

OASIS XACML XML DSig Profile

PROPOSAL 0.1, 15 January 2003

Document identifier:

p-aha-dsigprofile-03.doc

Location:

http://www.oasis-open.org/committees/xacml/repository/
Editor:

Anne Anderson, Sun Microsystems <anne.anderson@sun.com>

Contributors:

Abstract:

This document provides a profile for the use of the W3C XML-Signature Syntax and Processing Standard in providing authentication and integrity protection for XACML schema instances.

Status:

This document is a Proposal submitted by Anne Anderson <anne.anderson@sun.com>
XACML Committee members should send comments on this specification to the xacml@lists.oasis-open.org list. Others should subscribe to and send comments to the xacml-comment@lists.oasis-open.org list. To subscribe, send an email message to xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the XACML TC web page (http://www.oasis-open.org/committees/xacml/).

Table of Contents

1Introduction
3

1.1Terminology
3

2Word Styles
4

2.1Overall Style
4

2.2Title Page
4

2.3Headings
4

2.4Paragraphs
4

2.5Lists
4

2.6Tables
5

2.7Code Examples
5

2.8Character Styles
5

3References
7

3.1Normative
7

1 Introduction

This document provides a profile for use of the W3C XML-Signature Syntax and Processing Standard in protecting OASIS eXtensible Access Control Markup Language [XACML] schema instances. Proper use of can provide authentication and integrity protection for XACML documents; see Sections 9.2.1 Authentication and 9.2.4 Policy integrity for more information about authentication and integrity protection requirements. This profile SHOULD be followed when designing protocols that will involve the transmission of XACML Policy, PolicySet, Request, and Response instances over insecure channels. Consistent use of this profile will increase the portability and interoperability of signed document fragments, as well as ensuring that is being used in a way that provides the intended levels of protection.

1.1 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this profile are to be interpreted as described in [RFC2119].

Other special terms used in this profile are defined below. When these terms occur in the profile, they are display in bold font to indicate that they are to be interpreted according to their definitions in this list.

authentication , message – the property that the association between an XACML document instance and its signature can be verified.

authentication, signer – the property that the identity of the entity that generated a given XACML document instance can be verified to be as claimed.

canonicalization – the process of producing a standard, reproducible representation for a document.

digest - see message digest.

digital signature – see signature.

document – used in this profile to refer to instances of the XACML PolicySet, Policy, Request context, and Response context schemas, as well as to any associated schemas themselves.

enveloped signature – a signature that is included in the document that is being signed.

enveloping signature – a signature that includes the document that is being signed within its <Signature> element.

detached signature – a signature that is not attached to its associated signed document. The signature neither envelopes nor is enveloped by the signed document.

integrity – the property that unauthorized modifications to an XACML document instance can be detected.

manifest – a structure defined by [XMLDSIG] that contains one or more <Reference> elements, but is not part of a <Signature> element. A <Reference> element in a <Signature> element may contain the URL and message digest of a manifest.

message digest – the result of applying a one-way hash function to a stream of bytes. Message digests are described in more detail in Section .

policy – used in this profile to refer to instances of the XACML PolicySet and XACML Policy schemas.

private key – a numeric value that is used, along with the digest of the document to be signed, as input to the signature algorithm. Each private key has one and only one associated public key. The signer of a document must not reveal the value of the private key that was used to create the signature. In fact, it is possible to destroy the private key after a signature has been generated.

public key – a numeric value that is used, along with the signature value of a document, as input to the signature verification algorithm. Each public key has one and only one associated private key. The signer of a document can freely share the value of any public key. The signer must share the value of the public key with any signature verifier in order for verification to be possible. Public keys can be shared securely using Public Key Certificates.

Public Key Certificate – a signed digital structure containing the name of some entity and the value of a public key for which that entity owns the corresponding private key. A Public Key Certificate is signed using a private key for which the public key can be securely obtained, often using a chain of Public Key Certificates.

sign – the process of generating a signature.

signature – a value generated by the application of a private key to an XACML document instance via a cryptographic algorithm such that it has the properties of integrity, message authentication, and/or signer authentication [adapted from Schnier].

static reference – used in this profile to mean use of a <PolicyIdReference> or <PolicySetIdReference> where the policy writer wishes to refer to the snapshot of the referenced policy that existed at the time the referencing policy was written, rather than to the current contents of the referenced policy at the time the policy is to be evaluated.

transform – the process of converting an XML document into a different XML document, often by removing, extracting, and/or re-ordering specified elements from the original XML document. Any enveloped signature must include a transform algorithm that will remove the signature value from the document before the signature value is computed or verified.

verify – the process of checking the signature on a document to verify that the signature and the document are consistent.

2 XML Digital Signature Concepts

[This section is not normative.)

A digital signature is a security mechanism that can provide some of the safeguards described in Section 9.2 of the [XACML] specification. In particular, it can provide a means for authentication of the source of an XACML document and a means for ensuring the integrity of an XACML document.

An XML Digital Signature, as used in this profile, is an XML element that contains

· information about the document that is being signed,

· the digital signature value itself , and

· information required to verify the signature.

In our case, the signed document is an XACML schema instance, hereafter referred to as a document. Other XML documents, such as schemas, may also need to be signed, and are included in the term document.

This first section explains certain concepts from the [XMLDSIG] specification that are needed to understand the application of a digital signature to an XACML document.

2.1 Digital signature

A signature is a value computed using a cryptographic algorithm from a two digital values: the value of a message digest, (see below) computed from the document being signed, and the value of a private key known only to the signer of the document. Associated with the private key is a public key that the signer may freely distribute to potential verifiers of documents signed using the private key. Public key values are usually distributed in the form of Public Key Certificates.

 The cryptographic algorithms used in generating a signature give the signature several useful properties:

1. it is relatively easy to compute the signature value,

2. it is relatively easy to compute the message digest from the signature value and the corresponding public key,

3. it is extremely difficult to determine the value of the private key, given the signature value and the document or its message digest.

Since there are several commonly used algorithms used for generating digital signatures, a well-known identifier for the algorithm used is included in the Signature element.

2.2 Message digest

A message digest is a value computed using another cryptographic algorithm from a digital representation of a document. The cryptographic algorithms used in generating a message digest t give the digest value several useful properties:

1. the digest value is relatively short,

2. the digest value is relatively easy to compute,

3. any change to the digital representation of the document, even by so much as one bit, will cause the digest computed from the document to have a different value,

4. it is extremely difficult to generate a document that will have a given digest value, so difficult that huge numbers of hours on incredibly powerful computers would be required.

Since there are several commonly used algorithms used for generating message digests, a well-known identifier for the algorithm used is included in the Signature element.

2.3 Signature verification

Together, the properties of the message digest and the signature mean that the receiver of a document and its associated signature can relatively easily verify that the signature goes with the provided document, that the signature was generated using the private key associated with the known public key, and that the document has not been modified since the signature was generated. If the public key is provided in a Public Key Certificate, there are similar ways to verify that the private key is owned by a particular identity.

The document, the signature, and the Public Key Certificate may be stored separately and retrieved separately by the verifier. No additional protection of the channels by which these three items are transmitted are required in order to preserve the ability to perform verification of message authentication, signer authentication, and integrity.

2.4 Canonicalization

Remember that even a one bit difference in the value of the document will result in a different message digest . This means that the value of the document represented as an octet stream used by the signer must be exactly identical to value of the document used by the verifier. But the same XML document may exist in many different forms: it may be encoded using a different character set, it may be presented in a processed form (such as a DOM or SAX representation), or certain values in the document, such as QNames or default XML attribute values, may be represented in different ways.

In order to ensure that the digital representation of the document used by the verifier is identical to the digital representation used by the signer, the signer processes the document using a standard canonicalization method. A canonicalization method is a procedure that expresses all information in a document in a standard, invariable way. The canonicalization method used by the signer is identified in the Signature element so that the signature verifier can canonicalize the document in the same way.

2.5 Signature Element format

The [XMLDSIG] Signature element has the following structure (where "?" denotes zero or one occurrence; "+" denotes one or more occurrences; and "*" denotes zero or more occurrences):.

<Signature ID?>

 <SignedInfo>

 <CanonicalizationMethod/>

 <SignatureMethod/>

 <Reference URI? >

 <Transforms/>?

 <DigestMethod/>

 <DigestValue/>

 </Reference>+

 </SignedInfo>

 <SignatureValue/>

 <KeyInfo/>?

 <Object ID?/>*

 </Signature>

The <Signature> element encompasses the digital signature. The <Signature> element may or may not include the document being signed. This will be described below in Section .

The <SignedInfo> element is the information that is actually signed. First, the canonicalization algorithm specified in the <CanonicalizationMethod> element is applied to the <SignedInfo> element to produce a stream of octet values. Then the message digest algorithm specified in the <SignatureMethod> element is applied to that stream of octet values, producing a message digest. Finally, the signature algorithm specified in the <SignatureMethod> is applied to that message digest. The resulting signature value is placed into the <SignatureValue> element.

The <CanonicalizationMethod> element contains the identifier of the canonicalization algorithm that is to be applied to the <SignedInfo> element. The result of this canonicalization should be a stream of octets that will be identical for a given <SignedInfo> element value, regardless of its representation.

The <SignatureMethod> element contains the identifiers of the signature and message digest algorithms. Each well-known algorithm has a well-known identifier. The <SignatureMethod> element> also contains the values of any parameters required by the chosen algorithms.

<SignedInfo> may contain any number of <Reference> elements. Each <Reference> element describes one document and the message digest of the document contents. Once the signature value of the <SignedInfo> element has been verified, the verifier can verify that any document included in a <Reference> element in that <SignedInfo> has not been modified since the digest value included in the <Reference> element was computed. The verifier does this by independently computing the message digest value for the document and comparing the resulting value with the value in the <SignedInfo>'s <Reference> element. If they match, then the document has not been changed and is the document that the signer intended to reference.

2.6 XMLDSig Signature Types

[XMLDSIG] Supports four ways of using signatures.

4. Enveloped Signature: The <Reference> points to the document that contains the <SignedInfo> element itself. In this case, the transform algorithm must remove the signature value from the document before a message digest is calculated, since the signature will not be known until the document is digested, but once the signature is inserted, the digest of the document will change.

5. Enveloping Signature: The <Reference> points to an <Object> element that is included in the <Signature> element itself. This allows a <Signature> to be a wrapper, or envelope, around one or more signed documents.

6. Detached Signature: The <Reference> points to a document that is external to the <Signature> element. This way of using signatures allows a <Signature> element to be transported to a verifier independently from the document that has been signed.

7. Signed Manifest:: The <Reference> element points to a special [XMLDSIG]-defined Element called a Manifest. A Manifest is similar to a <SignedInfo> element in that it contains one or more <Reference> elements. The difference is that the rules for <SignedInfo> require that every document in its <Reference> elements must be retrieved and their message digests verified as part of the verification of the <SignedInfo> signature. With a Manifest, it is up to the application to decide which document message digest values must be verified, and when. This makes a Manifest useful when the verifier may not want to retrieve and verify every referenced document.

3 XACML XMLDSig Profile

(This section is normative.)

3.1 Signature type

The only XMLDSig signature type that MAY NOT be used with an XACML document is the enveloped signature. This is because there is no element defined in the XACML schema that can contain a signature that is embedded inside an XACML schema instance document.

3.2 Namespace elements in XACML documents

Any XACML document that is to be signed MUST specify all namespace elements used in the document. If this is not done, then the document will attract namespace definitions from ancestors of the document that may differ from one envelope to another.

3.3 Namespace elements in signatures

Since <Signature> elements are usually embedded in some protocol envelope, any <Signature> element MUST specify all namespace elements used in the <Signature>. If this is not done, then the <Signature> will attract namespace definitions from ancestors of the <Signature> that may differ from one envelope to another.

3.4 CanonicalizationMethod

The <CanonicalizationMethod> element in a <Signature> defines how the <SignedInfo> element itself is to be canonicalized prior to being digested. The <SignedInfo> element must be converted into a specific, reproducible representation as an octet string in order for the signature verifier and the signature signer to produce the same message digest for the <SignedInfo> element.

Signatures for XACML documents SHOULD use either Canonical XML (omits comments) (http://www.w3.org/TR/2001/REC-xml-c14n-20010315) or Canonical XML with Comments (http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments).

Support for these two canonicalization algorithms are required in any conforming XML DSig implementation. Use of just these two algorithms will ensure that any PDP that supports standard XML DSig will be able to canonicalize the document correctly in order to verify the signature.

3.5 Transform methods

The <Transforms> element in a <Reference> defines canonicalizations and other transformations of the referenced document that must be performed prior to being digested. The referenced document must be converted into a specific, reproducible representation as an octet string in order for the signature verifier and the signature signer to produce the same message digest for the referenced element.

Every <Signature> for an XACML document SHOULD contain either Canonical XML (omits comments) (http://www.w3.org/TR/2001/REC-xml-c14n-20010315) or Canonical XML with Comments (http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments) as a transform method.

f the document being signed is Base64-encoded, then the Base64 Transform (http://www.w3.org/2000/09/xmldsig#base64) SHOULD be used first.

If any XPath expressions are used in an XACML document, then the XPath Filtering Transform (http://www.w3.org/TR/1999/REC-xpath-19991116) SHOULD be used.

Support for the two specific transform methods is RECOMMENDED for conforming XML DSig implementations, and support for the first method, which is also a canonicalization method, is required. Use of just these three transforms will make it much more likely that any PDP that supports standard XML DSig will be able to transform the document correctly in order to verify the signature.

If an XACML document includes data elements that may be represented in more than one form (such as (TRUE, FALSE), (1,0), (true,false)), then a Transform method MUST be defined and specified for normalizing those data elements. If this is not done, the signer and the verifier may end up digesting different octet streams, and the signature verification will fail.

3.6 Message Digest algorithms

There is only one message digest algorithm that is required for all conforming XMLDSig implementations: SHA-1, which has identifier http://www.w3.org/2000/09/xmldsig#sha1.

Use of this message digest algorithm is recommended for signatures of XACML documents.

3.7 Signature algorithms

There are two signature algorithms described in the XMLDSig specification: DSA, which has identifier http://www.w3.org/2000/09/xmldsig#dsa-sha1, and PKCS1 (RSA-SHA1), which has identifier http://www.w3.org/2000/09/xmldsig#rsa-sha1.

While neither of these algorithms is required for conforming XMLDSig implementations, they are the algorithms most likely to be supported, and so use of one of them in signing XACML documents is recommended.

3.8 Use of a Manifest

See the next two sections for a description of cases in which a Manifest may be appropriate.

3.9 Signing schemas

The parsing of any XACML document depends on having an accurate copy of all schemas on which the XACML document depends. Note that the inclusion of a schema URI in the XACML document element attributes does not guarantee that an accurate copy of the schema will be used: an attacker may substitute a bogus schema that contains the same identifier as the correct schema. Signatures can help protect against substitution or modification of the schemas on which an XACML document depends. Use of signatures for this purpose are described in this section.

In most cases, a document signer SHOULD include a <Reference> element for each schema on which the XACML document depends in the <SignedInfo> element that contains the <Reference> to the XACML document itself.

In some cases, the document signer knows that all PDPs that will evaluate a given XACML document will have accurate copies of certain schemas needed to parse the document, and does not want to force the PDP to verify the message digest for such schemas. In these cases the document signer MAY omit <Reference> elements for any schema whose verification is not needed.

If the document signer does not know for which schemas a PDP will have an accurate copy, then the <SignedInfo> element that contains the <Reference> to the XACML document itself SHOULD contain a <Reference> to a <Manifest> element that, in turn, contains a <References> to each schema on needed to parse the XACML document. Use of a Manifest allows a PDP to verify the signature on only those schemas for which the accuracy may be in question.

3.10 Integrity protection for referenced external policies

A policy signer must know the intent of the policy writer in determining how to generate a signature for a policy that contains references to other, external documents via the XACML <PolicySetIdReference> and <PolicyIdReference> elements.

In many cases, a policy writer wishes to reference the current version of another policy. This can be done by using the URL of the other policy in a <PolicyIdReference> or <PolicySetIdReference> element. Signing the referencing policy does not depend on the contents of the referenced policies, so the current version of the referenced policy may be used without affecting the verification of the referencing policy.

In other cases, a policy writer wishes to reference a specific snapshot of the contents of another policy. We will call this a static reference. This can be done in either of two ways. The most straightforward way is to include the desired contents of the other policy as a <PolicySet> or <Policy> element. The alternative way is to use the URL of the other policy in a <PolicyIdReference> or <PolicySetIdReference> element, and then to sign the referencing policy in such a way that the signature includes the message digest of the referenced policy contents. This second alternative is described in the rest of this section.

The recommended way of signing a policy along with one or more static references is to use a Manifest. The <Manifest> element SHOULD contain a <Reference> element for each static reference in the original referencing policy. The <Reference> element for the original referencing policy MAY be in either the <Manifest> or in the <Signature> element.

The advantage of including the <Reference> for the original referencing policy in the Manifest is that the Manifest then becomes a package defining the policy and its static references. The disadvantage of including the original referencing policy in the Manifest is that verification of the <Signature> will not automatically include retrieval and verification of the original referencing policy, and this is almost always desired.

If the policy writer knows that every static reference must be retrieved as part of policy evaluation, or if the policy writer wishes to confirm that static references have not changed even if they are not used during evaluation, then a Manifest is not needed. In this case, the policy signer can include a <Reference> element for each static reference inside the <Signature> element of the original referencing policy itself , along with the <Reference> element for the original referencing policy.

4 Examples

{This section is NOT normative.}

4.1 Basic signature for Policy1

This example shows a detached signature for a <Policy> instance named “Policy1”.

 <Signature Id="Policy1Signature"

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

 <Reference

 URI="http://www.sun.com/policies/Policy1.xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>?????</SignatureValue>

 <KeyInfo>

 <KeyValue>

 <DSAKeyValue>

 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y>

 </DSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

4.2 Basic signature for PolicySet1 and Policy1

This example shows a detached signature for a <PolicySet> instance named “PolicySet1” that contains a <PolicyIdReference> to a <Policy> instance named “Policy1”. A Manifest is not used in this example.

 <Signature Id="PolicySet1Policy1Signature"

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

 <Reference

 URI="http://www.sun.com/policies/PolicySet1.xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 <Reference

 URI="http://www.sun.com/policies/Policy1.xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>?????</SignatureValue>

 <KeyInfo>

 <KeyValue>

 <DSAKeyValue>

 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y>

 </DSAKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

4.3 Enveloping signature for Manifest for PolicySet1 and Policy1

This example shows an enveloping signature for a Manifest. The Manifest includes <Reference> elements for a <PolicySet> instance named “PolicySet1” and for a <Policy> named “Policy1” that is referenced from “PolicySet1”. Note that the Manifest could have been kept as a separate XML document, and not included in the <Signature> element.

 <Signature Id="PolicySet1Policy1ManifestSignature"

 xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod

 Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

 <Reference

 URI="#PolicySet1Policy1Manifest">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>?????</SignatureValue>

 <KeyInfo>

 <KeyValue>

 <DSAKeyValue>

 <P>?????</P><Q>?????</Q><G>?????</G><Y>?????</Y>

 </DSAKeyValue>

 </KeyValue>

 </KeyInfo>

 <Object>

 <Manifest Id="PolicySet1Policy1Manifest">

 <Reference

 URI="http://www.sun.com/policies/PolicySet1.xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 <Reference

 URI="http://www.sun.com/policies/Policy1.xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>?????</DigestValue>

 </Reference>

 </Manifest>

 </Object>

 </Signature>

5 References

5.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XACML]
S. Godik, T. Moses, OASIS eXtensible Access Control Markup Language (XACML), Committee Specification Version 1.0 (Revision 1), http://www.oasis-open.org/committees/xacml/repository/cs-xacml-specification-01.doc or http://www.oasis-open.org/committees/xacml/repository/cs-xacml-specification-01.pdf, 12 December 2002.

http://www.w3.org/TR/xmldsig-core, [XMLDSIG]
D. Eastlake, et al., W3C XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Jane Doe, Example Corp.

· A. Nonymous (chair), Example Corp.

· John Smith, Example Corp.

· Karl Best, OASIS

· John Doe, Other Examples, Inc.

· Eve Maler, Sun Microsystems

· Norman Walsh, Sun Microsystems

In addition, the following people made contributions to this specification:

· Joe Blow, Example Corp.

Appendix B. Revision History

Rev
Date
By Whom
What

p-03
2003-01-15
Anne Anderson
Initial version

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

p-aha-dsigprofile-03

15 January 200e

Copyright © OASIS Open 2003. All Rights Reserved.

Page 18 of 18

