Condition>




</Rule>




<RuleDesignator>





<RuleId>//medico.com/rules/rule4</RuleId>




</RuleDesignator>



</RuleSet>



<Obligations>




<Obligation ObligationId="//medico.com/emailer" FulfilOn="Permit">





<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>





<AttributeAssignment DataType="xs:string" AttributeId="//medico.com/text">Your medical record has been accessed by:</AttributeAssignment>





<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>




</Obligation>



</Obligations>


</PolicyStatement>

</saml:Assertion>

4.3.3  Policy set 

A policy set comprises four main components:

· a target;

· a policy-combining algorithm-identifier 

· a set of policies; and
· obligations.
· .

The target and policy statement components are described above.  The other components are described in the following sub-sections.

4.3.3.1 Obligations

The writer of a policy set may add obligations to the policy set, in addition to those contained in the component policies and policy sets.

4.3.3.2 Policy-combining algorithm

The policy-combining algorithm is the procedure by which the results of evaluating the component policies are combined to form the value of the policy set.  In the case that the PDP uses a policy set to determine its response to a decision request, the Decision value is the result of evaluating the policy set.

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations to the PEP in its response context.  The XACML <Obligation> elements that are returned to the PEP are those whose xacml:FulfilOn attributes have the same value as the result of evaluating the policy set.

As a consequence of this procedure, no obligations are returned to the PEP if the policies from which they are drawn are not evaluated, or their evaluated result is "Indeterminate" or "Not applicable".

See Appendix C for an example of a policy-combining algorithm.

5. Functional requirements (normative)

This section specifies certain functional requirements that are not directly associated with the production or consumption of a particular XACML element-.

5.1. Policy Decision Point

Given a valid XACML policy or policy set, a compliant XACML PDP MUST evaluate the policy as specified in Sections 5 and 6.  The PDP MUST return a response context, with one <Decision> element values "Permit", "Deny", "Indeterminate" or "NotApplicable".

If the "Permit" value is returned, then the PEP MAY permit access to the resource.  If the "Deny" value is returned, then the PEP SHALL deny access to the resource.

If the "Permit" value is returned with one or more obligations, then the PEP MAY permit access provided that all the obligations are successfully fulfilled.  If the "Deny" value is returned with one or more obligations, then the PEP SHALL deny access, but it MUST still fulfill the obligations.  In the case that an obligation cannot be fulfilled, the PEP SHOULD raise an error.  How the error is raised is outside the scope of XACML.  In any case, the PDP MAY return additional information in the <statusCode> element of the response context.  In the case of a "Permit" decision, the PDP MAY specify which rules were used in arriving at the decision.

If an "Indeterminate" decision value is returned, it means that the PDP could not make a decision. The PDP MAY return a decision value of "Indeterminate" with a status code of:

"urn:oasis:names:tc:xacml:1.0:missing-attribute",

signifying that more information is needed. In this case, the <Status> element MAY list the names of any attributes of the subject and the resource that are needed by the PDP to refine its decision.  A PEP MAY resubmit a refined request context in response to a decision of "Indeterminate" with a status code of

"urn:oasis:names:tc:xacml:1.0:missing-attribute",

by adding attribute values for the attribute names that were listed in the response.  When the PDP returns a decision of "Indeterminate", with a status code of

"urn:oasis:names:tc:xacml:1.0:missing-attribute",

it MUST NOT list the names of any attribute of the subject or the resource of the request for which values were supplied in the request.  Note, this requirement forces the PDP to eventually return a decision of "Permit", "Deny" or "Indeterminate" with some other reason, in response to successively-refined requests.

If a decision value of "NotApplicable" is returned, it means that the PDP's policy is not applicable to the request, implying that the PEP should send its request to another PDP.

XACML says nothing about how top-level XACML policies should be configured.  For example, a top-level policy might be a <Policy> element containing a <Target> element that matches every request, or it might be a <Policy> element containing a <Target> element that matches only a specific subject.

5.2. Hierarchical resources

It is often the case that a resource is organized as a hierarchy (e.g. file system, XML document). Some applications may require access to an entire subtree of the resource specified by a node.  XACML allows the PEP (or Context Handler) to specify whether the access is just for a single resource or for a subtree below the specified resource.  The latter is equivalent to repeating a single request for each node in the entire subtree.  When a request context contains a resource attribute of type

"urn:oasis:names:tc:xacml:1.0:resource:scope"

with a value of "Immediate", or if it does not contain that attribute, then access is requested to just the single resource specified by the ResourceId attribute.

When the

"urn:oasis:names:tc:xacml:1.0:resource:scope"

attribute has the value "Children", access is requested for both the specified resource and its children resources.  When the

"urn:oasis:names:tc:xacml:1.0:resource:scope"

attribute has the value "Descendant", access is requested for both the specified resource and all its descendant resources.  In the case of "Children" and "Descendant", the authorization decision MAY include multiple results for the multiple resources.  An XACML response can contain multiple <Result> elements.  In this case, the <Status> element SHOULD be included only in the first <Result> element (the remaining <Result> elements SHOULD NOT include the <Status> element).  Note that the method by which the PDP discovers whether the resource is hierarchically organized or not is outside the scope of XACML.

6. Policy syntax (normative, with the exception of the schema fragments)
6.1. Element <PolicySet>

The <PolicySet> element is a top-level element in the XACML policy schema.  <PolicySet> is an aggregation of other policy sets and policies.  Policy sets MAY be included in an enclosing <PolicySet> element either directly by the <PolicySet> element or indirectly by the <PolicySetIdReference> element.  Policies MAY be included in an enclosing <PolicySet> either directly by the <Policy> element or indirectly by the <PolicyIdReference> element.

If  a<PolicySet> element contains references to other policy sets or policies in the form of URIs, then these references MAY be resolvable.  Applications MAY use SAML protocol extensions to query for the <PolicySetAssertion> or <PolicyAssertion> by reference.

Policies included in the <PolicySet> element MUST be combined by the algorithm specified by the PolicyCombiningAlgId attribute.

The <Target> element defines the applicability of the <PolicySet> to decision requests.  If there is a match between the <Target> element within <PolicySet> and the authorization request, then the <PolicySet> element MAY be used by the PDP in making the authorization decision.

The <Obligations> element is a set of obligations that MUST be fulfilled by the PEP in conjunction with the authorization decision.  If the PEP does not understand any obligation, then it MUST act as if the PDP returned a “Deny” authorization decision value.


<xs:element name="PolicySet" type="xacml:PolicySetType"/>


<xs:complexType name="PolicySetType">



<xs:sequence>




<xs:element ref="xacml:Description" minOccurs="0"/>




<xs:element ref="xacml:PolicySetDefaults" minOccurs="0"/>




<xs:element ref="xacml:Target"/>




<xs:choice minOccurs="0" maxOccurs="unbounded">





<xs:element ref="xacml:PolicySet"/>





<xs:element ref="xacml:Policy"/>





<xs:element ref="xacml:PolicySetIdReference"/>





<xs:element ref="xacml:PolicyIdReferece"/>




</xs:choice>




<xs:element ref="xacml:Obligations" minOccurs="0"/>



</xs:sequence>



<xs:attribute name="PolicySetId" type="xs:anyURI" use="required"/>



<xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>


</xs:complexType>

The <PolicySet> element is of PolicySetType complex type.

The <PolicySet> element contains the following attributes and elements:

PolicySetId [Required]

Policy set identifier.  The party assigning the identifier MUST minimize the potential of some other party reusing the same identifier.  This MAY be achieved by following a predefined URN or URI scheme.  If the policy set identifier is in the form of a URI it MAY be resolvable.

PolicyCombiningAlgId [Required]

The identifier of the policy-combining algorithm by which the  <PolicySet> components MUST be combined.  Standard policy-combining algorithms are listed in Appendix C.  Standard policy-combining algorithm identifiers are listed in Section B.10.

<Description> [Optional]


A free-form description of the <PolicySet>.

<PolicySetDefaults> [Optional]

A set of default values applicable to the <PolicySet>.  This set of policy defaults does not propagate down into <PolicySet> components.

<Target> [Required]

The <Target> element defines the applicability of a <PolicySet> to decision requests.

The <Target> element MAY be declared by the creator of the <PolicySet> or it MAY be computed from the <Target> elements of the referenced <Policy> elements, either as an intersection or as a union.

If the <xacml-context:Subject>, <xacml-context:Resource>, and <xacml-context:Action> elements of the <xacml-context:Request> element match the <Subjects>, <Resources>, and <Actions> elements of the <Target> within the <PolicySet> element, then it  MAY be used by the PDP in making an authorization decision.

<PolicySet> [Any Number]


A policy set component that is included in this policy set.

<Policy> [Any Number]


The policy component that is included in this policy set.

<PolicySetIdReference> [Any Number]

A reference to the <PolicySet> component that MUST be included in this policy set.  If <PolicySetIdReference> is an URI, then it MAY be resolvable.  Applications MAY use SAML protocol extensions to query <PolicySet> by reference.

<PolicyIdReference> [Any Number]

A reference to the <Policy> component that MUST be included in this policy set.  If the <PolicyIdReference> is an URI, then it MAY be resolvable.  Applications MAY use SAML protocol extensions to query <Policy> by reference.

<Obligations> [Optional]

Contains the set of <Obligation> elements that MUST be discharged by the PEP.  If the PEP does not understand any obligation in this set, then it MUST act as if the decision request was denied by the PDP.

6.2. Element <Description>

The <Description> element is used for a free-form description of the <PolicySet> element and <Policy> element.  The <Description> element is of xs:string simple type.


<xs:element name="Description" type="xs:string"/>

6.3. Element <PolicySetDefaults>

The <PolicySetDefaults> element is used to specify default values for the <PolicySet> element. 


<xs:element name="PolicySetDefaults" type="xacml:DefaultsType"/>


<xs:complexType name="DefaultsType">



<xs:sequence minOccurs="0" maxOccurs="unbounded">




<xs:element ref="xacml:AbstractDefaults"/>



</xs:sequence>


</xs:complexType>

<PolicySetDefaults> element is of DefaultsType complex type.

<AbstractDefaults> [Any Number]

This is the head of a substitution group to specify default parameters.  The only element in this substitution group defined at this time is the <XpathVersion> element.

6.4. Element <Target>

The <Target> element identifies the set of decision requests that the parent element is intended to evaluate.  The <Target> element appears as a child of <PolicySet>, <Policy>, and <Rule> elements.  It contains definitions for subjects, resources and actions.


<xs:element name="Target" type="xacml:TargetType"/>


<xs:complexType name="TargetType">



<xs:sequence>




<xs:element ref="xacml:Subjects"/>




<xs:element ref="xacml:Resources"/>




<xs:element ref="xacml:Actions"/>



</xs:sequence>


</xs:complexType>

If the subject, resource and action in the <xacml-context:Request> element match the definitions of subjects, resources and actions in the <Target> element, then the policy component containing the <Target> element MAY be applicable to the decision request.

For the purposes of matching, the <Subjects>, <Resources>, and <Actions> children of the <Target> element are combined using the logical ‘AND’ operation.  For the parent of the <Target> element to be applicable to the decision request, at least one <Subject>, one <Resource>, and one <Action> MUST match the corresponding elements in the <xacml-context:Request>  element.

The <Target> element is of TargetType complex type.

Note: a disjunctive sequence is a sequence of elements combined using the logical ‘OR’ operation.

<Subjects> [Required]

This element is either a disjunctive sequence of <Subject> elements that match this target with subject attributes in the request context, or a special element <AnySubject> that matches any subject attribute in the request context.

<Resources> [Required]

This element is either a disjunctive sequence of <Resource> elements that match this target with resource attributes in the request context, or a special element <AnyResource> that matches any resource attribute in the request context.

<Actions> [Required]

This element is either a disjunctive sequence of <Action> elements that match this target with action attributes in the request context, or a special element <AnyAction> that matches any action attribute in the request context.

6.5. Element <Subjects>

The <Subjects> element is a child of the <Target> element and is a wrapper for the disjunctive sequence of <Subject> elements.  The <Subjects> element is combined using the logical ‘AND’ operation with other children of the <Target> element.

<xs:element name="Subjects" type="xacml:SubjectsType"/>

<xs:complexType name="SubjectsType">


<xs:choice>



<xs:element ref="xacml:Subject" maxOccurs="unbounded"/>



<xs:element ref="xacml:AnySubject"/>


</xs:choice>

</xs:complexType>


The <Subjects> element is of SubjectsType complex type.

<Subject> [Required]

A disjunctive sequence of one or more matching specifications against subject attributes in the request context.

<AnySubject> [Required]


An element matching any subject attribute in the request context.

6.6. Element <Subject>

Note: a conjunctive sequence is a sequence of elements combined using the logical ‘AND’ operation.

The <Subject> element is a conjunctive sequence of individual matches against subject attributes in the request context.


<xs:element name="Subject" type="xacml:SubjectType"/>


<xs:complexType name="SubjectType">



<xs:sequence>




<xs:element ref="xacml:SubjectMatch" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Subject> element is of SubjectType complex type.

<Subject> element contains following elements:

<SubjectMatch> [One to Many]

A conjunctive sequence of individual matches with the subject attributes in the request context.

6.7. Element <SubjectMatch>

The <SubjectMatch> element identifies a set of subject-related entities by matching values in the <Subject> element of the context with values embedded in the <Policy> element.


<xs:element name="SubjectMatch" type="xacml:SubjectMatchType"/>


<xs:complexType name="SubjectMatchType">



<xs:sequence>




<xs:choice>





<xs:element ref="xacml:SubjectAttributeDesignator"/>





<xs:element ref="xacml:AttributeSelector"/>




</xs:choice>




<xs:element ref="xacml:AttributeValue"/>



</xs:sequence>



<xs:attribute name="MatchId" type="xs:QName" use="required"/>


</xs:complexType>

The <SubjectMatch> element is of SubjectMatchType complex type.

The <SubjectMatch> element contains following attributes and elements:

MatchId [required]

Specifies a matching function.  The value of this attribute MUST be of type Qname, with legal values documented inAppendix A. 

<SubjectAttributeDesignator> [required]

Identifies one or more values in the <Subject> element of the <xacml-context:Request> element.

<AttributeSelector> [required]

MAY be used to identify one or more values in the <Subject> element of <xacml-context:Request> element.  It MUST contain a legal xpath expression over the <Subject> element of the <xacml-context:Request> element.

6.8. Element <Resources>

The <Resources> element is a child of the <Target> element and is a wrapper for the disjunctive sequence of <Resource> elements.  The <Resources> element is combined using the logical ‘AND’ operation with other children of the <xacml:Target> element.

<xs:element name="Resources" type="xacml:ResourcesType"/>


<xs:complexType name="ResourcesType">



<xs:choice>




<xs:element ref="xacml:Resource" maxOccurs="unbounded"/>




<xs:element ref="xacml:AnyResource"/>



</xs:choice>


</xs:complexType>

The <Resources> element is of ResourcesType complex type.

The <Resources> element consists of the following elements:

<Resource> [Required]

A disjunctive sequence of one or more matching specifications against resource attributes in the request context.

<AnyResource> [Required]


An element matching any resource attribute in the request context.

6.9. Element <Resource>

The <Resource> element is a conjunctive sequence of individual matches against the resource attributes in the request context.


<xs:element name="Resource" type="xacml:ResourceType"/>


<xs:complexType name="ResourceType">



<xs:sequence>




<xs:element ref="xacml:ResourceMatch" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Resource> element is of ResourceType complex type.

The <Resource> element contains the following elements:

<ResourceMatch> [One to Many]

A conjunctive sequence of individual matches with the resource attributes in the request context.

6.10. Element <ResourceMatch>

The <ResourceMatch> element identifies a set of resource-related entities by matching values in the <Resource> element of the request context with values embedded in the <Policy> element.


<xs:element name="ResourceMatch" type="xacml:ResourceMatchType"/>


<xs:complexType name="ResourceMatchType">



<xs:sequence>




<xs:choice>





<xs:element ref="xacml:ResourceAttributeDesignator"/>





<xs:element ref="xacml:AttributeSelector"/>




</xs:choice>




<xs:element ref="xacml:AttributeValue"/>



</xs:sequence>



<xs:attribute name="MatchId" type="xs:QName" use="required"/>


</xs:complexType>

The <ResourceMatch> element is of ResourceMatchType complex type.

The <ResourceMatch> element contains the following attributes and elements:

MatchId [Required]

Specifies a matching function.  Value of this attribute MUST be of type Qname, with legal values documented in Appendix A. 

<ResourceAttributeDesignator> [Required]

Identifies one or more values in the <Resource> element of the <xacml-context:Request> element.

<AttributeSelector> [Required]

MAY be used to identify one or more values in the <Resource> element of the <xacml-context:Request> element.  It MUST contain a legal xpath expression over the <Resource> element of the <xacml-context:Request> element.

6.11. Element <Actions>

The <Actions> element is a child of the <Target> element and is a wrapper for the disjunctive sequence of the <Action> elements.  The <Actions> element is combined by logical ‘AND’ with other children of the <Target> element.

<xs:element name="Actions" type="xacml:ActionsType"/>

<xs:complexType name="ActionsType">


<xs:choice>



<xs:element ref="xacml:Action" maxOccurs="unbounded"/>



<xs:element ref="xacml:AnyAction"/>


</xs:choice>

</xs:complexType>

The <Actions> element is of ActionsType complex type.

The <Actions> element contains the following elements:

<Action> [Required]

A disjunctive sequence of one or more matching specifications against action attributes in the request context.

<AnyAction> [Required]


An element matching any action attribute in the request context.

6.12. Element <Action>

The <Action> element is a conjunctive sequence of individual matches against the action attributes in the request context.

<xs:element name="Action" type="xacml:ActionType"/>

<xs:complexType name="ActionType">


<xs:sequence>



<xs:element ref="xacml:ActionMatch" maxOccurs="unbounded"/>


</xs:sequence>

</xs:complexType>

The <Action> element is of ActionType complex type.

The <Action> element contains the following elements:

<ActionMatch> [One to Many]

A conjunctive sequence of individual action matches with the action in the request context.

6.13. Element <ActionMatch>

The <ActionMatch> element identifies a set of action-related entities by matching values in the <Action> element of the context with values embedded in the <Policy> element.

<xs:element name="ActionMatch" type="xacml:ActionMatchType"/>

<xs:complexType name="ActionMatchType">


<xs:sequence>



<xs:choice>




<xs:element ref="xacml:ActionAttributeDesignator"/>




<xs:element ref="xacml:AttributeSelector"/>



</xs:choice>



<xs:element ref="xacml:AttributeValue"/>


</xs:sequence>


<xs:attribute name="MatchId" type="xs:QName" use="required"/>

</xs:complexType>

The <ActionMatch> element is of ActionMatchType complex type.

The <ActionMatch> element contains the following attributes and elements:

MatchId [Required]

Specifies a matching function.  The value of this attribute MUST be of type Qname, with legal values documented in Appendix A. 

<ActionAttributeDesignator> [Required]

Identifies one or more values in the <Resource> element of the <xacml-context:Request> element.

<AttributeSelector> [Required]

MAY be used to identify one or more values in the <Action> element of the <xacml-context:Request> element.  It MUST contain a legal xpath expression over the <Resource> element of <xacml-context:Request> element.

6.14. Element <PolicySetIdReference>

The <PolicySetIdReference> element is used to reference a <PolicySet> element by id.  If <PolicySetIdReference> is a URI, then it MAY be resolvable to the <PolicySet>.  The mechanism for resolving a policy set reference to the corresponding policy set is implementation dependent.  Applications MAY use the xacml SAML protocol extension to query <PolicySetStatement> by id.

<xs:element name="PolicySetIdReference" type="xs:anyURI"/>

Element <PolicySetIdReference> is of xs:anyURI simple type.

6.15. Element <PolicyIdReference>

The <xacml:PolicyIdReference> element is used to reference a <Policy> element by id.  If <PolicyIdReference> is a URI, then it MAY be resolvable to the <Policy>. The mechanism for resolving a policy reference to the corresponding policy is implementation dependent.  Applications MAY use the xacml SAML protocol extension to query <PolicyStatement> by id.


<xs:element name="PolicyIdReference" type="xs:anyURI"/>

Element <PolicyIdReference> is of xs:anyURI simple type.

6.16. Element <Policy>

The <Policy> element is the smallest entity that can be presented to the PDP for evaluation. 

The main components of this element are the <Target>, <Rule>, and <Obligations> elements and the RuleCombiningAlgId attribute. 

The <Target> element defines <Policy> applicability to decision requests.  A sequence of <Rule> elements specifies authorizations that MUST be combined according to the RuleCombiningAlgId attribute.  The <Obligations> element contains a set of obligations that MUST be discharged by the PDP in conjunction with the authorization decision.


<xs:element name="Policy" type="xacml:PolicyType"/>


<xs:complexType name="PolicyType">



<xs:sequence>




<xs:element ref="xacml:Description" minOccurs="0"/>




<xs:element ref="xacml:PolicyDefaults" minOccurs="0"/>




<xs:element ref="xacml:Target"/>




<xs:element ref="xacml:Rule" minOccurs="0" maxOccurs="unbounded"/>




<xs:element ref="xacml:Obligations" minOccurs="0"/>



</xs:sequence>



<xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>



<xs:attribute name="RuleCombiningAlgId" type="xs:anyURI" use="required"/>


</xs:complexType>

The <Policy> element is of PolicyType complex type.

The <Policy> element contains the following attributes and elements:

PolicyId [Required]

Policy identifier. The party assigning this identifier MUST minimize the potential of some other party reusing the same identifier.  This MAY be achieved by following a predefined URN or URI scheme.  It is OPTIONAL for the PolicyId URI to be resolvable to the corresponding <Policy> object.

RuleCombiningAlgId [Required]

The identifier of the rule-combining algorithm by which the  <Policy> components MUST be combined.  Standard rule-combining algorithms are listed in Appendix C.  Standard rule-combining algorithm identifiers are listed in Section B.10.<Description> [Optional]


A free-form description of the policy.

<PolicyDefaults>  [Optional]

Defines a set of default values applicable to the policy.  The scope of <PolicyDefaults> element is the enclosing policy.

<Target> [Required]

The <Target> element defines the applicability of a <Policy> to decision requests.

The <Target> element MAY be declared by the creator of the <Policy> element, or it MAY be computed from the <Target> elements of the referenced <Rule> elements either as an intersection or as a union.

<Rule> [Any Number]

A sequence of authorizations that MUST be combined according to the RuleCombiningAlgId attribute.  Rules with <Target> elements matching the decision request MUST be considered.  Rules with <Target> elements that do not match the decision request MUST NOT be considered.  Applicability of rules to the decision request is detailed in Appendix C.

<Obligations> [Optional]

A conjunctive sequence of obligations that MUST be discharged by the PEP in conjunction with the authorization decision.  If the PEP does not understand the obligations, then it MUST act as if the PDP denied access to the requested resource.

6.17. Element <Rule>

The <Rule> element defines individual rules in the policy.  The main components of this element are the <Target> and <Condition> elements, and the Effect attribute.


<xs:element name="Rule" type="xacml:RuleType"/>


<xs:complexType name="RuleType">



<xs:sequence>




<xs:element ref="xacml:Description" minOccurs="0"/>




<xs:element ref="xacml:Target" minOccurs="0"/>




<xs:element ref="xacml:Condition" minOccurs="0"/>



</xs:sequence>



<xs:attribute name="RuleId" type="xs:anyURI" use="required"/>



<xs:attribute name="Effect" type="xacml:EffectType" use="required"/>


</xs:complexType>

The <Rule> element is of RuleType complex type.

The <Rule> element contains the following attributes and elements:

RuleId


A URN identifying this rule.

Effect

Rule effect.  Values of this attribute are either “Permit” or “Deny”.

<Description> [optional]


A free-form description of the rule.

<Target> [optional]

Identifies the set of decision requests that the <Rule> element is intended to evaluate.  If this element is omitted, then the target for the <Rule> is defined by the enclosing <Policy> element.  See Section 6.4for details.

<Condition> [optional]

A predicate that MUST be satisfied for the rule to be assigned its Effect value.  A condition is a boolean function over a combination of subject, resource and environment attributes or other functions.

6.18. Simple type EffectType

The EffectType simple type defines the values allowed for the Effect attribute of the <Rule> element and for the FulfillOn attribute of the <Obligation> element.


<xs:simpleType name="EffectType">



<xs:restriction base="xs:string">




<xs:enumeration value="Permit"/>




<xs:enumeration value="Deny"/>



</xs:restriction>


</xs:simpleType>

6.19. Element <Condition>

The <Condition> element is a boolean function over subject, resource, action and environment attributes or functions of attributes.  If the <Condition> element evaluates to "True", then the enclosing <Rule> element is assigned its Effect value.


<xs:element name="Condition" type="xacml:ApplyType"/>

The <Condition> element if of ApplyType complex type.

6.20. Element <Apply>

The <Apply> element denotes application of a function to its arguments, thus encoding a function call.  The <Apply> element can be applied to any combination of <Apply>, <AttributeValue>, <SubjectAttributeDesignator>, <SubjectAttributeDesignatorWhere>, <ResourceAttributeDesignator>, <ActionAttributeDesignator>, <EnvironmentAttributeDesignator> and <AttributeSelector> arguments.


<xs:element name="Apply" type="xacml:ApplyType"/>


<xs:complexType name="ApplyType">



<xs:choice minOccurs="0" maxOccurs="unbounded">




<xs:element ref="xacml:Apply"/>




<xs:element ref="xacml:AttributeValue"/>




<xs:element ref="xacml:SubjectAttributeDesignatorWhere"/>




<xs:element ref="xacml:SubjectAttributeDesignator"/>




<xs:element ref="xacml:ResourceAttributeDesignator"/>




<xs:element ref="xacml:ActionAttributeDesignator"/>




<xs:element ref="xacml:EnvironmentAttributeDesignator"/>




<xs:element ref="xacml:AttributeSelector"/>



</xs:choice>



<xs:attribute name="FunctionId" type="xs:QName" use="required"/>


</xs:complexType>

The <Apply> element is of ApplyType complex type.  The top-level element of the ApplyType is a <Condition> element described in Section6.19.

The <Apply> element contains the following attributes and elements:

FunctionId [Required]

The QName of a function.  Xacml-defined functions are described in Appendix A.

<Apply> [Optional]


A nested function-call argument.

<AttributeValue> [Optional]


A literal value argument.

<SubjectAttributeDesignatorWhere>


A subject attribute argument.

<SubjectAttributeDesignator> [Optional]


A subject attribute argument.

<ResourceAttributeDesignator> [Optional]


A resource attribute argument.

<ActionAttributeDesignator> [Optional]


An action attribute argument.

<EnvironmentAttributeDesignator> [Optional]


An environment attribute argument.

<AttributeSelector> [Optional]


An attribute selector argument.

6.21. Complex type AttributeDesignatorType

Elements of the AttributeDesignatorType complex type are used as a pointing device into various elements of the <xacml-context:Request> element.  <AttributeDesignatorType> is an XML syntax alternative to the xpath expressions used by the <AttributeSelector> element. 

Elements of AttributeDesignatorType type select a set of attributes from the request context, each of them having the same AttributeId value.  As such, the attribute designator semantics are identical to those of an xpath expression.


<xs:complexType name="AttributeDesignatorType">



<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>



<xs:attribute name="DataType" type="xs:anyURI" use="required"/>



<xs:attribute name="Issuer" type="xs:anyURI" use="optional"/>


</xs:complexType>

The <AttributeDesignatorType> contains the following attributes:

AttributeId [Required]


The attribute identifier selecting an attribute within the <xacml-context:Request> element.

DataType [Required]


The data type for interpreting the corresponding attribute value in the <xacml-context:Request> element.

Issuer [Optional]


The authority that issued the attribute.

6.22. Element <SubjectAttributeDesignator>

The <SubjectAttributeDesignator> element selects a set of subject attribute values having the same attribute identifier from within all <Subject> elements of the <xacml-context:Request> element.  As such, the <SubjectAttributeDesignator> element behaves like an xpath expression. 

Note that because the <xacml-context:Request> element MAY have multiple <xacml-context:Subject> elements, attribute values from all of them are selected.  The <SubjectAttributeDesignatorWhere> element provides a way to narrow down this selection to a specific subject.

The <SubjectAttributeDesignator> element is used by the <SubjectMatch> element and can be passed to the <Apply> element as an argument.

<xs:element name="SubjectAttributeDesignator" type="xacml:AttributeDesignatorType"/>

The <SubjectAttributeDesignator> element is of AttributeDesignatorType complex type.

6.23. Element <ResourceAttributeDesignator>

The <ResourceAttributeDesignator> element selects a set of resource attribute values having the same attribute identifier from within <Resource> element of the <xacml-context:Request> element.  As such, the <ResourceAttributeDesignator> element behaves like an xpath expression.

The <ResourceAttributeDesignator> element is used by the <ResourceMatch> element and can be passed to the <Apply> element as an argument.

<xs:element name="ResourceAttributeDesignator" type="xacml:AttributeDesignatorType"/>

The <ResourceAttributeDesignator> element is of AttributeDesignatorType complex type.

6.24. Element <ActionAttributeDesignator>

The <ActionAttributeDesignator> element selects a set of action attribute values having the same attribute identifier from within the <Action> element of the <xacml-context:Request> element.  As such, the <ActionAttributeDesignator> element behaves like an xpath expression.

The <ActionAttributeDesignator> element is used by the <ActionMatch> element and can be passed to the <Apply> element as an argument.

<xs:element name="ActionAttributeDesignator" type="xacml:AttributeDesignatorType"/>

The <ActionAttributeDesignator> element is of AttributeDesignatorType complex type.

6.25. Element <EnvironmentAttributeDesignator>

The <EnvironmentAttributeDesignator> element selects a set of environment attribute values having the same attribute identifier from within the <Environment> element of the <xacml-context:Request> element.  As such, the <EnvironmentAttributeDesignator> element behaves like an xpath expression.

The <EnvironmentAttributeDesignator> element can be passed to the <Apply> element as an argument.

<xs:element name="EnvironmentAttributeDesignator" type="xacml:AttributeDesignatorType"/>

The <EnvironmentAttributeDesignator> element is of AttributeDesignatorType complex type.

6.26. Element <SubjectAttributeDesignatorWhere>

The element <SubjectAttributeDesignatorWhere> specifies additional subject matches when a subject attribute value is selected from the <xacml-contex:Request> element.

Because the <xacml-context:Request> element MAY contain multiple <xacml-context:Subject> elements, the <SubjectAttributeDesignatorWhere> element provides a way to focus the subject attribute selection on a particular subject. 

The <SubjectAttributeDesignatorWhere> element is designed to make Complex selections such as: Select the attribute value for the subject attribute whose id is “A”, such that the attribute value for the subject attribute whose id is “B” is “valueB” and the attribute value for the subject attribute whose id is “C” is “valueC”.

Every subject match narrows down a set of attributes selected by the previous match.

Element <SubjectAttributeDesignatorWhere> is passed as an argument to the <Apply> element.

<xs:element name="SubjectAttributeDesignatorWhere" type="xacml:SubjectAttributeDesignatorWhereType"/>

<xs:complexType name="SubjectAttributeDesignatorWhereType">


<xs:complexContent>



<xs:extension base="xacml:AttributeDesignatorType">




<xs:sequence>





<xs:element ref="xacml:SubjectMatch" minOccurs="0"/>




</xs:sequence>



</xs:extension>


</xs:complexContent>

</xs:complexType>

The <SubjectAttributeDesignatorWhere> element is of SubjectAttributeDesignatorWhereType complex type.

In addition to its base type, the <SubjectAttributeDesignatorWhere> element contains the following elements:

<SubjectMatch> [Any Number]

A conjunctive sequence of matches against the <Subject> element of the <xacml-context:Request> element.  Each subject match in a sequence narrows down a set of subject attributes selected by the previous match.

6.27. Element <AttributeSelector>

The <AttributeSelector> element is a free-form pointing device into the <xacml-context:Request> element.  It uses xpath syntax to select elements from the request context.  There are no restrictions on the xpath.  However, the full power of the xpath syntax should be used with care: a policy writer MUST ensure that, when the <AttributeSelector> element is used in place of one of the elements of type AttributeDesignatorType, it is pointing to the correct section of the <xacml-context:Request> element.  Support for the <AttributeSelector> element is OPTIONAL.

<xs:element name="AttributeSelector" type="xacml:AttributeSelectorType"/>

<xs:complexType name="AttributeSelectorType">


<xs:attribute name="RequestContextPath" type="xs:anyURI" use="required"/>


<xs:attribute name="DataType" type="xs:anyURI" use="required"/>


<xs:attribute name="XPathVersion" type="xs:anyURI" use="optional"/>

</ xs:complexType>

The <AttributeSelector> element is of AttributeSelectorType complex type.

The <AttributeSelector> element has the following attributes:

RequestContextPath [Required]


An Xpath expression into the request context. There is no restriction on the xpath syntax.

DataType [Required]

The data type of the selected item.  It could be an xml-schema-defined data type or any other derived data type.

XpathVersion [Optional]

Xpath version.  The default value for this attribute is: http://www.w3.org/TR/1999/Rec-xpath-19991116, which is xpath 1.0.  It could be overwritten by another value or by the <XpathVersion> element of the <PolicySetDefaults> element..
6.28. Element <AttributeValue>

The <AttributeValue> element contains a literal attribute value.  The type of the value MUST be contained in the DataType attribute.


<xs:element name="AttributeValue" type="xacml:AttributeValueType"/>


<xs:complexType name="AttributeValueType">



<xs:complexContent>




<xs:extension base="xs:anyType">





<xs:attribute name="DataType" type="xs:anyURI" use="required"/>




</xs:extension>



</xs:complexContent>


</xs:complexType>

The <AttributeValue> element is of AttributeValueType complex type.

The <AttributeValue> element contains the following attributes:

DataType [required]

The type of the value.  The attribute MAY be one of the xml-schema-defined types.  Alternatively, it MAY be of a structured type defined in some other namespace.

6.29. Element <Obligations>

The <Obligations> element contains a set of <Obligation> elements.  A PEP MUST fulfill all obligations returned by the PDP.  If a PEP does not understand an obligation, then it MUST act as if the PDP had returned a “Deny” authorization decision.

<xs:element name="Obligations" type="xacml:ObligationsType"/>

<xs:complexType name="ObligationsType">


<xs:sequence>



<xs:element ref="xacml:Obligation" maxOccurs="unbounded"/>


</xs:sequence>

</xs:complexType>

The <Obligations> element is of ObligationsType complexType. 

<Obligation> [One to Many]

A sequence of obligations that MUST be fulfilled by the PEP.  If the PEP does not understand an obligation, then it MUST act as if the PDP had returned a “Deny” authorization decision.

6.30. Element <Obligation>

The <Obligation> element contains an identifier for the obligation and a set of attributes that form arguments of the action defined by the obligation.  The FulfillOn attribute indicates the decision value for which this obligation MUST be fulfilled.

<xs:element name="Obligation" type="xacml:ObligationType"/>

<xs:complexType name="ObligationType">


<xs:choice maxOccurs="unbounded">



<xs:element ref="xacml:AttributeAssignment"/>


</xs:choice>


<xs:attribute name="ObligationId" type="xs:anyURI" use="required"/>


<xs:attribute name="FulfilOn" type="xacml:EffectType" use="required"/>

</xs:complexType>

The <Obligation> element is of ObligationType complexType.

The ObligationId [required]


Obligation identifier.  The value of the obligation identifier is interpreted by the PEP.

FulfillOn [required]


The decision value for which this obligation MUST be fulfilled.

<AttributeAssignment> [required]

Obligation arguments assignment.  The values of the obligation arguments are interpreted by the PEP.

6.31. Element <AttributeAssignment>

The <AttributeAssignment> element contains an AttributeId and the corresponding attribute value.  The AttributeId is part of attribute meta-data, and is used when the attribute cannot be referenced by its location in the <xacml-context:Request>.  This situation may arise in an <Obligation> element if the obligation includes parameters.


<xs:element name="AttributeAssignment" type="xacml:AttributeAssignmentType"/>


<xs:complexType name="AttributeAssignmentType">



<xs:complexContent>




<xs:extension base="xacml:AttributeValueType">





<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>




</xs:extension>



</xs:complexContent>


</xs:complexType>

The <AttributeAssignment> element is of AttributeAssignmentType complex type.

AttributeId [Required]


The attribute Identifier

DataType [Required]


The data type for the assigned value.

7. Context syntax (normative with the exception of the schema fragments)

7.1. Element <Request>

The <Request> element is a top-level element in the XACML context schema.  A <Request> element is an abstraction layer used by the policy language.  Any proprietary system using the XACML specification MUST transform its input into the xacml context request form.

The <Request> element consists of four sections denoted by the <Subject>, <Resource>, <Action>, and <Environment> elements.  


<xs:element name="Request" type="xacml-context:RequestType"/>


<xs:complexType name="RequestType">



<xs:sequence>




<xs:element ref="xacml-context:Subject" maxOccurs="unbounded"/>




<xs:element ref="xacml-context:Resource"/>




<xs:element ref="xacml-context:Action"/>




<xs:element ref="xacml-context:Environment" minOccurs="0"/>



</xs:sequence>


</xs:complexType>

The <Request> element is of RequestType complex type.

The <Request> element contains the following elements:

<Subject> [One to Many]

Identifies a subject in the request context.  One or more <Subject> elements are allowed.  Each <Subject> element MUST contain a number of predefined <Attribute> elements.  It MAY contain additional <Attribute> elements.

[Issue: list required attributes]

<Resource> [Required]

Contains information about the resource to which access is being requested.  It MAY 

include a <ResourceContent> element, and it MUST contain a number of  predefined <Attribute> elements.  Additional <Attribute> elements MAY be included.

[Issue: list required attributes]

<Action> [Required]

Identifies the requested action by listing a set of <Attribute> elements associated with the action.

<Environment> [Optional]

Contains a set of <Attribute> elements of the environment.  These <Attribute> elements MAY form a part of policy evaluation.

7.2. Element <Subject>

The <Subject> element specifies a subject of a decision request context by listing a sequence of <Attribute> elements associated with the subject.


<xs:element name="Subject" type="xacml-context:SubjectType"/>


<xs:complexType name="SubjectType">



<xs:sequence>




<xs:element ref="xacml-context:Attribute" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Subject> element is of SubjectType complex type.

<Attribute> [Any Number]

A sequence of attributes associated with the subject.  A number of attributes MUST be present for each <Subject> element upon construction of the request context.


[Issue: Describe required attributes]

7.3. Element <Resource>

The <Resource> element encapsulates the requested resource and lists a sequence of <Attribute> elements associated with that resource and optional resource content.


<xs:element name="Resource" type="xacml-context:ResourceType"/>


<xs:complexType name="ResourceType">



<xs:sequence>




<xs:element ref="xacml-context:ResourceContent" minOccurs="0"/>




<xs:element ref="xacml-context:Attribute" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Resource> element is of ResourceType complex type.

The <Resource> element contains the following elements:

<ResourceContent> [Optional]


The resource content.

<Attribute> [Any Number]

A sequence of resource attributes.  A number of <Attribute> elements MUST be included.  Additional <Attribute> elements MAY be present.

7.4. Element <ResourceContent>

The <ResourceContent> element is a notional placeholder for the resource content.  If an xacml policy references the contents of the resource, then the <ResourceContent> element is used as the reference point.


<xs:complexType name="ResourceContentType">



<xs:sequence>




<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>



<xs:anyAttribute namespace="##any" processContents="lax"/>


</xs:complexType>

The <ResourceContent> element is of ResourceContentType complex type.

The <ResourceContent> element allows arbitrary elements and attributes.

7.5. Element <Action>

The <Action> element identifies the requested action by listing a set of <Attribute> elements associated with the action.


<xs:element name="Action" type="xacml-context:ActionType"/>


<xs:complexType name="ActionType">



<xs:sequence>




<xs:element ref="xacml-context:Attribute" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Action> element is of ActionType complex type.

The <Attribute> [Any Number]


Action attributes.

7.6. Element <Environment>

The <Environment> element contains a set of attributes of the environment.  These attributes MAY form part of policy evaluation.


<xs:element name="Environment" type="xacml-context:EnvironmentType"/>


<xs:complexType name="EnvironmentType">



<xs:sequence>




<xs:element ref="xacml-context:Attribute" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Environment> element is of EnvironmentType complex type.

The <Environment> element contains the following elements:

<Attribute> [Any Number]

A list of environment attributes.  Environment attributes are attributes that are not associated with either the subject, resource or action.

7.7. Element <Attribute>

The <Attribute> element is a central abstraction of the request context.  It contains an attribute value and attribute meta-data.  The attribute meta-data comprises the attribute identifier, attribute issuer and attribute issue instant.  Attribute designators and attribute selectors in the policy refer to attributes by this meta-data.


<xs:element name="Attribute" type="xacml-context:AttributeType"/>


<xs:complexType name="AttributeType">



<xs:sequence>




<xs:element ref="xacml-context:AttributeValue" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>



<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>



<xs:attribute name="Issuer" type="xs:string" use="optional"/>



<xs:attribute name="IssueInstant" type="xs:dateTime" use="optional"/>


</xs:complexType>

The <Attribute> element is of AttributeType complex type.

The <Attribute> element contains the following attributes and elements:

AttributeId [Required]

Attribute identifier.  A number of identifiers are reserved by XACML to denote commonly used attributes.

Issuer [Optional]

Attribute issuer.  This  MAY be a URIthat binds to a public key, or some other identifier exchanged out-of-band by issuing and relying parties.

IssueInstant [Optional]


Attribute issue instant.

7.8. Element <AttributeValue>

The <AttributeValue> element contains the value of an attribute.


<xs:element name="AttributeValue" type="xs:anyType"/>

The <AttributeValue> element is of xs:anyType type.

7.9. Element <Response>

The <Response> element encapsulates the authorization decision returned by the PDP.  It includes a sequence of one or more results with one <Result> element per requested resource. Multiple results MAY be returned when the value of the “urn:oasis:xacml:1.0:resource:scope” resource attribute in the request context is “Descendants”.  Support for multiple results is OPTIONAL.


<xs:element name="Response" type="xacml-context:ResponseType"/>


<xs:complexType name="ResponseType">



<xs:sequence>




<xs:element ref="xacml-context:Result" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <Response> element is of ResponseType complex type.

The <Response> element contains the following elements:

<Result> [One to Many]

An authorization decision result.

7.10. Element <Result>

The <Result> element represents an authorization decision result for the resource specified by the ResourceURI attribute.  It MAY include a set of obligations that MUST be fulfilled by the PEP.  If the PEP does not understand an obligation, then it MUST act as if the PDP had denied access to the requested resource.


<xs:element name="Result" type="xacml-context:ResultType"/>


<xs:complexType name="ResultType">



<xs:sequence>




<xs:element ref="xacml-context:Decision"/>




<xs:element ref="xacml-context:Status" minOccurs="0"/>




<xs:element ref="xacml:Obligations" minOccurs="0"/>



</xs:sequence>



<xs:attribute name="ResourceURI" type="xs:anyURI" use="optional"/>


</xs:complexType>

The <Result> element is of ResultType complex type.

The <Result> element contains the following attributes and elements:

ResourceURI [Optional]

The URI for the requested resource.  If this attribute is omitted, then the resource URI is specified by the “urn:oasis:names:tc:xacml:1.0:resource:resource-uri” resource attribute in the <Request> element.

<Decision> [Required]


The authorization decision
<Status> [Optional]


Indicates whether the request succeeded or not.

<Obligations> [Optional]

A list of obligations that MUST be discharged by the PEP.  If the PEP does not understand an obligation, then it MUST act as if the PDP had denied access to the requested resource. 

7.11. Element <Decision>

The <Decision> element contains the result of policy evaluation. 


<xs:element name="Decision" type="xacml-context:DecisionType"/>


<xs:simpleType name="DecisionType">



<xs:restriction base="xs:string">




<xs:enumeration value="Permit"/>




<xs:enumeration value="Deny"/>




<xs:enumeration value="Indeterminate"/>




<xs:enumeration value="NotApplicable"/>



</xs:restriction>


</xs:simpleType>

The <Decision> element is of DecisionType simple type.

7.12. Element <Status>

The <Status> element represents the status of the authorization decision result.


<xs:element name="Status" type="xacml-context:StatusType"/>


<xs:complexType name="StatusType">



<xs:sequence>




<xs:element ref="xacml-context:StatusCode"/>




<xs:element ref="xacml-context:StatusMessage" minOccurs="0"/>




<xs:element ref="xacml-context:StatusDetail" minOccurs="0"/>



</xs:sequence>


</xs:complexType>

The <Status> element is of StatusType complex type.

The <Status> element contains the following elements:

<StatusCode> [Required]


Status code.

<StatusMessage> [Optional]


A status message describing the status code.

<StatusDetail> [Optional]


Additional status information.

7.13. Element <StatusCode>

The <StatusCode> element contains a major status code value and an optional sequence of minor status codes.


<xs:element name="StatusCode" type="xacml-context:StatusCodeType"/>


<xs:complexType name="StatusCodeType">



<xs:sequence>




<xs:element ref="xacml-context:StatusCode" minOccurs="0"/>



</xs:sequence>



<xs:attribute name="Value" type="xs:QName" use="required"/>


</xs:complexType>

The <StatusCode> element is of StatusCodeType complex type.

The <StatusCode> element contains the following attributes and elements:

Value [Required]

See Section B.9 for a list of values.

<StatusCode> [Any Number]


Minor status code.  This status code qualifies its parent status code.


7.14. Element <StatusMessage>

The <StatusMessage> element is a free-form description of the status code.


<xs:element name="StatusMessage" type="xs:string"/>

The <StatusMessage> element is of xs:string type.

7.15. Element <StatusDetail>

The <StatusDetail> element qualifies the <Status> element with additional information.


<xs:element name="StatusDetail" type="xacml-context:StatusDetailType"/>


<xs:complexType name="StatusDetailType">



<xs:sequence>




<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>



</xs:sequence>


</xs:complexType>

The <StatusDetail> element is of StatusDetailType complex type.

The <StatusDetail> element allows arbitrary xml content.

8. 

8.1. 






8.2. 


8.3. 

9. XACML extensibility points (non-normative)

This section describes the points within the XACML model and schema where extensions can be added

9.1. URIs

The following XML attributes are URIs.

· Function,

· RuleCombiningAlgId,

· PolicyCombiningAlgId, 

· 
· 
10. Security and privacy considerations (non-normative)

This section identifies possible security and privacy compromise scenarios that should be considered when implementing an XACML-based system.  The section is informative only.  It is left to the implementer to decide whether these compromise scenarios are practical in their environment and to select appropriate safeguards.

10.1. Threat model

The general Internet threat model described in the IETF guidelines for security considerations [ref.] is the basis for the XACML threat model.

We assume here that the adversary has access to the communication channel between the XACML actors and is able to interpret, insert, delete and modify messages or parts of messages. 

Additionally, an actor may use information from a former transaction maliciously in subsequent transactions.   It is further assumed that rules and policies are only as reliable as the actors that produce them.   Thus it is incumbent on each actor to establish appropriate trust in the other actors upon which it relies.  Mechanisms for trust establishment are outside the scope of this specification.

The messages that are transmitted between the actors in the XACML model are susceptible to attack by malicious third parties.  Other points of vulnerability include the PEP, the PDP and the PAP.  While some of these entities are not strictly within the scope of this specification, their compromise could lead to the compromise of access control enforced by the PEP.

It should be noted that there are other components of a distributed system that may be compromised, such as an operating system and the domain-name system (DNS) that are outside the scope of this discussion of threat models.  And such compromise may lead to a policy violation.
The following sections detail specific compromise scenarios that are relevant to an XACML system.

10.1.1 Unauthorized disclosure
XACML does not specify any inherent mechanisms for confidentiality of the messages exchanged between actors.  Therefore, an adversary could observe the messages in transit.  Under certain security policies, disclosure of this information is a violation.  Disclosure of attributes or the types of decision requests that a subject makes may be a breach of privacy policy.  In the commercial sector, the consequences of unauthorized disclosure of personal data may range from embarrassment to the custodian to imprisonment and large fines in the case of medical or financial data.

Unauthorized disclosure is addressed by confidentiality mechanisms.
10.1.2 Impersonation

10.1.3 Message replay

A message replay attack is one in which the adversary records and replays legitimate messages between XACML actors.  This attack may lead to denial of service, the use of out-of-date information or impersonation.

Prevention of replay attacks requires the use of message freshness mechanisms.
Note that encryption of the message does not mitigate a replay attack since the message is just replayed and does not have to be understood by the adversary.

10.1.4 Message insertion

A message insertion attack is one in which the adversary inserts messages in the sequence of messages between XACML actors.

The solution to a message insertion attack is to use mutual authentication and a message integrity mechanism between the actors.  It should be noted that just using SSL mutual authentication is not sufficient.  This only proves that the other party is the one identified by the subject of the X.509 certificate.  In order to be effective it is necessary to confirm that the certificate subject is authorized to send the message.
10.1.5 Message deletion

A message deletion attack is one in which the adversary deletes messages in the sequence of messages between XACML actors.  Message deletion may lead to denial of service.  However, a properly designed XACML system should not render an incorrect authorization decision as a result of a message deletion attack.

The solution to a message deletion attack is to use a message integrity mechanism between the actors.  

10.1.6 Message modification

If an adversary can intercept a message and change its contents they may be able to alter an authorization decision.  Message integrity mechanisms can prevent a successful message modification attack.
10.1.7 Resource matching

It is vital that the matching algorithm used by the PDP to identify the applicable policy based on the target resource be functionally equivalent to the one used by the PEP to form the decision request.  This requirement applies particularly in the case where the <Decision> value of “NotApplicable” is treated as equivalent to the value “Permit” (as is common in many Web servers). This situation does not usually occur when the PEP intercepts the decision request at the point of execution, but is frequently an issue if the PEP is implemented as a proxy or filter by developers other than those that developed the resource server.

A common example of this behavior is found in Web servers.  Commercial http responders permit a variety of syntaxes to be treated equivalently.  The “%” character can be used to represent characters by hex value.  In the URL path, the character string: “/../” provides multiple ways of specifying the same value.  Multiple character sets may be permitted and in some cases, the same printed character can be represented by different binary values.  If the target-matching algorithm considers two resource strings to be different, and the underlying Web server considers them to be the same, this may result in unauthorized access.

The usual solution to this problem is to put the decision request in a canonical form before matching. There may be practical difficulties with this strategy if the transformations are not completely documented or subject to change without notice from one version to the next.  Therefore, it is important to be aware of this issue and perform careful checking of marginal cases.

10.1.8 Negative rules
A negative rule is one that is based on a predicate not being "True".  If not used with care, negative rules can lead to policy violation, therefore some authorities recommend that they NOT be used.  However, negative rules can be extremely efficient in certain cases, so XACML has chosen to include them. Nevertheless, it is recommended that they be used with care and avoided if possible.

A common use for negative rules is to deny access to an individual or subgroup when their membership in a larger group would otherwise permit them access.  For example, we might want to write a rule that allows all Vice Presidents to see the unpublished financial data, except for Joe, who is only a Ceremonial Vice President and can be indiscreet in his communications.  If we have complete control of the administration of subject attributes, a superior approach would be to define “Vice President” and “Ceremonial Vice President” as distinct groups and then define rules accordingly.  However, in some environments this approach may not be feasible.  (It is worth noting in passing that, generally speaking, referring to individuals in rules does not scale well.  Generally, shared attributes are preferred.)

If not used with care, negative rules can lead to policy violation in two common cases.  They are: when attributes are suppressed and when the base group changes.  An example of suppressed attributes would be if we have a policy that access should be permitted, unless the subject is a credit risk.  If it is possible that the attribute of being a credit risk may be unknown to the PDP for some reason, unauthorized access may be permitted.  In some environments, the subject may be able to suppress the publication of attributes by the application of privacy controls, or the server or repository that contains the information may be unavailable for accidental or intentional reasons.

An example of a changing base group would be if there is a policy that everyone in the engineering department may change software source code, except for secretaries.  Suppose now that the department were to merge with another engineering department and the intent is to maintain the same policy. However, the new department also includes individuals identified as administrative assistants, who ought to be treated in the same way as secretaries.  Unless the policy is altered, they will unintentionally be permitted to change software source code.  Problems of this type are easy to avoid when one individual administers all policies, but when administration is distributed, as XACML allows, this type of situation must be explicitly guarded against.

10.2. Safeguards

10.2.1 Authentication 

Authentication provides the means for one party in a transaction to determine the identity of the other party in the transaction.  Authentication may be in one direction, or it may be bilateral
.

Given the sensitive nature of access control systems, it is important for a PEP to authenticate the identity of the PDP to which it sends decision requests.  Otherwise, there is a risk that an adversary could provide false or invalid authorization decisions, leading to a policy violation.
It is equally important for a PDP to authenticate the identity of the PEP and assess the level of trust to determine what, if any, sensitive data should be passed.  One should keep in mind that even simple "Permit" or "Deny" responses could be exploited if an adversary were allowed to make unlimited requests to a PDP.

Many different techniques may be used to provide authentication, such as co-located code, a private network, a VPN or digital signatures.  Authentication may also be performed as part of the communication protocol used to exchange the contexts.  In this case, authentication may be performed at the message level or at the session level.

10.2.2 Confidentiality   

Confidentiality mechanisms ensure that the contents of a message can be read only by the desired recipients and not by anyone else who encounters the message while it is in transit
.  There are two areas in which confidentiality should be considered: one is confidentiality during transmission; the other is confidentiality within a <Policy> element.

10.2.2.1 Communication confidentiality 

In some environments it is deemed good practice to treat all data within an access control system as confidential.  In other environments, policies may be made freely available for distribution, inspection and audit.  The idea behind keeping policy information secret is to make it more difficult for an adverary to know what steps might be sufficient to obtain unauthorized access. Regardless of the approach chosen, the security of the access control system should not depend on the secrecy of the policy.

Any security concerns or requirements related to transmitting or exchanging XACML <policy> elements are outside the scope of the XACML standard.  While it is often important to ensure that the integrity and confidentiality of <policy> elements is maintained when they are exchanged between two parties, it is left to the implementers to determine the appropriate mechanisms for their environment.
Communications confidentiality can be provided by a confidentiality mechanism, such as SSL.  Using a point-to-point scheme like SSL may lead to other vulnerabilities when one of the recipients of a particular point-to-point hop is compromised.
10.2.2.2 Statement level confidentiality 

In some cases, an implementation may want to encrypt only parts of an XACML <Policy> element.

The XML Encryption Syntax and Processing Candidate Recommendation from W3C can be used to encrypt all or parts of an XML document.  This specification is recommended for use with XACML.

It should go without saying that if a repository is used to facilitate the communication of cleartext (i.e., unencrypted) policy between the PAP and PDP, then a secure repository should be used to store this sensitive data.

10.2.3 Policy integrity

The XACML policy, used by the PDP to evaluate the request context, is the heart of the system.  Therefore, maintaining its integrity is essential.  There are two aspects to maintaining the integrity of the policy.  One is to ensure that <Policy> elements have not been altered since they were originally created by the PAP.  The other is to ensure that <Policy> elements have not been inserted or deleted from the set of policies.

In many cases, both aspects can be achieved by ensuring the integrity of the actors and implementing session-level mechanisms to secure the communication between actors.  The selection of the appropriate mechanisms is left to the implementers.
  However, when policy is distributed between organizations to be acted on at a later time, or when the policy travels with the protected resource, it would be useful to sign the policy.  In these cases, the XML Signature Syntax and Processing standard from W3C is recommended to be used with XACML.

Digital signatures should only be used to ensure the integrity of the statements.  Digital signatures should not be use as a method of selecting or evaluating policy.  That is, the PDP should not request a policy based on who signed it or whether or not it has been signed (as such a basis for selection would, itself, be a matter of policy).  However, the PDP must verify that the key used to sign the policy is one controlled by the purported issuer of the policy.  The means to do this are dependent on the specific signature technology chosen and are outside the scope of this document.

10.2.4 Message freshness

Timestamp or nonce.

10.2.5 Policy identifiers

Since policies can be referenced by their identifiers, it is the responsibility of the PAP to ensure that these are unique.  Confusion between identifiers could lead to misidentification of the applicable policy. This specification is silent on whether a PAP must generate a new identifier when a policy is modified or may use the same identifier in the modified policy.  This is a matter of administrative practice.  However, care must be taken in either case.  If the identifier is reused, there is a danger that other policies or policy sets that reference it may be adversely affected.  Conversely, if a new identifier is used, these other policies may continue to use the prior policy, unless it is deleted.  In either case the results may not be what the policy administrator intends.

10.2.6 Trust model

Discussions of authentication, integrity and confidentiality mechanisms necessarily assume an underlying trust model: how can one actor come to believe that a given key is uniquely associated with a specific, identified actor so that the key can be used to encrypt data for that actor or verify signatures (or other integrity structures) from that actor?  Many different types of trust model exist, including strict hierarchies, distributed authorities, the Web, the bridge and so on.

It is worth considering the relationships between the various actors of the access control system in terms of the interdependencies that do and do not exist.

· None of the entities of the authorization system are dependent on the PEP.  They may collect data from it, for example authentication, but are responsible for verifying it.

· The correct operation of the system depends on the ability of the PEP to actually enforce policy decisions.

· The PEP depends on the PDP to correctly evaluate policies.  This in turn implies that the PDP is supplied with the correct inputs. Other than that, the PDP does not depend on the PEP.
· The PDP depends on the PAP to supply appropriate policies.  The PAP is not dependent on other components.

10.2.7 Privacy

It is important to be aware that any transactions that occur with respect to access control may reveal private information about the actors.   For example, if an XACML policy states that certain data may only be read by subjects with “Gold Card Member” status, then any transaction in which a subject is permitted access to that data leaks information to an adversary about the subject's status.  Privacy considerations may therefore lead to encryption and/or to access control policies surrounding the enforcement of XACML policy instances themselves: confidentiality-protected channels for the request/response protocol messages, protection of subject attributes in storage and in transit, and so on.

Selection and use of privacy mechanisms appropriate to a given environment are outside the scope of XACML.  The decision regarding whether, how and when to deploy such mechanisms is left to the implementers associated with the environment.

10.3. 

10.4. 



10.5. 




10.6. 





10.6.1 


10.6.2 


10.6.3 



10.6.4 

10.6.5 

10.6.6 

11. Conformance (normative)

11.1. Introduction

Conformance claims MAY be made by either one of two components in the XACML model:

1. An implementation of a PAP that produces <Policy> elements that conform with the XACML schema; and

2. An implementation of a PDP that produces authorization decisions in response to a request context on the basis of XACML <Policy> elements that conform with the XACML schema.

PAPs MAY claim conformance with the XACML specification provided merely that they produce schema-compliant policy statements.

PDPs MAY claim conformance with the XACML specification provided that they correctly execute the XACML conformance test suite provided at:

http://www.oasis-open.org/ …

11.2. XACML test suite

An implementation that "successfully uses" the XACML specification MUST pass the test suite.  The test suite comprises three directories:

· Request context

· Policy

· Response context

The input context directory contains a set of text/xml/ xacmlContext:RequestType files that are valid XACML input contexts.

The policy directory contains precisely one XACML policy file whose target is appropriate for each of the input contexts.

The output context directory contains a set of text/xml/ xacmlContext:ResponseType files containing the output contexts that correspond to the input contexts in the input context directory.

A conformant XACML PDP implementation shall create an output context in response to each and every input context.  The output contexts are linked to the corresponding input contexts by the request context ID attribute. [There’s no such thing at the moment.]

XACML implementations that target a specific application domain (e.g., SAML or J2SE) may use a tool or process that is not an integral part of the XACML implementation to convert between the XACML contexts and its private data representation.

Disclaimer: Implementers SHALL NOT consider the test cases provided in the XACML conformance test suite as providing 100% test coverage.  OASIS does not represent that a conformant implementation will operate correctly in all respects nor that it is fit for its purpose.

11.3. Conformance tables

This section lists those portions of the specification that MUST be included in an implementation of a PDP that claims to conform with XACML v1.0.

Note: "M" means mandatory-to-implement.  "O" means optional.
11.3.1 Schema elements

Namespace
Element
M/O

xacml:Policy
AbstractDefaults
?

xacml:Policy
Action
M

xacml:Policy
ActionAttributeDesignator
M

xacml:Policy
ActionMatch
M

xacml:Policy
Actions
M

xacml:Policy
AnyAction
M

xacml:Policy
AnyResource
M

xacml:Policy
AnySubject
M

xacml:Policy
Apply
M

xacml:Policy
AttributeAssignment
O

xacml:Policy
AttributeSelector
O

xacml:Policy
AttributeValue
M

xacml:Policy
Condition
M

xacml:Policy
Description
M

xacml:Policy
EnvironmentAttributeDesignator
M

xacml:Policy
Obligation
O

xacml:Policy
Obligations
O

xacml:Policy
Policy
M

xacml:Policy
PolicyDefaults
?

xacml:Policy
PolicyId
M

xacml:Policy
PolicySet
M

xacml:Policy
PolicySetDefaults
?

xacml:Policy
PolicySetId
M

xacml:Policy
Resource
M

xacml:Policy
ResourceAttributeDesignator
M

xacml:Policy
ResourceMatch
M

xacml:Policy
Resources
M

xacml:Policy
Rule
M

xacml:Policy
Subject
M

xacml:Policy
SubjectAttributeDesignator
M

xacml:Policy
SubjectAttributeDesignatorWhere
M

xacml:Policy
SubjectMatch
M

xacml:Policy
Subjects
M

xacml:Policy
Target
M

xacml:Policy
XPathVersion
O

xacml:Context
Action
M

xacml:Context
Attribute
M

xacml:Context
AttributeValue
M

xacml:Context
Decision
M

xacml:Context
Environment
M

xacml:Context
Obligations
O

xacml:Context
Request
M

xacml:Context
Resource
M

xacml:Context
ResourceContent
O

xacml:Context
Response
M

xacml:Context
Result
M

xacml:Context
Status
O

xacml:Context
StatusCode
O

xacml:Context
StatusDetail
O

xacml:Context
StatusMessage
O

xacml:Context
Subject
M

11.3.2 Algorithms

The implementation MUST include the rule- and policy-combining algorithms marked "M".

Algorithm
M/O

Deny-Overrides
M

First-Applicable
M

Permit-Overrides
M

11.3.3 Identifiers

The implementation MUST properly process those identifiers marked with an "M".

Identifier
M/O

urn:oasis:names:tc:xacml:1.0
M

urn:oasis:names:tc:xacml:1.0:auth-locality:dns-name
M

urn:oasis:names:tc:xacml:1.0:auth-locality:ip-address
O

urn:oasis:names:tc:xacml:1.0:conformance-test
M

urn:oasis:names:tc:xacml:1.0:context
M

urn:oasis:names:tc:xacml:1.0:datatype:numeric
M

urn:oasis:names:tc:xacml:1.0:datatype:rfc822name
M

urn:oasis:names:tc:xacml:1.0:datatype:ufs-path
M

urn:oasis:names:tc:xacml:1.0:datatype:x500name
M

urn:oasis:names:tc:xacml:1.0:environment:current-time
M

urn:oasis:names:tc:xacml:1.0:example:action
O

urn:oasis:names:tc:xacml:1.0:example:action:read
O

urn:oasis:names:tc:xacml:1.0:example:action:xml-ac
O

urn:oasis:names:tc:xacml:1.0:example:attribute
O

urn:oasis:names:tc:xacml:1.0:example:attribute:group
O

urn:oasis:names:tc:xacml:1.0:example:attribute:role
O

urn:oasis:names:tc:xacml:1.0:function
M

urn:oasis:names:tc:xacml:1.0:policy
M

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides
M

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable
M

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides
M

urn:oasis:names:tc:xacml:1.0:resource:resource-location
M

urn:oasis:names:tc:xacml:1.0:resource:resource-uri
M

urn:oasis:names:tc:xacml:1.0:resource:simple-file-name
M

urn:oasis:names:tc:xacml:1.0:resource:xpath


urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides
M

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable
M

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides
M

urn:oasis:names:tc:xacml:1.0:status:missing-attribute
O

urn:oasis:names:tc:xacml:1.0:status:ok
O

urn:oasis:names:tc:xacml:1.0:status:processing-error
O

urn:oasis:names:tc:xacml:1.0:status:syntax-error
O

urn:oasis:names:tc:xacml:1.0:subject:authentication-method
M

urn:oasis:names:tc:xacml:1.0:subject:authentication-time
M

urn:oasis:names:tc:xacml:1.0:subject:key-info
M

urn:oasis:names:tc:xacml:1.0:subject:request-time
M

urn:oasis:names:tc:xacml:1.0:subject:session-start-time
M

urn:oasis:names:tc:xacml:1.0:subject:subject-category
M

urn:oasis:names:tc:xacml:1.0:subject:subject-id
M

urn:oasis:names:tc:xacml:1.0:subject:subject-id-qualifier
M

urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
M

urn:oasis:names:tc:xacml:1.0:subject-category:codebase
O

urn:oasis:names:tc:xacml:1.0:subject-category:intermediary-subject
O

urn:oasis:names:tc:xacml:1.0:subject-category:recipient-subject
O

urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine
O

xs:Gregorian
M

xs:dayTimeDuration
O

xs:yearMonthDuration
O

11.3.4 Function identifier

The implementation MUST properly process those functions marked with an "M".

Function
M/O

function:integer-add
M

function:decimal-add
M

function:add-yearMonthDuration-to-date
O

function:add-yearMonthDuration-to-date
O

function:add-dayTimeDuration-to-time
O

function:add-yearMonthDuration-to dateTime
O

function:add-dayTimeDuration-to-dateTime
O

function:add-yearMonthDurations
O

function:add-dayTimeDurations
O

function:integer-subtract
M

function:decimal-subtract
M

function:date-subtract
O

function:subtract-yearMonthDuration-from-date
O

function:subtract-dayTimeDuration-from-date
O

function:time-subtract
O

function:subtract-dayTimeDuration-from-time
O

function:datetime-subtract
O

function:subtract-yearMonthDuration-from-dateTime
O

function:subtract-dayTimeDuration-from-dateTime
O

function:subtract-yearMonthDurations
O

function:subtract-dayTimeDurations
O

function:integer-multiply
M

function:decimal-multiply
M

function:multiply-yearMonthDurations
O

function:multiply-dayTimeDurations
O

function:integer-divide
M

function:decimal-divide
M

function:divide-yearMonthDurations
O

function:divide-dayTimeDurations
O

function:integer-mod
M

function:decimal-mod
M

function:round
M

function:floor
M

function:abs
M

function:integer
M

function:decimal
M

function:integer-equal
M

function:decimal-equal
M

function:boolean-equal
M

function:string-equal
M

function:rfc822Name-equal
M

function:x500Name-equal
M

function:date-equal
M

function:time-equal
M

function:datetime-equal
M

function:yearMonthDuration-equal
O

function:dayTimeDuration-equal
O

function:gregorian-equal
M

function:hex-binary-equal
M

function:base64-binary-equal
M

function:anyURI-equal
M

function:QName-equal
M

function:NOTATION-equal
M

function:numeric-not-equal
O

function:boolean-not-equal
O

function:string-not-equal
O

function:date-not-equal
O

function:time-not-equal
O

function:datetime-not-equal
O

function:yearMonthDuration-not-equal
O

function:dayTimeDuration-not-equal
O

function:gregorian-not-equal
O

function:hex-binary-not-equal
O

function:base64-binary-not-equal
O

function:anyURI-not-equal
O

function:QName-not-equal
O

function:NOTATION-not-equal
O

function:integer-greater-than
M

function:decimal-greater-than
M

function:string-greater-than
M

function:date-greater-than
M

function:time-greater-than
M

function:datetime-greater-than
M

function:yearMonthDuration-greater-than
O

function:dayTimeDuration-greater-than
O

function:integer-less-than
O

function:decimal-less-than
O

function:string-less-than
O

function:date-less-than
O

function:time-less-than
O

function:datetime-less-than
O

function:yearMonthDuration-less-than
O

function:dayTimeDuration-less-than
O

function:integer-greater-than-or-equal
M

function:decimal-greater-than-or-equal
M

function:string-greater-than-or-equal
M

function:date-greater-than-or-equal
M

function:time-greater-than-or-equal
M

function:datetime-greater-than-or-equal
M

function:yearMonthDuration-greater-than-or-equal
O

function:dayTimeDuration-greater-than-or-equal
O

function:integer-less-than-or-equal
O

function:decimal-less-than-or-equal
O

function:numeric-less-than-or-equal
O

function:date-less-than-or-equal
O

function:time-less-than-or-equal
O

function:datetime-less-than-or-equal
O

function:yearMonthDuration-less-than-or-equal
O

function:dayTimeDuration-less-than-or-equal
O

function:string-match
M

function:rfc822Name-match
M

function:x500Name-match
M

function:and
M

function:ordered-and
M

function:or
M

function:ordered-or
M

function:n-of
M

function:not
M

function:present
M

X-intersection
M

X-union
M

X-member-of
M

X-first
M

X-rest
M

x-length
M

Where "X" can be any supported data type.
12. References

[Hinton94]
Hinton, H, M, Lee,, E, S, The Compatibility of Policies, Proceedings 2nd ACM Conference on Computer and Communications Security, Nov 1994, Fairfax, Virginia, USA.

[LDAP]
RFC2798, Definition of the inetOrgPerson, M. Smith, April 2000 http://www.ietf.org/rfc/rfc2798.txt
[MathML]
Mathematical Markup Language (MathML), Version 2.0, W3C Recommendation, 21 February 2001.  Available at: http://www.w3.org/TR/MathML2/
[Perritt93]
Perritt, H.  Knowbots, Permissions Headers and Contract Law, Conference on Technological Strategies for Protecting Intellectual Property in the Networked Multimedia Environment, April 1993.  Available at: http://www.ifla.org/documents/infopol/copyright/perh2.txt 

[RBAC]
Role-Based Access Controls, David Ferraiolo and Richard Kuhn, 15th National Computer Security Conference, 1992.  Available at: http://csrc.nist.gov/rbac
[RegEx]
XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001, Appendix D.  Available at: http://www.w3.org/TR/xmlschema-0/
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997
[SAML]
Security Assertion Markup Language available from http://www.oasis-open.org/committees/security/#documents

[Sloman94]
Sloman, M.  Policy Driven Management for Distributed Systems.  Journal of Network and Systems Management, Volume 2, part 4.  Plenum Press.  1994.

[XMLSig]
D. Eastlake et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

[XMLSig-XSD]
XML Signature Schema available from http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd. 

[XPath]
XML Path Language (XPath), Version 1.0, W3C Recommendation 16 November 1999.  Available at: http://www.w3.org/TR/xpath
[XSLT]
XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November 1999.  Available at: http://www.w3.org/TR/xslt
Appendix A. Function names and legal type combinations

A.1. Functions

The table in this section lists the legal combinations of datatypes for the various functions. For each function name, the table indicates the valid combination of datatypes and the datatype of the result.

Function name
Return type
First argument
Second argument
Third and subsequent

arguments
Can be used

in <Match>
Can be used

In <Condition>

string-equal
single<xs:boolean>
single<xs:string>
single<xs:string>

yes
yes

boolean-equal
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>

yes
yes

integer-equal
single<xs:boolean>
single<xs:integer>
single<xs:integer>

yes
yes

decimal-equal
single<xs:boolean>
single<xs:decimal>
single<xs:decimal>

yes
yes

date-equal
single<xs:boolean>
single<xs:date>
single<xs:date>

yes
yes

time-equal
single<xs:boolean>
single<xs_time>
single<xs_time>

yes
yes

datetime-equal
single<xs:boolean>
single<xs:dateTime>
single<xs:dateTime>

yes
yes

anyURI-equal
single<xs:boolean>
single<xs:anyURI>
single<xs:anyURI>

yes
yes

Qname-equal
single<xs:boolean>
single<xs:Qname>
single<xs:Qname>

yes
yes

x500Name-equal
single<xs:boolean>
single<x500Name>
single<x500Name>

yes
yes

rfc822Name-equal
single<xs:boolean>
single<rfc822Name>
single<rfc822Name>

yes
yes

NOTATION-equal
single<xs:boolean>
single<xs:NOTATION>
single<xs:NOTATION>

yes
yes

gregorian-equal
single<xs:boolean>
single<xs:gregorian>
single<rfc822Name>

yes
yes

hex-binary-equal
single<xs:boolean>
single<xs:hex-binary>
single<xs:hex-binary>

yes
yes

base64-equal
single<xs:boolean>
single<xs:base64>
single<xs:base64>

yes
yes

integer-add
single<xs:integer>
single<xs:integer>
single<xs:integer>
single<xs:integer>
no
no

decimal-add
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>
no
no

integer-subtract
single<xs:integer>
single<xs:integer>
single<xs:integer>

no
no

decimal-subtract
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>

no
no

integer-multiply
single<xs:integer>
single<xs:integer>
single<xs:integer>

no
no

decimal-multiply
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>

no
no

integer-divide
single<xs:integer>
single<xs:integer>
single<xs:integer>

no
no

decimal-divide
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>

no
no

integer-mod
single<xs:integer>
single<xs:integer>
single<xs:integer>

no
no

decimal-mod
single<xs:decimal>
single<xs:decimal>
single<xs:decimal>

no
no

round
ne_sequence<xs:decimal>
ne_sequence<xs:decimal>


no
no

floor
ne_sequence<xs:decimal>
ne_sequence<xs:decimal>


no
no

abs
ne_sequence<xs:decimal>
ne_sequence<xs:decimal>


no
no

decimal-to-integer
ne_sequence<xs:integer>
ne_sequence<xs:decimal>


no
no

integer-to-decimal
ne_sequence<xs:decimal>
ne_sequence<xs:integer>


no
no

ordered-or
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
no
yes

or
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
no
yes

ordered-and
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
no
yes

and
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
no
yes

not
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
single<xs:boolean>
no
yes

n-of
single<xs:boolean>
single<xs:integer>
single<xs:boolean>
single<xs:boolean>
no
yes

integer-greater-then
single<xs:boolean>
single<xs:integer>
single<xs:integer>

no
yes

integer-greater-then-or-equal
single<xs:boolean>
single<xs:integer>
single<xs:integer>

no
yes

time-greater-then
single<xs:boolean>
single<xs:time>
single<xs:time>

no
yes

time-greater-then-or-equal
single<xs:boolean>
single<xs:time>
single<xs:time>

no
yes

date-greater-then
single<xs:boolean>
single<xs:date>
single<xs:date>

no
yes

date-greater-then-or-equal
single<xs:boolean>
single<xs:date>
single<xs:date>

no
yes

datetime-greater-then
single<xs:boolean>
single<xs:datetime>
single<xs:datetime>

no
yes

datetime-greater-then-or-equal
single<xs:boolean>
single<xs:datetime>
single<xs:datetime>

no
yes

decimal-greater
single<xs:boolean>
single<xs:decimal>
single<xs:decimal>

no
yes

decimal-greater-then-or-equal
single<xs:boolean>
single<xs:decimal>
single<xs:decimal>

no
yes

string-greater
single<xs:boolean>
single<xs:string>
single<xs:string>

no
yes

string-greater-then-or-equal
single<xs:boolean>
single<xs:string>
single<xs:string>

no
yes

string-match
single<xs:boolean>
single<xs:string>
single<xs:string>

yes
yes

x500Name-match
single<xs:boolean>
single<x500Name>
single<x500Name>

yes
yes

rfc822Name-match
single<xs:boolean>
single<rfc822Name>
single<rfc822Name>

yes
yes

present
single<xs:boolean>
single<xs:anyURI>


no
yes

string-intesection
set<xs:string>
set<xs:string>
set<xs:string>

no
no

boolean-intersection
set<xs:boolean>
set<xs:boolean>
set<xs:boolean>

no
no

integer-intersection
set<xs:integer>
set<xs:integer>
set<xs:integer>

no
no

decimal-intersection
set<xs:decimal>
set<xs:decimal>
set<xs:decimal>

no
no

date-intersection
set<xs:date>
set<xs:date>
set<xs:date>

no
no

time-intersection
set<xs_time>
set<xs_time>
set<xs_time>

no
no

dateTime-intersection
set<xs:dateTime>
set<xs:dateTime>
set<xs:dateTime>

no
no

anyURI-intersection
set<xs:anyURI>
set<xs:anyURI>
set<xs:anyURI>

no
no

Qname-intersection
set<xs:Qname>
set<xs:Qname>
set<xs:Qname>

no
no

x500Name-intersection
set<x500Name>
set<x500Name>
set<x500Name>

no
no

rfc822Name-intersection
set<rfc822Name>
set<rfc822Name>
set<rfc822Name>

no
no

NOTATION-intersection
set<xs:NOTATION>
set<xs:NOTATION>
set<xs:NOTATION>

no
no

gregorian-intersection
set<xs:gregorian>
set<xs:gregorian>
set<rfc822Name>

no
no

hex-binary-intersection
set<xs:hex-binary>
set<xs:hex-binary>
set<xs:hex-binary>

no
no

base64-intersection
set<xs:base64>
set<xs:base64>
set<xs:base64>

no
no

date-union
set<xs:date>
set<xs:date>
set<xs:date>

no
no

time-union
set<xs_time>
set<xs_time>
set<xs_time>

no
no

dateTime-union
set<xs:dateTime>
set<xs:dateTime>
set<xs:dateTime>

no
no

anyURI-union
set<xs:anyURI>
set<xs:anyURI>
set<xs:anyURI>

no
no

Qname-union
set<xs:Qname>
set<xs:Qname>
set<xs:Qname>

no
no

x500Name-union
set<x500Name>
set<x500Name>
set<x500Name>

no
no

rfc822Name-union
set<rfc822Name>
set<rfc822Name>
set<rfc822Name>

no
no

NOTATION-union
set<xs:NOTATION>
set<xs:NOTATION>
set<xs:NOTATION>

yes
yes

gregorian-union
set<xs:gregorian>
set<xs:gregorian>
set<rfc822Name>

yes
yes

hex-binary-union
set<xs:hex-binary>
set<xs:hex-binary>
set<xs:hex-binary>

yes
yes

base64-union
set<xs:base64>
set<xs:base64>
set<xs:base64>

yes
yes

date-member-of
single<xs:boolean>
single<xs:date>
set<xs:date>

yes
yes

time-member-of
single<xs:boolean>
single<xs_time>
set<xs_time>

yes
yes

dateTime-member-of
single<xs:boolean>
single<xs:dateTime>
set<xs:dateTime>

yes
yes

anyURI-member-of
single<xs:boolean>
single<xs:anyURI>
set<xs:anyURI>

yes
yes

Qname-member-of
single<xs:boolean>
single<xs:Qname>
set<xs:Qname>

yes
yes

x500Name-member-of
single<xs:boolean>
single<x500Name>
set<x500Name>

yes
yes

rfc822Name-member-of
single<xs:boolean>
single<rfc822Name>
set<rfc822Name>

yes
yes

NOTATION-member-of
single<xs:boolean>
single<xs:NOTATION>
set<xs:NOTATION>

yes
yes

gregorian-member-of
single<xs:boolean>
single<xs:gregorian>
set<rfc822Name>

yes
yes

hex-binary-member-of
single<xs:boolean>
single<xs:hex-binary>
set<xs:hex-binary>

yes
yes

base64-member-of
single<xs:boolean>
single<xs:base64>
set<xs:base64>

yes
yes

date-first
single<xs:date>
ne_sequence<xs:date>


no
no

time-first
single<xs_time>
ne_sequence<xs_time>


no
no

dateTime-first
single<xs:dateTime>
ne_sequence<xs:dateTime>


no
no

anyURI-first
single<xs:anyURI>
ne_sequence<xs:anyURI>


no
no

Qname-first
single<xs:Qname>
ne_sequence<xs:Qname>


no
no

x500Name-first
single<x500Name>
ne_sequence<x500Name>


no
no

rfc822Name-first
single<rfc822Name>
ne_sequence<rfc822Name>


no
no

NOTATION-first
single<xs:NOTATION>
ne_sequence<xs:NOTATION>


no
no

gregorian-first
single<xs:gregorian>
ne_sequence<xs:gregorian>


no
no

hex-binary-first
single<xs:hex-binary>
ne_sequence<xs:hex-binary>


no
no

base64-first
single<xs:base64>
ne_sequence<xs:base64>


no
no

date-rest
sequence<xs:date>
ne_sequence<xs:date>


no
no

time-rest
sequence<xs_time>
ne_sequence<xs_time>


no
no

dateTime-rest
sequence<xs:dateTime>
ne_sequence<xs:dateTime>


no
no

anyURI-rest
sequence<xs:anyURI>
ne_sequence<xs:anyURI>


no
no

Qname-rest
sequence<xs:Qname>
ne_sequence<xs:Qname>


no
no

x500Name-rest
sequence<x500Name>
ne_sequence<x500Name>


no
no

rfc822Name-rest
sequence<rfc822Name>
ne_sequence<rfc822Name>


no
no

NOTATION-rest
sequence<xs:NOTATION>
single<xs:NOTATION>


no
no

gregorian-rest
sequence<xs:gregorian>
single<xs:gregorian>


no
no

hex-binary-rest
sequence<xs:hex-binary>
single<xs:hex-binary>


no
no

base64-rest
sequence<xs:base64>
single<xs:base64>


no
no

date-length
single<xs:integer>
sequence<xs:date>


no
no

time-length
single<xs:integer>
sequence<xs_time>


no
no

dateTime-length
single<xs:integer>
sequence<xs:dateTime>


no
no

anyURI-length
single<xs:integer>
sequence<xs:anyURI>


no
no

Qname-length
single<xs:integer>
sequence<xs:Qname>


no
no

x500Name-length
single<xs:integer>
sequence<x500Name>


no
no

rfc822Name-length
single<xs:integer>
sequence<rfc822Name>


no
no

NOTATION-length
single<xs:integer>
sequence<xs:NOTATION>


no
no

gregorian-length
single<xs:integer>
sequence<xs:gregorian>


no
no

hex-binary-length
single<xs:integer>
sequence<xs:hex-binary>


no
no

base64-length
single<xs:integer>
sequence<xs:base64>


no
no

Appendix B. XACML identifiers (normative)

This section defines standard identifiers for commonly used entities.  All XACML-defined identifiers have the common base:

urn:oasis:names:tc:xacml:1.0

B.1. XACML namespaces

There are currently two defined XACML namespaces.

Policies are defined using this identifier.

urn:oasis:names:tc:xacml:1.0:policy
Input and output contexts are defined using this identifier.

urn:oasis:names:tc:xacml:1.0:context
B.2. Authentication locality

The following identifiers indicate the location where an authentication credentials were activated. They are intended to support the corresponding entities from the SAML authentication statement.

This identifier indicates that the location is expressed as an IP address.

urn:oasis:names:tc:xacml:1.0:authn-locality:ip-address

This identifier indicates that the location is expressed as a DNS name.

urn:oasis:names:tc:xacml:1.0:authn-locality:dns-name

B.3. Access subject categories

This identifier indicates the system entity that is directly requesting access, that is the final entity in a request chain. If subject category is not specified, this is the default value.

urn:oasis:names:tc:xacml:1.0:subjectcategory:access-subject

This identifier indicates the system entity that will receive the results of the request. Used when it is distinct from the access-subject.

urn:oasis:names:tc:xacml:1.0:subjectcategory:recipient-subject
This identifier indicates a system entity through which the request was passed. There may be more than one. No means is provided to specify the order in which they passed the message.
urn:oasis:names:tc:xacml:1.0:subjectcategory:intermediary-subject
This identifier indicates a system entity associated with a local or remote codebase that generated the request. Corresponding subject attributes might include the URLfrom which it was loaded and/or the identity of the code-signer. There may be more than one. No means is provided to specify the order they passed the message.
urn:oasis:names:tc:xacml:1.0:subjectcategory:codebase
This identifier indicates a system entity associated with the computer that initiated the request. An example would be an IPsec identity.
urn:oasis:names:tc:xacml:1.0:subjectcategory:requesting-machine
B.4. XACML functions

This identifier is the base for all the identifiers in the table of functions.  See Appendix A.1.

urn:oasis:names:tc:xacml:1.0:function

B.5. Data types

The following identifiers indicate useful datatypes.

B.5.1. X.500 distinguished name

This identifier indicates an X.500 distinguished name.

urn:oasis:names:tc:xacml:1.0:datatype:x500name
B.5.2. RFC822 Name

This identifier indicates an RFC822-style name.

urn:oasis:names:tc:xacml:1.0:datatype:rfc822name
B.5.3. Unix file-system path

This identifier indicates a UNIX file-system path.

urn:oasis:names:tc:xacml:1.0:datatype:ufs-path

B.5.4. Numeric

This identifier indicates a numeric value.

urn:oasis:names:tc:xacml:1.0:datatype:numeric

The following date identifiers are defined by XML Schema.

http://www.w3.org/2001/XMLSchema:yearMonthDuration

http://www.w3.org/2001/XMLSchema:dayTimeDuration

http://www.w3.org/2001/XMLSchema:Gregorian

B.6. Environment attributes

This identifier indicates the current time at the PDP. In practice it is the time the input context was created.

urn:oasis:names:tc:xacml:1.0:environment:current-time
B.7. Subject attributes

These identifiers indicate attributes of a subject.  At most one of each of these attributes is associated with each subject.  Each attribute associated with authentication relates to the same authentication event.

This identifier indicates the name of the subject.  The default format is xs:string. To indicate other formats, use data type attributes listed in B.5
urn:oasis:names:tc:xacml:1.0:subject:subject-id

This identifier indicates the subject category.  Access-subject is the default.

urn:oasis:names:tc:xacml:1.0:subject:subject-category

This identifier indicates the security domain of the subject.  Identifies the administrator and policy that manages the name-space in which the subject id is administered.

urn:oasis:names:tc:xacml:1.0:subject:subject-id-qualifier

This identifier indicates a public key used to confirm the subject’s identity.

urn:oasis:names:tc:xacml:1.0:subject:key-info

This identifier indicates the time at which the subject was authenticated.

urn:oasis:names:tc:xacml:1.0:subject:authentication-time

This identifier indicates the method used to authenticate the subject.

urn:oasis:names:tc:xacml:1.0:subject:authentication-method

This identifier indicates the time at which the subject initiated the access request, according to the PEP.

urn:oasis:names:tc:xacml:1.0:subject:request-time

This identifier indicates the time at which the subject’s current session began, according to the PEP.

urn:oasis:names:tc:xacml:1.0:subject:session-start-time

Add the LDAP attributes.

B.8. Resource attributes

This identifier indicates the entire URI of the resource.

urn:oasis:names:tc:xacml:1.0:resource:resource-uri

This identifier indicates the last (rightmost) component of the file name. For example,  if the URI is: “file://home/my/status#pointer”, the simple-file-name is "status".)

urn:oasis:names:tc:xacml:1.0:resource:simple-file-name

This identifier indicates that the resource is specified by an XPath expression.

urn:oasis:names:tc:xacml:1.0:resource:xpath

B.9. Status codes

The following status code identifiers are defined.

This identifier indicates success.

urn:oasis:names:tc:xacml:1.0:status:ok

This identifier indicates that attributes necessary to make a policy decision where not available.

urn:oasis:names:tc:xacml:1.0:status:missing-attribute

This identifier indicates that some attribute value contained a syntax error, such as a letter in a numeric field.

urn:oasis:names:tc:xacml:1.0:status:syntax-error

This identifier indicates that an error occurred during policy evaluation. An example would be division by zero.
urn:oasis:names:tc:xacml:1.0:status:processing-error

B.10. Combining algorithms

The deny-overrides rule-combining algorithm has the following value for ruleCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides

The deny-overrides policy-combining algorithm has the following value for policyCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides
The permit-overrides rule-combining algorithm has the following value for ruleCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides
The permit-overrides policy-combining algorithm has the following value for policyCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides

The first-applicable rule-combining algorithm has the following value for ruleCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable
The first-applicable policy-combining algorithm has the following value for policyCombiningAlgId:

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable

B.10. Identifiers used only in XACML conformance tests

All identifiers used in conformance tests will use this identifier as a base.

urn:oasis:names:tc:xacml:1.0:conformance-test

B.11. Attributes used in examples

The following subject attributes are defined for the purpose of giving examples. Application environments are expected to define their own identifiers as needed.

urn:oasis:names:tc:xacml:1.0:example:attribute 

urn:oasis:names:tc:xacml:1.0:example:attribute:group

urn:oasis:names:tc:xacml:1.0:example:attribute:role

B.12. Actions used in examples

This identifier is used as the base for actions used in examples.

urn:oasis:names:tc:xacml:1.0:example:action

urn:oasis:names:tc:xacml:1.0:example:action:xml-ac

Appendix C. Combining algorithms (normative)

This section contains a description of the rule-combining and policy-combining algorithms specified by XACML.

C.1. Deny-overrides

The following specification defines the "Deny Overrides" rule-combining algorithm of a policy.

In the entire set of rules to be evaluated, if any rule evaluates to "Deny", then the result of the rule combination shall be "Deny".  If any rule evaluates to "Permit" and all other rules evaluate to "NotApplicable", then the result of the combination shall be "Permit".  In other words, "Deny" takes precedence, regardless of the result of evaluating any of the other rules in the combination.  If all rules are found to be "NotApplicable" to the decision request, then the rule combination returns "NotApplicable".

If there is any error evaluating the target or condition of a rule that contains an effect of "Deny" then the evaluation continues looking for a result of "Deny".  If no other rule evaluates to a "Deny", then the result of the combination is "Indeterminate".

If at least one rule evaluates to "Permit", all other rules that do not have evaluation errors evaluate to "Permit" or "NotApplicable", and all rules that do have evaluation errors contain effects of "Permit", then the result of the combination shall be "Permit".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision denyOverridesRuleCombiningAlgorithm(Rule rule[])

{


Boolean atLeastOneError  = false;


Boolean potentialDeny    = false;


Boolean atLeastOnePermit = false;


for( i=0 ; i < lengthOf(rules) ; i++ )


{



Decision decision = evaluate(rule[i]);



if (decision == Deny)



{




return Deny;



}



if (decision == Permit)



{




atLeastOnePermit = true;




continue;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




atLeastOneError = true;




if (effect(rule[i]) == Deny)




{





potentialDeny = true;




}




continue;



}


}


if (potentialDeny)


{



return Indeterminate;


}


if (atLeastOnePermit)


{



return Permit;


}


if (atLeastOneError)


{



return Indeterminate;


}


return NotApplicable;

}

The following specification defines the "Deny Overrides" policy-combining algorithm of a policy set.

In the entire set of policies to be evaluated, if any policy evaluates to "Deny", then the result of the policy combination shall be "Deny".  In other words, "Deny" takes precedence, regardless of the result of evaluating any of the other policies in the combination.  If all policies are found to be "NotApplicable" to the decision request, the policy combination returns "NotApplicable".

If there is any error evaluating the target of a policy, or a reference to a policy is considered invalid, or the policy evaluation results in "Indeterminate", then the result of the combination shall be "Deny".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision denyOverridesPolicyCombiningAlgorithm(Policy policy[])

{


Boolean atLeastOnePermit = false;


for( i=0 ; i < lengthOf(policy) ; i++ )


{



Decision decision = evaluate(policy[i]);



if (decision == Deny)



{




return Deny;



}



if (decision == Permit)



{




atLeastOnePermit = true;




continue;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




return Deny;



}


}


if (atLeastOnePermit)


{



return Permit;


}


return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 4.3.2.3.

C.2. Permit-overrides

The following specification defines the "Permit Overrides" rule-combining algorithm of a policy.

In the entire set of rules to be evaluated, if any rule evaluates to "Permit", then the result of the rule combination shall be "Permit".  If any rule evaluates to "Deny" and all other rules evaluate to "NotApplicable", then the result of the combination shall be "Deny".  In other words, "Permit" takes precedence, regardless of the result of evaluating any of the other rules in the combination.  If all rules are found to be "NotApplicable" to the decision request, then the rule combination returns "NotApplicable". 

If there is any error evaluating the target or condition of a rule that contains an effect of "Permit" then the evaluation continues looking for a result of "Permit".  If no other rule evaluates to a "Permit", then the result of the combination is "Indeterminate".

If at least one rule evaluates to "Deny", all other rules that do not have evaluation errors evaluate to "Deny" or "NotApplicable", and all rules that do have evaluation errors contain effects of "Deny", then the result of the combination shall be "Deny".

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision permitOverridesRuleCombiningAlgorithm(Rule rule[])

{


Boolean atLeastOneError  = false;


Boolean potentialPermit  = false;


Boolean atLeastOneDeny   = false;


for( i=0 ; i < lengthOf(rule) ; i++ )


{



Decision decision = evaluate(rule[i]);



if (decision == Deny)



{




atLeastOneDeny = true;




continue;



}



if (decision == Permit)



{




return Permit;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




atLeastOneError = true;




if (effect(rule[i]) == Permit)




{





potentialPermit = true;




}




continue;



}


}


if (potentialPermit)


{



return Indeterminate;


}


if (atLeastOneDeny)


{



return Deny;


}


if (atLeastOneError)


{



return Indeterminate;


}


return NotApplicable;

}

The following specification defines the "Permit Overrides" policy-combining algorithm of a policy set.

In the entire set of policies to be evaluated, if any policy evaluates to "Permit", then the result of the policy combination shall be "Permit".  In other words, "Permit" takes precedence, regardless of the result of evaluating any of the other policies in the combination.  If all policies are found to be "NotApplicable" to the decision request, the policy combination returns "NotApplicable". 

If there is any error evaluating the target of a policy, a reference to a policy is considered invalid, or the policy evaluation results in "Indeterminate", then the result of the combination shall be "Indeterminate" only if no other policies evaluate to "Permit" or "Deny".

The following pseudo-code represents the evaluation strategy of this policy-combining algorithm.

Decision permitOverridesPolicyCombiningAlgorithm(Policy policy[])

{


Boolean atLeastOneError = false;


Boolean atLeastOneDeny  = false;


for( i=0 ; i < lengthOf(policy) ; i++ )


{



Decision decision = evaluate(policy[i]);



if (decision == Deny)



{




atLeastOneDeny = true;




continue;



}



if (decision == Permit)



{




return Permit;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




atLeastOneError = true;




continue;



}


}


if (atLeastOneDeny)


{



return Deny;


}


if (atLeastOneError)


{



return Indeterminate;


}


return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 4.3.2.3.

C.3. First-applicable 

The following specification defines the "First-Applicable " rule-combining algorithm of a policy.

Each rule is evaluated in the order it is listed in the policy.  Of a particular rule, if the target matches and the condition evaluates to "True", the evaluation of the combination shall halt and the corresponding effect of the rule shall be the result of the evaluation of the combination (i.e. "Permit" or "Deny").  Of a particular rule selected in the evaluation, if the target does not matchor the condition evaluates to "False", then the next rule in the order is evaluated.  If no further rule in the order exists, then "NotApplicable" shall be the result of the evaluation of the combination.

If there is any error evaluating the target or condition of a rule then the evaluation shall halt, and the result shall be "Indeterminate" with the appropriate error status.

The following pseudo-code represents the evaluation strategy of this rule-combining algorithm.

Decision firstApplicableEffectRuleCombiningAlgorithm(Rule rule[])

{


for( i = 0 ; i < lengthOf(rule) ; i++ )


{



Decision decision = evaluate(rule[i]);



if (decision == Deny)



{




return Deny;



}



if (decision == Permit)



{




return Permit;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




return Indeterminate;



}


}


return NotApplicable;

}

The following specification defines the "First-Appplicable" policy-combining algorithm of a policy set.

Each policy is evaluated in the order that it appears in the policy set.  Of a particular policy, if the target matches and the policy evaluates to a determinate decision of "Permit" or "Deny", the evaluation shall halt and that effect shall be the result of the evaluation of the combination.  Of a particular policy, if the target does not matchor the policy evaluates to "NotApplicable", then the next policy in the order is evaluated.  If no further policy exists in the order, then "NotApplicable" shall be the result of the evaluation of the combination.

If there is any error evaluating the target or the policy, or a reference to a policy is considered invalid, then the evaluation shall continue looking for an applicable policy, if no applicable policy is found, then the result of the combination is "Indeterminate".

The following pseudo-code represents the evaluation strategy of this policy-combination algorithm.

Decision firstApplicableEffectPolicyCombiningAlgorithm(Policy policy[])

{


Boolean atLeastOneError = false;


for( i = 0 ; i < lengthOf(policy) ; i++ )


{



Decision decision = evaluate(policy[i]);



if(decision == Deny)



{




return Deny;



}



if(decision == Permit)



{




return Permit;



}



if (decision == NotApplicable)



{




continue;



}



if (decision == Indeterminate)



{




atLeastOneError = true;




continue;



}


}


if (atLeastOneError)


{



return Indeterminate;


}


return NotApplicable;

}

Obligations of the individual policies shall be combined as described in Section 4.3.2.3
Appendix D. Acknowledgments

The following individuals were voting members of the XACML committee at the time that this version of the specification was issued:

Affinitex James MacLean JMaclean@affinitex.com 
Crosslogix Ken Yagen kyagen@crosslogix.com 
Crosslogix Daniel Engovatov dengovatov@crosslogix.com 
Entegrity Hal Lockhart hal.lockhart@entegrity.com 
Entrust Carlisle Adams carlisle.adams@entrust.com 
Entrust Tim Moses tim.moses@entrust.com 
Hitachi Don Flinn Don.Flinn@hitachisoftware.com 
Hitachi Konstantin Beznosov konstantin.beznosov@quadrasis.com 
Overxeer Bill Parducci bill.parducci@overxeer.com 
Overxeer Simon Godik simon.godik@overxeer.com 
IBM Michiharu Kudoh kudo@jp.ibm.com
Self Polar Humenn polar@syr.edu 
Sterling Commerce Suresh Damodaran Suresh_Damodaran@stercomm.com 
University of Milan Pierangela Samarati samarati@pinky.crema.unimi.it 
University of Milan Ernesto Damiani edamiani@crema.unimi.it
Sun Microsystems Sekhar Vajjhala sekhar.vajjhala@sun.com
Sun Microsystems Anne Anderson Anne.Anderson@Sun.com 
Xtradyne Gerald Brose Gerald.Brose@xtradyne.com 
Appendix E. Revision history

Rev
Date
By whom
What

V14
14 June 2002
Tim Moses
Added the XACML context schema.  Added the Security and Privacy section.

V15
18 July 2002
Tim Moses
Changed the representation of <Function>

V16
16 Aug 2002
Tim Moses
Updated policy schema, identifiers, combining algorithms.  Deleted LDAP profile.

V16a
10 Sep 2002
Tim Moses
Updated Figure 3, updated "Security and privacy" section and created "Functional requirements" section.

Appendix F. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this specification. For more information consult the online list of claimed rights.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.







� Security and Privacy Considerations for the OASIS Security Assertion Markup Language (SAML) section 4.1


� Security and Privacy Considerations for the OASIS Security Assertion Markup Language (SAML) section 4.





draft-xacml-specification-16a.doc

PAGE  
draft-sstc-core-22

12 December 2001
90
draft-xacml-specification-16a.doc

