
A technical comparison of WS-Policy framework and XACML

General

XACML is focused on the evaluation of policy by a PDP. Consequently, the combining algorithms defined by XACML all return a Boolean result (setting aside error conditions). This is required for the Web-services architecture, in which a service-provider must test a service-request against its policy in order to decide whether to process it or not, and a service-consumer must test a service-response against its own policy in order to decide whether to process it or not.

However, the Web-services architecture introduces another use for policy: the service-consumer must combine its own policy for service-requests with that of the service-provider in order to form a request that simultaneously satisfies its own policy and that of the service-provider, and the service-provider must combine its own policy for responses with that of the service-consumer in order to form a response that simultaneously satisfies its own policy and that of the service consumer. Therefore, the XACML-defined combining algorithms have to be extended to serve this additional purpose. In this case, the result of the combining-algorithm is not a Boolean, but a definitive policy statement that is devoid of options.

Some of the principal artifacts of XACML and the corresponding ones in the WS Policy Framework are:

	XACML
	WS Policy framework

	Target
	Policy attachment

	Policy set
	Policy inclusion

	XACML Policy
	WSPF Policy

	Rule
	Policy assertion

	Effect
	Usage/Preference

	Rule combining algorithm
	Compositor

Target

XACML Policy and Rule include Target. This is principally intended for rapid indexing, which is important when policies are published in ODBC, LDAP or HTTP. When policies are published in WSDL or SOAP, the target is indicated by the location of the policy, so a target is not required. As currently specified, syntactically, Target may be omitted from Rule, but not from XACML Policy.

Policy set

XACML defines a construct called Policy set, which can be used to assign a single target to multiple XACML Policies.

WS Policy framework supports “policy inclusion”, a technique which allows a policy to be referenced from another policy. A specific policy (as opposed to a named policy) may be referenced by its digest.

Obligations

Obligations are an optional part of XACML. So, I won’t address them here.

XACML Policy

XACML Policy is essentially a set of rules and the identifier of the algorithm to be used for combining those rules.

WSPF Policy is a recursive group of elements. It allows unlimited nesting of the operators “OneOrMore”, “All” and “ExactlyOne”, ending in references to policy assertions.

“OneOrMore” is equivalent to the XACML “or” function. “All” is equivalent to the XACML “and” function. “ExactlyOne” is equivalent to “exclusive-or”, which XACML has not defined.

Elements in the WSPF Policy group carry Usage/Preference attributes that modify the semantics of the operators.

The semantics of the operators and Usage/Preference attributes are defined in plain-language in the specification.

Rule

A rule is an arbitrarily complex predicate plus the effect of the rule in the event that the predicate is true. The rule operates on attributes that have to be defined in application-specific profiles.

Policy assertion is not defined in the WS Policy framework. Application-specific assertions have to be defined in profiles.

The WS Policy framework allows policy assertions to be declarative or conditional, whereas XACML rules have to be expressed in a conditional form. A declarative statement is simply an unadorned attribute type/value(s) pair, whereas, the equivalent conditional statement expresses the attribute as a predicate.

As an example, a conditional statement might be: “If you communicate with me in either English or French, I will respond”. The same statement in a declarative form would be: “I support the languages English and French”.

Declarative statements can be expressed in the conditional form. So, there is no real benefit in supporting the declarative form. The more expressive conditional form is preferable, because it leaves less to be defined in profiles.

Effect

Effect is an attribute of a rule that modifies the combining algorithm. Similarly, in the WS Policy framework, Usage/Preference modifies the composition algorithm. The semantics of Usage and Preference are fixed. Usage is an enumeration of: Required, Optional, Rejected, Ignored and Observed. The first three can be represented in propositional logic (“and”, “or” and “not”), and the benefit of splitting the logic system across the operators and Usage is questionable: it can only be detrimental to analysis.

If XACML were to support preference, it would affect the extended combining algorithms discussed in the section entitled “General”, above.

Rule-combining algorithm

XACML combining algorithms are formally defined and extensible, whereas the WS Policy framework composition algorithm is informally-defined and inextensible.

Conclusions

There is fairly close correspondence between some of the principal artifacts in XACML and WS Policy framework.

XACML is more thoroughly defined and more thoroughly validated than the WS Policy framework.

The extensibility offered by the XACML combining algorithm increases the probability that it can adapt to unexpected situations better than the WS Policy framework.

Additional work for XACML

In order to address the needs of the Web-services architecture, some modifications to XACML are required. The main ones are:

1. Allow the Target in Policy to be omitted for cases where the policy’s target can be deduced from its location.

2. Augment the policy-combining algorithms with procedures for deriving a “definitive form” (as opposed to a decision) from two or more policies.

29 Jan 2003

1

