

Evaluating XACML as a Policy Language

Working Draft 03, 24 March 2003

Document identifier:

wd-xacml-wspleval-03

Location:

http://lists.oasis-open.org/archives/xacml
Editor:

Anne Anderson, Sun Microsystems <Anne.Anderson@sun.com>

Contributors:

Abstract:

This document describes a way of evaluating XACML Policy and PolicySet elements in order to extract sets of attributes that conform to the policy.

Status:

This version of the specification is a working draft of the committee. As such, it is expected to change prior to adoption as an OASIS standard.

Committee members should send comments on this specification to the xacml@lists.oasis-open.org list. Others should subscribe to and send comments to the xacml-comment@lists.oasis-open.org list. To subscribe, send an email message to xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the XACML TC web page (http://www.oasis-open.org/committees/xacml/).

Table of Contents

1.Introduction
3

2.Glossary
4

3.Model
5

3.1.XACML Request Schema
5

3.2.Extracting Satisfying Sets from an Initial Policy
5

3.3.Evaluating an Additional Policy using Satisfying Sets
6

3.4.Constructing a Request or Response
7

4.Restricting an XACML Policy
8

5.Comparison to [PSCR]
9

6.References
10

1. Introduction

An XACML Policy or PolicySet element may be evaluated in several ways. In the XACML OASIS Standard Version 1.0 [XACML], an evaluation method is specified for the purpose of determining whether a given set of attributes satisfies a policy. Such an evaluation method is appropriate for a service provider to use prior to granting access to a resource. In this document, a second evaluation method is specified, in which an XACML Policy or PolicySet element is evaluated for the purpose of determining one or more sets of attributes that satisfy the policy. The results of this initial evaluation may then applied to additional policies until a set of attributes satisfying all policies is returned. This second evaluation method is appropriate for a consumer to use in determining how to construct a request to a given provider, and also for a provider to use in determining how to construct a response to a given consumer. It is also appropriate for an entity to use in determining attributes that satisfy multiple policies, such as the evaluator's personal preferences policy and the evaluator's organizational policy. For more information about the use-cases and requirements motivating this second model of evaluation, see [WSPLReqs].

This document describes this additional way of evaluating one or more XACML Policy or PolicySet elements.

2. Glossary

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

Additional Policy – a Policy or PolicySet representing a policy that must be satisfied in addition to the Initial Policy.

Disjunctive Normal Form – a Boolean predicate that is written in the form of an OR of AND predicates. Any Boolean predicate can be re-written as an equivalent predicate that is in Disjunctive Normal Form.

Initial Policy – a Policy or PolicySet instance representing the first policy that must be satisfied.

Pre-Condition Attributes – Attributes whose values the policy evaluator knows ahead of time and considers invariant for this type of transaction.

Satisfying Set - a set of Attributes that satisfies a given policy or policies. Satisfying Sets are ordered according to the evaluator's preferences.

3. Model

1.1. XACML Request Schema

In this model of evaluation, the semantics of the XACML Policy or PolicySet are the same as those specified in [XACML] with one exception. In [XACML], there is no priority or preference attached to the order in which policies, rules, and condition predicates are specified. In this model, policies, rules, and condition predicates are assumed to be specified in order of priority or preference, with more preferred or higher priority elements specified before less preferred or lower priority elements.

1.2. Extracting Satisfying Sets from an Initial Policy

The method of evaluation for this model starts with an Initial Policy – the first of possibly several Policy or PolicySet instances that must be satisfied – and a set of Pre-Condition Attribute values. Pre-Condition Attributes are those that the policy evaluator considers invariant for this type of transaction (such as the destination address of the transaction or the identity of the originator). The set of Pre-Condition Attribute values may be empty.

The goal of the evaluation is to produce one or more Satisfying Sets – sets of Attribute values that satisfy the Initial Policy. Pre-Condition Attribute values narrow the Satisfying Sets to those that satisfy the specified values of the Pre-Condition Attributes. Satisfying Sets are ordered according to the policy evaluator's preferences, with earlier Sets representing more-preferred combinations of Attribute values than subsequent Sets.

An algorithm follows for extracting Satisfying Sets from an Initial Policy. This algorithm is supplied as a proof-of-concept only: the evaluation method used need not implement this algorithm so long as the result is equivalent.

1. Re-write the Initial Policy or PolicySet as a tree of Boolean predicates using the following transformations. The resulting tree should be annotated to distinguish predicates derived from MatchId elements and top-level predicates derived from combining algorithms. Each leaf in the tree should also be annotated to indicate the Effect of the Rule from which the leaf was constructed. These annotations will be used to facilitate special processing based on the combining algorithms involved.

· <PolicySet> = PCAlg (<Target>, <Policy or PolicySet>[1], ...<Policy or PolicySet>[n]), where PCAlg depends on the Policy Combining Algorithm as follows:

PermitOverrides = OR

DenyOverrides = AND

FirstApplicable = OR

Only-one-applicable = OR

· <Policy> = RCAlg (<Target>, <Policy>[1], ...<Policy>[n]), where RCAlg depends on the Rule Combining Algorithm as follows:

PermitOverrides = OR

DenyOverrides = AND

FirstApplicable = OR

· <Rule> = AND (<Target>, <Condition>)

· <Target> = AND (<Subjects>, <Resources>, <Actions>)

· <Subjects> = OR (<Subject>[1], <Subject>[2], ..., <Subject>[n])

· <Subject> = AND (<SubjectMatch>[1], <SubjectMatch>[2], ... <SubjectMatch>[n])

· <Resources> = AND (<ResourceMatch>[1], <ResourceMatch>[2], ... <ResourceMatch>[n])

· <Actions> = AND (<ActionMatch>[1], <ActionMatch>[2], ...<ActionMatch>[n])

· <AnySubject> = TRUE

· <AnyResource> = TRUE

· <AnyAction> = TRUE

· <Condition>: If FunctionId is a Logical function, then <Condition> = FunctionId (Predicate[1], ..., Predicate[n]). Otherwise, <Condition> is left unevaluated.

· <Apply> = If FunctionId is a Logical function, then <Apply> = FunctionId (Predicate[1], ... Predicate[n]). Otherwise, <Apply> is left unevaluated.

2. Using standard techniques, rewrite the tree in Disjunctive Normal Form (an OR of AND's), preserving the order of the predicates and the annotations.

3. Construct an xacml-context:Request instance containing the values of the Pre-Condition Attributes.

4. For each AND in the rewritten tree, initialize a new xacml-context:Request instance containing the values of the Pre-Condition Attributes. Evaluate the AND against this xacml-context:Request, augmenting the Request instance with additional Attribute values called for by the predicates in the AND. If an AttributeDesignator results in a non-singleton bag, then the AND must be evaluated separately for each value in the bag (except where the AttributeDesignator is the “all” argument to an all-of, all-of-any, any-of-all, or all-of-all function).

5. For each AND that evaluates to TRUE where the Effect is “Permit”, test the resulting xacml-context:Request against the Initial Policy. If the Initial Policy returns “Permit”, then the resulting xacml-context:Request is a Satisfying Set. The first such Satisfying Set is the most-preferred set of Attributes, and the last is the least preferred.

Many optimizations to this procedure should be fairly obvious. In particular, usually only the first Satisfying Set will be required, so evaluation can terminate or be interrupted after the first such set has been determined.

1.3. Evaluating an Additional Policy using Satisfying Sets

In many cases, multiple policies must be satisfied. For example, the originator of a transaction will want to test the originator's Satisfying Sets against the policy associated with the destination of the transaction in order to find a mutually acceptable Satisfying Set.

Additional policies narrow the Satisfying Sets derived from the Initial Policy – they never add additional Satisfying Sets.

The Satisfying Sets derived from the Initial Policy are evaluated in turn against the Additional Policy. Any set that fails to satisfy the Additional Policy (i.e. result in “Permit”) is removed from the set of Satisfying Sets.

All Satisfying Sets that remain satisfy both policies. If no Satisfying Set satisfies the Additional Policy, then there is no mutually compatible policy.

This procedure can be extended to cover any number of policies that must be satisfied.

1.4. Constructing a Request or Response

Once the policy evaluator has a Satisfying Set that satisfies all relevant policies, the evaluator is free to construct a transaction request or response using values from the first Satisfying Set. Based on the AttributeId, some of the Attributes in the Satisfying Set will be interpreted as directives to the transaction originator, such as the encryption algorithm or key-length to use. Other Attributes will be passed as part of the actual protocol request.

If, for some reason, the values from the first Satisfying Set are not acceptable, then the next Satisfying Set may be used, and so on.

4. Restricting an XACML Policy

Several restrictions on the content of XACML policies may be considered in order to simplify the construction of Satisfying Sets. None of these restrictions is necessary in order to correctly evaluate an XACML Policy or PolicySet according to the model described here, but they may make the evaluation more efficient. If restrictions need to be applied, then they should be limited to the minimum set necessary to make evaluating XACML Policies tractable.

The following restriction in particular may be useful:

1. Construct Initial Policies using the Permit-Overrides combining algorithm and “and” FunctionIds between predicates. This effectively eliminates the need for re-writing the policy in Disjunctive Normal Form since the policy will already be in that form.

5. Comparison to [PSCR]
[PSCR] should be considered a restricted form of this proposal. The advantage of starting with the unrestricted evaluation model presented here is that the same XACML policies can be used for both access control and for other types of policy decisions.

2. References

[PSCR]

T. Moses, Policy statement combination and reduction using XACML, http://lists.oasis-open.org/archives/xacml/200303/msg00012.html, OASIS XACML TC Working Draft 01, 21 March 2003.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[WSPLReqs]
T. Moses, editor, Web-services policy language use-cases and requirements, http://lists.oasis-open.org/archives/xacml/200303/msg00056.html, OASIS XACML TC, 7 March 2003.

[XACML]
S. Godik, T. Moses, editors, eXtensible Access Control Markup Language (XACML) Version 1.0, http://www.oasis-open.org/committees/xacml/repository/oasis-xacml-1.0.pdf, OASIS Standard, 18 February 2003.

Acknowledgments

The following individuals were members of the committee during the development of this specification:

Revision History

Rev
Date
By Whom
What

wd-01
03/18/03
Anne Anderson
Initial version

wd-02
03/19/03
Anne Anderson
Fix section numbering

wd-03
03/24/03
Anne Anderson
Simplify evaluation of Initial Policy. Simplify terminology.

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2003. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�The �HYPERLINK ""��javax.wbem.query.QueryExp� class, described at �HYPERLINK "http://wbemservices.sourceforge.net/WBEMSDKDG_html/p25.html"��http://wbemservices.sourceforge.net/WBEMSDKDG_html/p25.html�, contains a method, “canonizeDOC”, that could be modified to convert an XACML parse tree converted into Boolean predicates as described above into Disjunctive Normal Form.

wd-xacml-wspleval-03

24 March 2003

Copyright © OASIS Open 2003. All Rights Reserved.

Page 13 of 13

