
Polar Humenn DRAFT Syracuse University

The Formal Semantics of XACML
Polar Humenn

Syracuse University

Abstract

This paper presents the formal declarative semantics of the Extensible Access Control
Markup Language (XACML) Version 1.1 using a declarative functional language.
Having a formal semantics specified for this language leads to greater assurance that
implementations will not misinterpret the XACML specification, and gives the community
a formal language with which to discuss problems, ambiguities, or future features. This
formal analysis has produced some ambiguities, or maybe some undesirable
interpretations of the specification.

Introduction
The XACML language is an XML syntax based language that provides a common means
to express access control policies. This language can be used to hold descriptions of
access control policies, as well its standard format to be used to transport policies
between disparate access control systems. In order to enable this interoperability, a mere
syntax is not good enough to have a common understanding of the language and its
semantics. The semantics of XACML are described, informally, in normative documents.
However, using English paragraphs to explain the various components of the language
can lead to misinterpretations, not only by developers, but in the document itself. It is
desirable to have a formal description of the XACML semantics.

Formal semantics can be described in many different ways. Previously, a denotational
semantics, using greek symbols, mathematical structures, and familiar paradigms, like set
theory and its notation are the standard mechanism. This approach leads to problems in
that it only served the people who understood such concepts with defacto standard
representations only a defacto standard by tradition, and not specification. The notation
must be defined and in some cases, redefined, in order to make the description complete.

In contrast to that approach, we take advantage of a declarative language, Haskell, with
which to describe formal semantics of XACML. Using Haskell for this purpose has many
advantages. First, the language is declarative. The description of functions are not stated
in loops or repetitive side effecting statements, but are stated as re-writable
transformations using recursive definitions. Second, the language is executable. The
result of this document may be used as a reference implementation of XACML, which
gives the formal semantics an air of correctness in more practical terms. Third, Haskell is
strongly typed, which means that the functions must adhere to strict typing. This
approach cuts down on errors, and provides proofs by types of the evaluative structure.
Forth, Haskell contains higher order functions and lazy semantics. The higher order

10/29/03 DRAFT 1

Polar Humenn DRAFT Syracuse University

functions allow functions to be first class objects that get passed to other functions, which
offers greater flexibility and shortness in the expressions. The lazy semantics allows us to
write declarative expressions where the evaluation order may not matter. One example, of
this is passing a description of an infinite list of 1's to a “take” function that will only take
the first three. In a pass by value system, the argument, which is the infinite list would
have to be evaluated before being passed to the the take function. Evaluating the infinite
list would run the computer out of memory and/or space. In lazy semantics the
description of the expression will yield a list of three 1's, and it will evaluate to that much
since the infinite list of 1's will only be evaluated to the length needed. Finally, the formal
semantics of Haskell is defined, and the language has been shown to be sufficiently
complete. Therefore, any semantic description done in Haskell is essentially a formal
semantic description of which proofs can be made. Haskell is widely understood in
semantic community.

As one chief benefit, this formal description will serve as a way for the XACML to
discuss the concepts and semantics of XACML, especially ambiguities that arise, and
possibly new features.

Haskell
Haskell is a functional programming language. The reader is encouraged to read various
materials on Haskell and its declarative style. However, for a quick summary, in the
following Haskell notation, a function definition takes the form of clauses that are applied
to patterns of structures, namely lists. Function application is denoted by juxtaposition.
The symbol “[]” denotes the empty list, whereas the expression “(x:xs)” matches against
an argument of a non-empty list of which “x” represents the first element of the list, and
“xs” is the rest of the list, which is a list itself, and it may be an empty list. A function
that counts the number of elements of a list is defined with the two following clauses:

length [] = 0
length (x:xs) = add 1 (length xs)

We see the declarative style of Haskell. There are no loops counting the amount of
elements in the list structure. Instead, the first declarative clause states, “The length of the
empty list is 0.” The second clause states, “The length of a non empty list is one more
than the length of the rest of the list.” Together these two statements create a formal
description of the length function using the recursive definition, and it may be proved,
using standard induction proof techniques, that the description denotes the number of
elements in any list.

Haskell is strictly typed and polymorphic. Types are defined by either constants that are
denoted by starting with a capital letter, and polymorphism is described using type
variables, which are denoted by words starting with small letters. The type of the length
function is denoted by the following type expression:

10/29/03 DRAFT 2

Polar Humenn DRAFT Syracuse University

length :: [a] -> Int

The type of the function states that length is a function, denoted by the infix “->”
operator. On the left side is the type of its argument and on the right side is the type of the
result. Here “[a]” denotes a list of type “a”, where “a” denotes a type variable. This
declaration means that a function of this type may be applied to a list of any type. When
given this list as an argument, this function return an “Int” which is the Haskell type for
an integer.

Haskell has not only the ability to describe function definitions and types of functions but
also can describe abstract data types other than lists. For instance, even in Haskell, the
type representing boolean values, called Bool is defined as follows:

data Bool = True | False

Above, the key word “data” is used to define a type “Bool” and its data consists of two
“constructors”, which have zero-arity, “True” and “False”. All constructors must start
with capital letters. An example of a polymorphic data type would be:

data Tree a = Leaf a | Node a (Tree a) (Tree b)

This familiar data type describes a tree of type “a” in which one element is constructed by
the constant “Leaf” followed by an element of type “a”, and another element is
constructed by the constant “Node” followed by an element of type “a” and a left and
right “sub”-trees. An example of a constructed value in Haskell follows:

my_tree :: Tree Int
my_tree = (Node 1 (Leaf 2) (Node 3 (Leaf 3) (Leaf 4)))

In the above description the type of “my_tree” is defined to be a tree of “Int”.
Constructors work like functions in that they are applied via juxtaposition to their
element values and return a value of their type. The value of “my_tree” is declared to be
of type “Tree Int” containing a node containing 1, a left subtree containing a leaf
containing 2, and a right subtree containing a node with 3, and left and right subtrees
containing leaves containing 3 and 4 respectively.

Haskell also makes use of type synonyms. Sometimes it is desirable to describe a type by
another name, which may be more descriptive and take advantage of type constructors.
For example, the declaration,

type IntTree = Tree Int

formally describes the type “IntTree” type to be the same as the constructed type “Tree
Int”. Type variables may also be used. For example, the declaration,

10/29/03 DRAFT 3

Polar Humenn DRAFT Syracuse University

type Transform a b = Tree a -> Tree b

formally describes a type of “Transform a b”. The type is described as a function that
takes a Tree of type “a” and returns a tree of type “b”. This constructed type may be used
to describe the type of some functions such as:

toDouble :: Transform Int Double
toDouble (Leaf x) = (Leaf (int2double x))
toDouble (Node x left right) = (Node (int2double x)
 (toDouble left) (toDouble right))

The above clauses show that a Tree of type “Int” is deconstructed and reconstructed as a
Tree of “Double” using a function called “ int2double ” which does the numeric type
conversion. It's type is declared as follows:

int2double :: Int -> Double

We do not show the description of the function of “int2double” because it is primitive in
nature and it is not needed to define our understanding of the description as a whole. One
advantage about using a Haskell based description is that it is sufficient to declare the
type of the function in order to “use” the function in a declarative description. This
approach allows us to describe the semantics of a function while delaying the actual
description of the needed functions.

Haskell has many more features such as type classes and automatically derived functions
based on declared data types. However, these mechanisms are beyond the needed features
to describe the formal semantics of XACML, which is our main purpose. The reader is
encouraged to read documents on the Haskell language to get a better understanding of
the language as well as download Haskell processors, which are available for many
different platforms, to exercise this description.

We now embark upon our formal semantics for XACML.

XACML
The XACML specifications describe a model whereby a Policy Enforcement Point (PEP)
asks a Policy Decision Point to make an access control decision. The documents describe
the inputs to this question, namely the XACML Request Context, and the response, the
XACML Response Context. The model also allows for a Policy Administration Point to
take a policy described in the XACML Policy Language and implement the policy as a
PDP.

We start with defining a Haskell module to hold our declarations.

10/29/03 DRAFT 4

Polar Humenn DRAFT Syracuse University

module XACML where

import Prelude

The “import” statement states to use the standard Haskell “Prelude”, which contains a
library of important definitions.

All code surrounded in the blue shadow boxes is normative Haskell. One may take all,
but not less than all, the definitions that are the blue shadow boxes in this document,
concatenate them in order, and feed it to a Haskell 98 interpreter. The Haskell used here
is sensitive to fixed with spacing. All leading spacing must be maintained as seen in this
document for a Haskell interpreter to parse it.

The Policy Decision Point
The Policy Decision Point, or PDP for short, is the term used by XACML that abstractly
denotes the point at which an access decision is calculated. In short, a Policy
Enforcement Point (PEP) asks a PDP for an access decision, and the PEP enforces that
decision. For XACML, the PDP takes an XACML Request Context and returns an
XACML Response Context. We model the PDP as a function.

type PDP = RequestContextT -> ResponseContextT

The type PDP is a type synonym that represents a function whose argument is of type
“RequestContextT” and its result is of type “ResponseContextT”. Since Haskell
constructors and type names may have the same names, differentiated due to language
scope, it may still be confusing. We use a “T” suffix to denote the type name of an
abstract data type as to avoid confusion of the reader with the constructor name of that
data type.

The XACML Request Context
The XACML Request Context is defined in XML. It is straight forward to model the
XACML Request Context elements into Haskell data types so that we may indeed write
Haskell functions that operate on the request context.

For simplicity and without loss of generality we will only concern ourselves with
subjects, resources, actions, and environments that use the XACML attribute approach.
Also, for simplicity with types and without loss of generality we assume that all attributes
contain all its data elements. Every attribute has the Attributeid, Issuer, IssueInstant, and
Attribute Value sub elements specified.

We do not model the ResourceContent element as it requires XML parsing. which we
feel is unnecessary to express the semantics of it in Haskell. Furthermore, the attribute
approach is sufficient to formally specify the semantics of the basic structure of XACML.

10/29/03 DRAFT 5

Polar Humenn DRAFT Syracuse University

<RequestContext>

The XACML Request Context structure is modeled by the following data type:

data RequestContextT =
 RequestContext [SubjectT] ResourceT ActionT EnvironmentT
 deriving Show

The above declaration straightforwardly follows the XACML Request Context structure.
An XACML Request Context is defined as being a “RequestContext” constructor
followed by a list of subjects, a resource, an action, and an environment.

<Subject>

The XACML Request Context's Subject structure is modeled by the following data type:

data SubjectT = Subject SubjectCategoryIdT [AttributeT] deriving Show

We define the XACML Request Context structure's Subject element using the “Subject”
constructor followed by subject category identifier and a list of attributes. The subject
category identifier is a string, and we will represent it in Haskell as the primitive string
type.

type SubjectCategoryIdT = String

<Attribute>

The XACML Request Context's Attribute structure is modeled by the following data
type:

type AttributeT = (AttributeIdT, IssuerIdT, DateTimeT, AttributeValueT)

We take advantage of the “tuple” constructor in Haskell, using “(,)” to represent an
XACML Attribute. An attribute contains all of its sub elements. We define it as a tuple of
attribute id, issuer, issue instant, and finally, the attribute value. The attribute value
contains the data type specification.

For our purposes, we restrict identifiers to primitive strings. We specify the type of
attribute values at the end of this section, which will also describe the data type.

type AttributeIdT = String

type DataTypeIdT = String

10/29/03 DRAFT 6

Polar Humenn DRAFT Syracuse University

type IssuerIdT = String

<Resource>, <Action>, <Environment>

The XACML Request Context's Resource, Action, and Environment structures are
modeled by separate data types.

We define the XACML Request Context structure's resources, actions, and environment
elements similarly to the Subject element as a specific constructor followed by a list of
relevant attributes.

data ResourceT = Resource [AttributeT] deriving Show
data ActionT = Action [AttributeT] deriving Show
data EnvironmentT = Environment [AttributeT] deriving Show

<AttributeValue>

Each AttributeValue may have different data types. We define an attribute value in
Haskell using a abstract data type “AttributeValueT” tagging the specific data types with
different constructors. It is straight forward to take advantage of the corresponding
primitive types in Haskell.

data ValueT =
 IntAtom Int
| BoolAtom Bool
| DoubleAtom Double
| StringAtom String
| DateTimeAtom DateTimeT
| TimeAtom TimeT
| DateAtom DateT
| HexBinaryAtom String
| Base64BinaryAtom String
| AnyURIAtom String
| YearMonthDurationAtom Int Int
| MonthDayDurationAtom Int Int
| Bag [ValueT]
| IndeterminateVal

 deriving (Eq,Show)

The “deriving(Eq)” clause means that an equality predicate, corresponding to the “==”
infix function will be derived for the type of “ValueT”. This clause means that it is fully
specified such that two elements of the “ValueT” type may be compared to each other for
equality by each of their constructor names and subelements.

We define the abstract data types to handle dates and times as constructed values of
integers.

10/29/03 DRAFT 7

Polar Humenn DRAFT Syracuse University

data TimeT = Time Int Int Int deriving (Eq,Show)

data DateT = Date Int Int Int deriving (Eq,Show)

type DateTimeT = (DateT,TimeT)

Finally, an attribute value is just a tagged value.

type AttributeValueT = ValueT

We use the value abstract data type for two purposes. Its representation specifies the
values that attributes can take on, and also model the results of expressions in the policy.
Attribute values may specify all but “Bag” and “IndeterminateVal” constructors. These
restrictions cannot be enforced in Haskell. However, there is no need for enforcement as
a straight forward translation from the XML to this abstract data type will not yield the
use of “Bag” or “IndeterminateVal”. These particular constructors make specifying the
semantics of the value representations and the their corresponding values as evaluated
entities more unified.

Sample Request Context

This set of declarations fully describes an XACML Request Context that uses attributes.

<xacml-context:Request>
 <Subject SubjectCategory="access-subject">
 <Attribute AttributeId="subject-id" DataType="string" Issuer="Sam"
 IssueInstant="2003/10/15 12:32:54">
 <AttributeValue>Polar</AttributeValue>
 </Attribute>
 <Attribute AttributeId="weight" DataType="integer" Issuer="Sam"
 IssueInstant="2003/10/15 12:32:54">
 <AttributeValue>185</AttributeValue>
 </Attribute>
 </Subject>
 <Resource>
 <Attribute AttributeId="resource-id" DataType="string" Issuer="Bob"
 IssueInstant="2003/10/15 14:23:32">
 <AttributeValue>xacml-document</AttributeValue>
 </Attribute>
 </Resource>
 <Action>
 <Attribute AttributeId="action-id" DataType="string" Issuer="Bob"
 IssueInstant="2003/10/15 14:23:32">
 <AttributeValue>nodify</AttributeValue>
 </Attribute>
 </Action>
 <Environment>
 <Attribute AttributeId="weather" DataType="string" Issuer="Bob"
 IssueInstant="2003/10/15 14:23:32">
 <AttributeValue>fair</AttributeValue>
 </Attribute>
 </Environment>
</xacml-context:Request>

10/29/03 DRAFT 8

Polar Humenn DRAFT Syracuse University

In our Haskell model of the request context, this sample XACML Request Context
corresponds to the following definition:

xacml_req :: RequestContextT
xacml_req = (RequestContext
 [(Subject "access-subject"

 [("subject-id", "Sam", (Date 2003 10 15, Time 12 23 54),
 StringAtom "Polar"),
 (“weight”, "Sam", (Date 2003 10 15, Time 12 23 54),
 IntAtom 185)])]
 (Resource
 [("resource-id","Bob", (Date 2003 10 15, Time 14 23 22),
 StringAtom "xacml-document")])
 (Action
 [("action-id","Bob", (Date 2003 10 15, Time 14 23 22),
 StringAtom "modify")])
 (Environment
 [(“weather”,"Bob", (Date 2003 10 15, Time 14 23 22),
 StringAtom ”fair”)]))

The XACML Response Context
The XACML Response Context has the ability to return multiple results, each having
other elements such as a decision, a status, and a list of obligations.

data ResponseContextT = ResponseContext [ResultT] deriving Show
data ResultT = Result DecisionT StatusT [ObligationT]
 deriving Show

We model the XACML decision as zero-ary constructors for each of the four decision
values we have in XACML.

data DecisionT = Permit
 | Deny
 | Indeterminate
 | NotApplicable
 deriving (Eq,Show)

We model Status as a constructed value of strings for status code, status message, and
status detail. We model obligations as a constructed value with a string identifier.

data StatusT = Status String String String
 deriving Show

type EffectT = DecisionT

type ObligationT = (EffectT,String)

An “EffectT” is synonymous with a “DecisionT” except that we restrict its use to only
the “Permit” and “Deny” constructors. An “ObligationT” is a tuple of an effect and a
string, where the first element, which is the effect, models the “FullfilOn” XML attribute

10/29/03 DRAFT 9

Polar Humenn DRAFT Syracuse University

of the XACML Obligation element.

A sample Response Context, may look as follows:

xacml_resp :: ResponseContextT
xacml_resp = (ResponseContext [Result Permit (Status “ok” “” “”) []])

The above declarations fully describe an XACML Request Context, Response Context,
and the type of a PDP.

XACML Policy
We have formally specified the contents of a XACML request context and XACML
response context, but we have not yet described how one gets from one to the other. To
describe this functionality we could easily write any function in Haskell that can satisfy
the type PDP. Alternatively, we should be able to describe the process of following an
XACML Policy in when evaluated against a Request Context to produce the
corresponding Response Context. We will use the term policy to mean both XACML
Policy or XACML Policy Set in places where it is meant to be either.

The Policy Administration Point
In XACML it can be said that a PDP may follow a single policy. Although that is not a
strict requirement, we can indeed follow this approach without loss of generality.

The Policy Administration Point (PAP) is an abstract entity in XACML that is said to
administer policies for a PDP . We model a PAP as a function that takes a single policy
and produces a PDP function from it. Therefore, an instance of a PDP may be modeled as
the function returned from applying a single policy and produces a function that is
equivalent to the PDP function.

type PAP = PolicyT -> PDP

We will not address the concern of PAPs that take multiple policies or perform static
updates to their policy databases, as these constructions may be modeled as one policy.

<Policy> and <PolicySet>
We describe XACML Policy and Policy Set elements as constructed elements of the
PolicyT type.

data PolicyT =
 Policy String TargetT RuleCombinatorIdT [RuleT] [ObligationT]

 | PolicySet String TargetT PolicyCombinatorIdT [PolicyT] [ObligationT]
 deriving Show

10/29/03 DRAFT 10

Polar Humenn DRAFT Syracuse University

type RuleCombinatorIdT = String

type PolicyCombinatorIdT = String

Straightforwardly from the XML, the XACML Policy is modeled by a data structure
tagged with the “Policy” constructor followed by a string for the policy identifier, a target
specification, a rule combinator identifier, a list of rules, and a list of obligations.
Similarly, the XACML Policy Set is the same except that the constructor is “PolicySet”,
and it holds a list of policies (and policy sets) instead of rules.

<Rule>
A rule is a specification for a decision predicated on two conditions, one being the target,
which is somewhat simple in order to facilitate indexing, and the other being a possibly
more complex predicate called the “condition”.

data RuleT = Rule TargetT ConditionT DecisionT deriving Show

type ConditionT = ExpressionT

One will note how we are reusing data type definitions from the Response Context,
namely “DecisionT”. Using common definitions between the policy, request context, and
response context allow us to unify the semantics without having to specify trivial
translations.

Expressions and Conditions
The condition is an expression such that its evaluation results in a boolean value. We
define the elements of an expression:

data ExpressionT =
 Value AttributeValueT
 | Apply FunctionIdT [ExpressionT]
 | SubjectAttributeDesignator
 SubjectCategoryIdT AttributeIdT DataTypeIdT IssuerSpecT
 MustBePresentT
 | ResourceAttributeDesignator
 AttributeIdT DataTypeIdT IssuerSpecT MustBePresentT
 | ActionAttributeDesignator
 AttributeIdT DataTypeIdT IssuerSpecT MustBePresentT
 | EnvironmentAttributeDesignator
 AttributeIdT DataTypeIdT IssuerSpecT MustBePresentT
 deriving Show

type FunctionIdT = String

type MatchIdT = String

type MustBePresentT = Bool

The expression is a data type that specifies any value may be specified (excluding Bag

10/29/03 DRAFT 11

Polar Humenn DRAFT Syracuse University

and Indeterminate). Also, the Apply constructor applies a function named by the function
identifier which is applied to a list of expressions, which are the arguments to the
function.

The attribute designators are straight forward translation from the XML elements. Each
attribute designator names its attribute identifier, its data type identifier, an optional
issuer id, and a boolean specifying if the attribute must be present.

We use an abstract data type to model the “optional” trait of the issuer element:

data IssuerSpecT = AnyIssuer | Issuer IssuerIdT
 deriving (Eq,Show)

The constructor “AnyIssuer” is used when an argument is not supplied, and the
constructor “Issuer” followed by the issuer identifier is used to make the element explicit.

<Target>
A target consists of a structured set representative of matching predicates on the Request
Context.

data TargetT = EmptyTarget
 | Target SubjectsT ResourcesT ActionsT
 deriving Show

For some rules, the target is optional. For this purpose we tag the target with two different
constructors to model the difference.

A target is either empty signified by the “EmptyTarget” constructor, or it is constructed
with the “Target” constructor followed by a specification for subjects, resources, and
actions. Modeling the XML of XACML in Haskell almost directly we get the following:

data SubjectsT = AnySubject | Subjects [SubjectTargetT] deriving Show

data ResourcesT = AnyResource | Resources [ResourceTargetT] deriving Show

data ActionsT = AnyAction | Actions [ActionTargetT] deriving Show

Each of the subjects, resources, and actions sections consist of separate target
specifications.

data SubjectTargetT = SubjectTarget [SubjectMatchT] deriving Show

data ResourceTargetT = ResourceTarget [ResourceMatchT] deriving Show

data ActionTargetT = ActionTarget [ActionMatchT] deriving Show

We map the targets “Subject”, “Resource”, and “Action” to “SubjectTarget”,
“ResourceTarget”, and “ActionTarget” respectively since Haskell prohibits using the

10/29/03 DRAFT 12

Polar Humenn DRAFT Syracuse University

same constructor to represent elements of different data types. The matching functions
are straight forward. The are differentiated by their tag, and the contain the id of the
matching function, an attribute value, and an attribute designator.

data SubjectMatchT =
 SubjectMatch MatchIdT AttributeValueT SubjectAttributeDesignatorT
 deriving Show

data ResourceMatchT =
 ResourceMatch MatchIdT AttributeValueT ResourceAttributeDesignatorT
 deriving Show

data ActionMatchT =
 ActionMatch MatchIdT AttributeValueT ActionAttributeDesignatorT
 deriving Show

The attribute designators are modeled as expressions, as they can appear anywhere in an
XACML Apply construct. However, we restrict to the particular attribute designator
constructors.

type SubjectAttributeDesignatorT = ExpressionT

type ResourceAttributeDesignatorT = ExpressionT

type ActionAttributeDesignatorT = ExpressionT

A sample Target follows:

target1 :: TargetT

target1 = (Target
 (AnySubject)
 (Resources
 [(ResourceTarget
 [(ResourceMatch "string-equal"
 (StringAtom "xacml-document")
 (ResourceAttributeDesignator "resource-id"
 "string" AnyIssuer False))])])
 (Actions
 [(ActionTarget
 [(ActionMatch "string-equal"
 (StringAtom "modify")
 (ActionAttributeDesignator "action-id"
 "string" AnyIssuer False))])]))

A sample rule follows:

rule1 :: RuleT

rule1 = (Rule EmptyTarget

 (Apply "integer-greaterthan"

10/29/03 DRAFT 13

Polar Humenn DRAFT Syracuse University

 [(Value (IntAtom 200)),
 (Apply "integer-one-and-only"
 [(SubjectAttributeDesignator "access-subject"
 "weight" "integer" (Issuer "Sam") False)])])
 Permit)

The above declaration specifies a rule with an empty target, a condition, and a decision.

<Policy>
Having described the structure of rules, just as in XACML, we can reuse our definitions
of the target that are used in rules to apply to Policy, as well. This approach fully
specifies the structure of a “Policy” quite easily.

policy1 :: PolicyT

policy1 = Policy “id-1” target1 “first-applicable” [rule1] []

The above specifies a policy with the target defined above, the rule combining algorithm,
and a list of one rule, which was also defined above, and an empty list of obligations.

In the above sample of a policy, we use the variable “rule1” to specify a rule. Since
Haskell is a declarative language, the expression of applying a constructor to the names
of declarations is as if the resulting structure is created itself using the declaration's
definition.

Similarly we may specify a policy set much the same way:

policyset1 :: PolicyT

policyset1 = PolicySet “id-2” target1 “first-applicable” [policy1] []

The above element specifies a policy set with the id “id-2”, with the same target, the
policy combining algorithm, a list of one policy, which is also defined above, and an
empty list of obligations.

This specification completes the representation of XACML Policy and Policy Sets into a
Haskell representation.

Evaluation Semantics
We show the transformations of the Haskell representation of an XACML policy to
Haskell functions that operate on the request context, which is the job of the PAP as we
described it.

10/29/03 DRAFT 14

Polar Humenn DRAFT Syracuse University

Attribute Designators
The very core of XACML is being able to retrieve the data from the request context so
that it may be compared or matched to elements in the policy. In general, we describe
any attribute designator, whether it be subject, resource, action, or environment, as a
function retrieves a value, namely a Bag of attribute values, or possibly Indeterminate,
from the request context.

type AttributeDesignatorF = RequestContextT -> ValueT

Of an attribute designator the XACML 1.1 specification section 5.27 Complex Type
AttributeDesignatorType says:

A named attribute SHALL match an attribute if the values of their respective
AttributeId, DataType and Issuer attributes match. The attribute
designator’s AttributeId MUST match, by URI equality, the
AttributeId of the attribute. The attribute designator’s DataType MUST
match, by URI equality, the DataType of the same attribute.

If the Issuer attribute is present in the attribute designator, then it MUST
match, by URI equality, the Issuer of the same attribute. If the Issuer is
not present in the attribute designator, then the matching of the attribute to the
named attribute SHALL be governed by AttributeId and DataType
attributes alone.

We model this semantic by creating function type AttributeRetrieverF, of which
functions must take an attribute identifier, a data type identifier, an optional issuer
identifier, a boolean value that specifies mustBePresent, applied to a list of attributes and
returns a value. That value is restricted to either a “Bag” constructor or Indeterminate (in
the case that mustBePresent is True and there is no value).

We define the attribute designator function type by first describing a basic functionality,
retrieving attribute values from a particular of attributes.

type AttributeRetrieverF =
 AttributeIdT -> DataTypeIdT -> IssuerSpecT -> Bool ->
 [AttributeT] -> ValueT

We will suffix types with F that describe functionality as opposed to abstract data types,
which we suffixed with T. Different attribute designators will have different
specifications for subject, resource, action, and environment.

The semantics of attribute retrieval against a list of attributes is described as follows with
the function “attributeRetriever”:

10/29/03 DRAFT 15

Polar Humenn DRAFT Syracuse University

attributeRetriever :: AttributeRetrieverF

attributeRetriever attributeid datatype issuer mustBePresent attributes =

 if (empty values) && mustBePresent then IndeterminateVal

 else Bag values

 where

 values = getattrs attributeid datatype issuer attributes

The above definition says that if we find no attributes in the list and “mustBePresent” is
true, then we must return “IndeterminateVal” as a value. The “empty” function is a
boolean function that returns True if and only if the list is empty.

empty :: [a] -> Bool

empty [] = True
empty (v:vs) = False

Technically, the XACML 1.1 specification states that the “mustBePresent” element, may
be optional. However, if not present, its value is specified to be False. Rather than dealing
with writing two different functions that differ only in arity, we just specify that any
application of the “attributeRetriever” function must place False for “mustBePresent”
when it said to be absent.

We formally define the semantics of the “getattrs” function. According to the above
specification, this function specifies retrieving an attribute value of the correct data type
and matching issuer, if supplied, from the list of attributes.

getattrs :: AttributeIdT -> DataTypeIdT -> IssuerSpecT ->
 [AttributeT] -> [ValueT]

getattrs aid dt issuer [] = []

getattrs aid dt issuer ((id,issuer_id,instant,val):as) =

 if aid == id
 && isDataType dt val
 && (issuer == AnyIssuer || issuer == Issuer issuer_id)
 then val:(getattrs aid dt issuer as)

 else getattrs aid dt issuer as

The first clause declaratively states that if there are no attributes then there are no
corresponding values, and therefore the value is the empty list of values. The second
clause states that if that attribute identifiers match, the value is of the correct type, and if
there is an issuer specification it equals the attributes issuer, then the result is the value of
that attribute constructed as a list with the finding of any other matching attributes from
the rest of the attributes. Otherwise, it does not match, and the result is the same as
finding the matching attributes within the rest of the attributes.

The isDataType function specifies a boolean predicate that checks if the value matches

10/29/03 DRAFT 16

Polar Humenn DRAFT Syracuse University

the data type specification. XACML states that a data type of the attribute value must
match for it to be returned. Note, that we are using shortened names for data types, i.e.
ones without the URN prefixes, for brevity.

isDataType :: DataTypeIdT -> ValueT -> Bool

isDataType "string" (StringAtom _) = True
isDataType "boolean" (BoolAtom _) = True
isDataType "integer" (IntAtom _) = True
isDataType "double" (DoubleAtom _) = True
isDataType "datetime" (DateTimeAtom _) = True
isDataType "date" (DateAtom _) = True
isDataType "time" (TimeAtom _) = True
isDataType "hex-binary" (HexBinaryAtom _) = True
isDataType "base64-binary" (Base64BinaryAtom _) = True
isDataType "anyURI" (AnyURIAtom _) = True
isDataType "year-month-duration" (YearMonthDurationAtom _ _) = True
isDataType "month-day-duration" (MonthDayDurationAtom _ _) = True
isDataType _ _ = False

Each clause states a true condition. The last clause, by virtue of being last, states that if
no other of the above clauses match the arguments, the result of this predicate False,
which specifies that the value is not of the correct type.

The “attributeRetriver” function completely formalizes the semantics for retrieving
attributes from a given list of attributes as we have defined them for the Request Context.
We use this common definition to specify the matching of attributes for each the Subject,
Resource, Action, and Environment.

Subject Attribute Designator
The Subject Attribute Designator is a special case in that it must retrieve attributes from
blocks of attribute lists categorized by the subject category identifier. XACML states that
if different subject elements in the request context have the same subject category
identifier, their collective attribute lists are considered from one subject. From the
XACML 1.1 specification, section 5.28 Element <SubjectAttributeDesignator>:

If there are multiple subjects with the same SubjectCategory xml attribute,
then they SHALL be treated as if they were one categorized subject.

type SubjectAttributeDesignatorF = SubjectCategoryIdT -> AttributeIdT ->
 DataTypeIdT -> IssuerSpecT ->
 Bool ->
 AttributeDesignatorF

To capture this semantic we describe the consolidation of attributes across subjects as
follows:

consolidate :: SubjectCategoryIdT -> [SubjectT] -> [AttributeT]

10/29/03 DRAFT 17

Polar Humenn DRAFT Syracuse University

consolidate cat [] = []

consolidate cat ((Subject cat' attrs):ss) =

if (cat == cat') then attrs ++ (consolidate cat ss)

else consolidate cat ss

The first clause states that if there are no subject sections then there are no relevant
attribute values. The second clause states that if the subject category identifiers match
then the result is the same as appending (infix ++ operator) its list of attributes with the
consolidation of attributes with respect to the same subject category identifier of the rest
of the subjects.

Finally, the following construction formally describes the semantics of a subject attribute
designator using our generalized attribute designator function, which operates on the
subjects of the Request Context.

subjectAttributeDesignator :: SubjectCategoryIdT -> AttributeIdT ->
 DataTypeIdT -> IssuerSpecT -> Bool ->
 AttributeDesignatorF

subjectAttributeDesignator cat aid dt issuer mbp
 (RequestContext subjects resource action env) =

attributeRetriever aid dt issuer mbp (consolidate cat subjects)

We define the semantics of the Resource, Action, and Environment attribute designators
similarly using the the generalized attribute retriever on the respective members of the
Request Context.

Resource Attribute Designator
The Resource Attribute Designator has the following semantics:

resourceAttributeDesignator :: AttributeIdT ->
 DataTypeIdT -> IssuerSpecT -> Bool ->
 AttributeDesignatorF

resourceAttributeDesignator aid dt issuer mbp
 (RequestContext subjects (Resource attrs) action env) =
 attributeRetriever aid dt issuer mbp attrs

Action Attribute Designator
The Action Attribute Designator has the following semantics:

10/29/03 DRAFT 18

Polar Humenn DRAFT Syracuse University

actionAttributeDesignator :: AttributeIdT ->
 DataTypeIdT -> IssuerSpecT -> Bool ->
 AttributeDesignatorF

actionAttributeDesignator aid dt issuer mbp
 (RequestContext subjects resource (Action attrs) env) =
 attributeRetriever aid dt issuer mbp attrs

Environment Attribute Designator
The Environment Attribute Designator has the following semantics:

environmentAttributeDesignator :: AttributeIdT ->
 DataTypeIdT -> IssuerSpecT -> Bool ->
 AttributeDesignatorF

environmentAttributeDesignator aid dt issuer mbp
 (RequestContext subjects resource action (Environment attrs)) =
 attributeRetriever aid dt issuer mbp attrs

Request Predicates
The semantics of an XACML target or condition is to provide a predicate on the request
context. We describe the type of a predicate function on the request as follows:

type PredicateF = RequestContextT -> BooleanT

type BooleanT = ValueT

We specify the type “BooleanT” is synonymous with “ValueT” only to state that the
evaluation of the predicate may return a value of “IndeterminateVal”. When we use this
type, we are expecting a boolean value with the “BoolAtom” constructor, or
“IndeterminateVal”.

Target
A target is a predicate on the request, but it is made up of several parts, which are the
predicates containing matches on the Subjects, Resource, and Action of the request
context.

Each of these match sections contain lists of elements that specify a disjunctive sequence
of conjunctive sequences of matches.

We describe the functions that specify the semantics of a disjunctive or conjunctive
sequence by type, and leave the formal definition of its semantics until later. We model
the semantics of a conjunctive sequence and disjunctive sequence using the ConjunctionF
and DisjunctionF types respectively.

10/29/03 DRAFT 19

Polar Humenn DRAFT Syracuse University

type ConjunctionF = [BooleanT] -> BooleanT

type DisjunctionF = [BooleanT] -> BooleanT

These types state that conjunction and disjunction functions will take a list of boolean
values and produce a boolean value possibly with the introduction of Indeterminate not
only as a result but as an actual argument to the function. XACML has specific semantics
when dealing with Indeterminate as an argument in resolving a conjunctive or disjunctive
sequence. We describe those semantics when we define the “conjunction” and
“disjunction” functions later in this document.

Target Semantics
The XACML 1.1 section 5.5 Element <Target> states the semantics of the target as
follows:.

The <Target> element SHALL contain a conjunctive sequence of
<Subjects>, <Resources> and <Actions> elements. For the parent of
the <Target> element to be applicable to the decision request, there MUST be
at least one positive match between each section of the <Target> element and
the corresponding section of the <xacml-context:Request> element.

Modeling each of the Subjects, Resources, and Actions sections of a target as a predicate
on the request context, we formally construct a function from our definition of
conjunction.

We describe the function of a target as follows:

type TargetF = SubjectsF -> ResourcesF -> ActionsF -> PredicateF

The formal semantics of this target function is specified by the “targetSemantics”
function as follows:

targetSemantics :: TargetF

targetSemantics subf resf actf req =
 conjunction [(subf req),(resf req),(actf req)]

Formally, we apply each of the predicates that represent each of the Subjects, Resources,
and Actions sections to the request context, and combine the results as a conjunctive
sequence using the “conjunction” function.

Target Subjects
A SubjectsF is a predicate on the request. The XACML 1.1 Section 5.6 Element
<Subjects> states the following:

10/29/03 DRAFT 20

Polar Humenn DRAFT Syracuse University

The <Subjects> element SHALL contains a disjunctive sequence of
<Subject> elements.

We formally define a function called “subjects” that functionally constructs the predicate
as a disjunctive sequence of “SubjectF” predicates.

type SubjectsF = PredicateF

subjects :: [SubjectF] -> SubjectsF

subjects subs req = disjunction (map (\s -> s req) subs)

To explain the semantics, the “subjects” function takes a list of “subject” predicates and
applies each one to the request. The result is processed as a disjunctive sequence, using
the “disjunction” function.

The function “map” takes as its first argument, a function, and applies it to each element
in the second argument, which is a list. The result is a one to one list of the results of
applying the function.

The notation, “(\s -> s req)”, is Haskel notation for a function specification as an
expression. For those familiar with the “Lambda calculus” the backslash is the “lambda”.
It means that the letter after the lambda is a formal parameter, and after the arrow, i.e.
“->”, is the expression that may use that parameter. This specific function expression
takes a subject predicate applies it to the request. The result, of course, will be of the
“BooleanT” type. The map function applies this function specification to each element of
the list of subject predicates, and therefore, results in a list of “BooleanT” elements.

Target Subject
A function of type “SubjectF” is a predicate on the request. The XACML 1.1
Specification Section 5.7 Element <Subject> states:

The <Subject> element SHALL contain a conjunctive sequence of
<SubjectMatch> elements.

We define a function called “subject” that functionally constructs the predicate as a
conjunctive sequence of matching functions.

type SubjectF = PredicateF

subject :: [PredicateF] -> SubjectF

subject matches req = conjunction (map (\m -> m req) matches)

To explain the semantics, the “subject” function takes a list of “subject match” predicates
and applies each one to the request. The result is processed as a conjunctive sequence,
using the “conjunction” function.

10/29/03 DRAFT 21

Polar Humenn DRAFT Syracuse University

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Target Resources
A function of type “ResourcesF” is a predicate on the request. The XACML 1.1
Specification section 5.10 Element <Resources> states:

The <Resources> element SHALL contain a disjunctive sequence of
<Resource> elements.

We define a function called “resources” that functionally constructs the predicate as a
disjunctive sequence of “ResourceF” functions.

type ResourcesF = PredicateF

resources :: [ResourceF] -> ResourcesF

resources res req = disjunction (map (\s -> s req) res)

To explain the semantics, the “resources” function takes a list of “resource” predicates
and applies each one to the request. The result is processed as a disjunctive sequence,
using the “disjunction” function.

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Target Resource
A function of type “ResourceF” is a predicate on the request. The XACML 1.1
Specification Section 5.11 Element <Resource> states the semantics of the resource
element as follows:

The <Resource> element SHALL contain a conjunctive sequence of
<ResourceMatch> elements.

We define a function called “resource” that functionally constructs the predicate as a
conjunctive sequence of matching functions.

type ResourceF = PredicateF

resource :: [PredicateF] -> ResourceF

resource matches req = conjunction (map (\m -> m req) matches)

To explain the semantics, the “resource” function takes a list of “resource match”
predicates and applies each one to the request. The result is processed as a conjunctive
sequence, using the “conjunction” function.

10/29/03 DRAFT 22

Polar Humenn DRAFT Syracuse University

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Target Actions
A function of type “ActionF” is a predicate on the request. The XACML 1.1
Specification Section 5.14 Element <Actions> states the semantics of the Actions
element as follows:

The <Actions> element SHALL contain a disjunctive sequence of <Action>
elements.

We define a function called “actions” that functionally constructs the predicate as a
disjunctive sequence of “ActionF” functions.

type ActionsF = PredicateF

actions :: [ActionF] -> ActionsF

actions subs req = disjunction (map (\s -> s req) subs)

To explain the semantics, the “actions” function takes a list of “action” predicates and
applies each one to the request. The result is processed as a disjunctive sequence, using
the “disjunction” function.

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Target Action
A function of type “ActionF” is a predicate on the request. The XACML 1.1
Specification Section 5.15 Element <Action> states the semantics of the Action element
as follows:

The <Action> element SHALL contain a conjunctive sequence of
<ActionMatch> elements.

We define a function called “action” that functionally constructs the predicate as a
conjunctive sequence of matching functions.

type ActionF = PredicateF

action :: [PredicateF] -> ActionF

action matches req = conjunction (map (\m -> m req) matches)

To explain the semantics, the “action” function takes a list of “action match” predicates
and applies each one to the request. The result is processed as a conjunctive sequence,

10/29/03 DRAFT 23

Polar Humenn DRAFT Syracuse University

using the “conjunction” function.

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Conjunctive and Disjunctive Sequences
To complete semantics for target we need to define the semantics for the “conjunction”
and “disjunction” functions that we have introduced by type above giving formal
semantics to “conjunctive sequence” and “disjunctive sequence” respectively.

 XACML defines “conjunctive sequence” and “disjunctive sequence” only in Section
1.1.1 Preferred Terms of the Glossary, and they are specified as follows:

Conjunctive sequence - a sequence of boolean elements combined using the
logical ‘AND’ operation.

Disjunctive sequence - a sequence of boolean elements combined using the
logical ‘OR’ operation

This part of the XACML specification is non-normative. However, we will take it as face
value and specify “conjunction” as the “logical_and” function, and “disjunction” as the
“logical_or” function.

conjunction :: [BooleanT] -> BooleanT

conjunction = logical_and

disjunction :: [BooleanT] -> BooleanT

disjunction = logical_or

Note: The semantics of “logical_and” and “logical_or” functions are defined in the
Appendix under “Logical Functions”. However, taking tact presents a problem in
defining the semantics of handling IndeterminateVal, which has explicit concerns
on strict evaluation of its elements and forcing full evaluation of every element in
the target. Currently, the XACML specification is ambiguous or unclear on which
approach to take. For now, it seems that all elements of the Target must be
evaluated to see if there is an IndeterminateVal returned (perhaps from a missing
attribute). Please see the Appendix for details.

Matching Functions
The matching function is a predicate function that takes into account the ability to select
attribute values from the request context and compare them to a specific value by some
named function. For example, the XACML 1.1. Specification Section 5.13 Element
<ResourceMatch> states the semantics of the ResourceMatch element as follows:

The <ResourceMatch> element SHALL identify a set of resource-related

10/29/03 DRAFT 24

Polar Humenn DRAFT Syracuse University

entities by matching attribute values in the <xacml-context:Resource>
element of the context with the embedded attribute value.

The <ResourceMatch> element contains the following attributes and elements:

MatchId [Required]

Specifies a matching function. Values of this attribute MUST be of
type xs:anyURI, with legal values documented in Section .

<AttributeValue> [Required]

Embedded attribute value.

<ResourceAttributeDesignator> [Required Choice]

Identifies one or more attribute values in the <Resource> element
of the context.

In general, whether we are taking about Subject, Resources, or Actions, the match
functions all have similar semantics. The common matching function is a function that
takes a value matching function, an explicit attribute value, and an attribute designator,
applies it to the request, and returns a boolean value.

type MatchF =
 ValueMatchF -> AttributeValueT -> AttributeDesignatorF -> PredicateF

The “ValueMatchF” function that is applied for the match can be any function that takes
two arguments and returns a boolean. To be consistent with functions of arbitrary arity,
although that list will only contain two elements, we use the following definition:

type ValueMatchF = [ValueT] -> BooleanT

Note: The XACML 1.1 Specification only implies by Section 5.5 Element Target that a
match function returns a positive or negative result. The specification does not
normatively state the requirements for a positive or negative Subject, Resource, or
Action match. One can only imply that the evaluation semantics will be True if an
only if one match one is found to be true. This situation may yield ambiguous
behavior from differing implementations with different evaluation strategies.

In general, we describe the semantics of the matching function is described as follows:

match :: MatchF

match valmatchf val designator request = traverse (designator request)

10/29/03 DRAFT 25

Polar Humenn DRAFT Syracuse University

 where traverse (Bag []) = BoolAtom False
 traverse (Bag (v:vs)) = check (valmatchf [val,v])
 (traverse (Bag vs))
 traverse IndeterminateVal = IndeterminateVal

 check (BoolAtom True) _ = BoolAtom True
 check _ (BoolAtom True) = BoolAtom True
 check (BoolAtom False) IndeterminateVal = IndeterminateVal
 check IndeterminateVal (BoolAtom False) = IndeterminateVal

Since the bag is not supposed to have an order, the check function result should be
unified in all evaluation orders, i.e. permutations of list. This requirement means one of
two things for evaluation specification.

Since matches only occur in the target, they can be thought of as positive seeking. One
positive match in a disjunction with an indeterminate takes precedence over the
indeterminate. However, a negative match does not.

Alternatively, one can state that an indeterminate takes precedence over all values, and
the result is indeterminate. This approach forces full evaluation of all matches against the
values in the bag.

Above we have chosen the first approach, where a positive match takes precedence.

The traverse function traverse across the elements of the bag checking to see if the
“valmatchf” function is true. To be consistent, once a true is found,

Note: This semantics is consistent with respect to True taking precedence; however, there
may be some ambiguous requirements that if indeterminate arises from a single
application of the match function an indeterminate should result.

The definition of the semantics of each match, whether it be a SubjectMatch,
ResourceMatch, ActionMatch, are the same. The kind of match is only dependent on the
supplied designator.

Expressions
Expressions are formalized as functions on the request that return a value consistent with
the type of their function.

type ExpressionF = RequestContextT -> ValueT

Each explicit value is represented as a constant function against the request context.

constVal :: ValueT -> ExpressionF

constVal v req = v

An XACML function is formalized as:

10/29/03 DRAFT 26

Polar Humenn DRAFT Syracuse University

type FunctionF = [ValueT] -> ValueT

A function of the type “FunctionF” takes a list of values and produces a single value . An
example of such a function would be on that adds two numbers:

integer_subtract [(IntAtom x),(IntAtom y)] = IntAtom (x-y)

integer_subtract _ = IndeterminateVal

To explain the above Haskell notation, the first clause states that the argument to this
function shall be a list of two integer values, no more, no less, and the result will be
expression containing the integer value where the argument values are subtracted. The
second clause is for when the arguments are not what it expected, and XACML states that
the result shall be Indeterminate in that case for this particular function.

Note: That if strict checking of an XACML policy and evaluation model is enforced upon
the request context the second clause may be proved never to be needed, and the
seemingly “dynamic” argument and type checking can be factored away. However,
for XACML interpreters that do not type check their policy, this semantic
specification is supplied bringing them runtime value type checking.

An application of a function is defined as a function that takes a function that takes a list
of expressions for arguments and produces a result by applying each of those expressions
to the request, and then applying the given function to those results.

apply :: FunctionF -> [ExpressionF] -> ExpressionF

apply f vs req = f (map (\v -> v req) vs)

To explain the notation and semantics of the “map” function, please see the above section
on “Subjects”.

Given this approach, and definitions for all XACML functions in Haskell, which is in the
appendix, one can formally specify the semantics of any expression in XACML. Please
see the section on compiling XACML expressions below.

Rule Function
A rule function is a function that models an XACML rule. It has the following type:

type RuleF = RequestContextT -> DecisionT

A rule constructor may take a target predicate, a condition expression, a decision data
types and specify the semantics of an XACML rule. The XACML 1.1 Specification
Section 5.22 <Rule> states the semantics of a rule as follows:

10/29/03 DRAFT 27

Polar Humenn DRAFT Syracuse University

The <Rule> element SHALL define the individual rules in the policy. The main
components of this element are the <Target> and <Condition> elements and
the Effect attribute.

The <Rule> element contains the following attributes and elements:

Effect [Required]
Rule effect. Values of this attribute are either “Permit” or “Deny”.

<Target> [Optional]
Identifies the set of decision requests that the <Rule> element is
intended to evaluate. If this element is omitted, then the target for the
<Rule> SHALL be defined by the <Target> element of the enclosing
<Policy> element. See Section for details.

<Condition> [Optional]
A predicate that MUST be satisfied for the rule to be assigned its
Effect value. A condition is a boolean function over a combination
of subject, resource, action and environment attributes or other
functions.

The semantics of the evaluation of a rule is to evaluate the target predicate and the
condition to determine if the effect.

The XACML 1.1 Specification Section 7.4 Condition Evaluation states:

The condition value SHALL be "True" if the <Condition> element is absent,
or if it evaluates to "True" for the attribute values supplied in the request
context. Its value is "False" if the <Condition> element evaluates to "False"
for the attribute values supplied in the request context. If any attribute value
referenced in the condition cannot be obtained, then the condition SHALL
evaluate to "Indeterminate".

The XACML 1.1 Specification Section 7.5 Rule Evaluation states:

If the target value is "No-match" or “Indeterminate” then the rule value SHALL
be “NotApplicable” or “Indeterminate”, respectively, regardless of the value of
the condition. For these cases, therefore, the condition need not be evaluated in
order to determine the rule value.

If the target value is “Match” and the condition value is “True”, then the effect
specified in the rule SHALL determine the rule value.

In the above description, “No-Match” is synonymous with False, and “Match” is
synonymous with true.

Therefore, we model these semantics of evaluating a rule function is described as follows
with the target predicate as the first argument, and the condition predicate as the second
argument.

10/29/03 DRAFT 28

Polar Humenn DRAFT Syracuse University

ruleSemantics :: PredicateF -> PredicateF -> EffectT -> RuleF

ruleSemantics targetf condf effect req =
 check (targetf req) (check (condf req) effect)

 where check (BoolAtom True) decision = decision
 check (BoolAtom False) _ = NotApplicable
 check _ _ = Indeterminate

Since XACML 1.1. Specification states that the Target and Condition elements are
specified as optional we must model that with predicates that true true regardless.

The “EffectT” type is synonymous with the “DecisionT” type, but its values are restricted
to the “Permit” and “Deny” constructors.

The above definition formally describes that a target will be checked first. If the
application of the target is false, then the result is NotApplicable. If the result is True,
then the condition is checked in the same manner. If the target or condition evaluate to
Indeterminate (or any other unexpected value, as such with no type checking) the result is
specified to be indeterminate.

Rule Combining Algorithm Function
The rule combining algorithms have somewhat of a complex nature besides just
combining the resulting decisions from each applied rule, as they take into account the
potential effects of other rules. We model the common functionality of a rule combining
algorithm function with the following type:

type RuleCombiningAlgF = [(EffectT,RuleF)] -> RequestContextT -> DecisionT

The first argument is a list containing the rules, but each listed with its effect. Rule
combining algorithms such as “deny-overrides” take into account the potential effect of
the rules when determining the combination in the face of Indeterminate.

The formal semantics for the standard XACML rule combining algorithms are presented
in the Appendix.

Policy Function
The XACML 1.1 Specification Section 7.6 Policy Evaluation states:

The policy's target SHALL be evaluated to determine the applicability of the
policy. If the target evaluates to "Match", then the value of the policy SHALL
be determined by evaluation of the policy's rules, according to the specified
rule-combining algorithm. If the target evaluates to "No-Match", then the
value of the policy SHALL be "NotApplicable". If the target evaluates to
"Indeterminate", then the value of the policy SHALL be "Indeterminate".

10/29/03 DRAFT 29

Polar Humenn DRAFT Syracuse University

The value “Match” is synonymous with true, and “No-Match” is synonymous with false.
However, polices when evaluated return not only a decision, but may return obligations
as well. A policy evaluation function is modeled with the following type:

type PolicyF = RequestContextT -> ObligatedDecisionT

type ObligatedDecisionT = (DecisionT, [ObligationT])

XACML states that the evaluation of a policy is equivalent to evaluating the policy target
and if the policy target is true, the policy is evaluated according to is rule combining
algorithm and rules.

The same section in the XACML 1.1 Specification states:

A Rules value of "At-least-one-applicable" SHALL be used if the <Rule>
element is absent, or if one or more of the rules contained in the policy is
applicable to the decision request (i.e., returns a value of “Effect”; see Section).
A value of “None-applicable” SHALL be used if no rule contained in the policy
is applicable to the request and if no rule contained in the policy returns a value
of “Indeterminate”. If no rule contained in the policy is applicable to the request
but one or more rule returns a value of “Indeterminate”, then rules SHALL
evaluate to "Indeterminate".

This paragraph seems to lay a restriction on the rule combining algorithms that they shall
always operate in a consistent manner in the face of no supplied rules, or rules that
evaluate to Indeterminate. Rather than lay out special cases here for policy rule
evaluation and combination, we leave these semantic requirements to be followed in each
of the formal semantics of the rule combining algorithm functions described in the
Appendix.

The same section in the XACML 1.1 Specification states about the policy itself:

If the target value is "No-match" or “Indeterminate” then the policy value
SHALL be “NotApplicable” or “Indeterminate”, respectively, regardless of the
value of the rules. For these cases, therefore, the rules need not be evaluated in
order to determine the policy value.

If the target value is “Match” and the rules value is “At-least-one-applicable” or
“Indeterminate”, then the rule-combining algorithm specified in the policy
SHALL determine the policy value.

The evaluation of a Policy is formally described by the following function constructing
the policy function abstractly from arbitrary target functions, combinator functions, rule
functions, and obligations. We must take into account the obligations as follows:

A policy or policy set may contain one or more obligations. When such a policy
or policy set is evaluated, an obligation SHALL be passed up to the next level of
evaluation (the enclosing or referencing policy set or authorization decision)

10/29/03 DRAFT 30

Polar Humenn DRAFT Syracuse University

only if the effect of the policy or policy set being evaluated matches the value of
the xacml:FulfillOn attribute of the obligation.

We model the policy evaluation semantics with the following function:

policySemantics :: PredicateF -> RuleCombiningAlgF -> [(EffectT,RuleF)] ->
 [ObligationT] -> PolicyF

policySemantics targetf combf rules obligations req =

check (targetf req) (oblige (combf rules req))

 where check (BoolAtom False) _ = (NotApplicable,[])
 check (BoolAtom True) result = result
 check _ _ = (Indeterminate,[])

 oblige effect = (effect,relevant effect obligations)

 relevant _ [] = []
 relevant Indeterminate _ = []
 relevant decision ((effect,obl):obls) =
 if decision == effect
 then (effect,obl) : relevant decision obls
 else relevant decision obls

The first clause of the “check” function states that the target predicate that is applied to
the request is not true then the result is “NotApplicable” with no obligations. If the target
predicate applied to the request context evaluates to true, then the result is the application
of the combining function on the list of results made by applying each rule to the request
obliged to contain any relevant obligations. If the application of the target predicate
evaluates to Indeterminate the result is Indeterminate with no obligations.

The “relevant” function formally specifies the obligations that are relevant with respect to
the policy decision. The “relevant” function selects from the list of obligations the ones
that apply to the decision, of either Permit or Deny.

Note: According to these formal semantics, a policy evaluation will never return
obligations that are not relevant to the decision. This point is important when
considering the policy combining algorithms.

Policy Combining Algorithm Function
Likewise with a rule combining algorithm function, the policy combining algorithms
have a complex nature besides just combining the resulting decisions from each applied
policy. At least one standard combining algorithm, “only-one-applicable”, only evaluates
the targets of a policy before it decides to evaluate any policy in full. Therefore, this
approach must be enabled for the type of policy combining algorithm functions. Also, a
policy combining algorithm must take into account the obligations that are associated
with subordinate policies. We model the common functionality of a policy combining
algorithm function with the following type:

10/29/03 DRAFT 31

Polar Humenn DRAFT Syracuse University

type PolicyCombiningAlgF =
[(PredicateF,PolicyF)] -> [ObligationT] -> RequestContextT ->

ObligatedDecisionT

The first argument is a list containing the policy functions, but each listed with its
respective target. This semantic is an implicit requirement from one of the standard
XACML Policy combining algorithms such as “only-one-applicable”. This combining
algorithm evaluates the target of each of the policies when determining which policy to
evaluate.

The formal semantics for the standard XACML policy combining algorithms are
presented in the Appendix.

Policy Set Function
The policy set function is much like the policy function with two minor differences. The
combining algorithms apply to policies instead of rules.

The XACML 1.1 Specification Section 7.7 Policy Set Evaluation states:

The policy set's target SHALL be evaluated to determine the applicability of the
policy set. If the target evaluates to "Match" then the value of the policy set
SHALL be determined by evaluation of the policy set's policies and policy sets,
according to the specified policy-combining algorithm. If the target evaluates
to "Not-Match", then the value of the policy set shall be "NotApplicable". If the
target evaluates to "Indeterminate", then the value of the policy set SHALL be
"Indeterminate".

Without reprinting the section on Policy Set Evaluation, the general evaluation strategy is
functionally equivalent to evaluating policies like the rules. returning the relevant
obligations. The relevant obligations are determined by the policy combining algorithm
function.

type PolicySetF = RequestContextT -> ObligatedDecisionT

policySetSemantics :: PredicateF -> PolicyCombiningAlgF ->
 [(PredicateF,PolicyF)] -> [ObligationT]-> PolicySetF

policySetSemantics targetf combf policies obls req =

check (targetf req) (combf policies obls req)

 where check (BoolAtom False) _ = (NotApplicable,[])
 check (BoolAtom True) result = result
 check _ _ = (Indeterminate,[])

The astute Haskell reader will notice that the types. “PoliicyF” and “PolicySetF” are
equivalent.

10/29/03 DRAFT 32

Polar Humenn DRAFT Syracuse University

The PDP Function
A PDP may be generated by taking a function of type “PolicyF” or “PolicySetF” function
(since they are equivalent in type) and produce a PDP function.

pdpf :: PolicyF -> PDP

pdpf policyf req =

check (policyf req)

 where check (Permit,obls) =
 ResponseContext
 [Result Permit (Status "ok" "" "") obls]

 check (Deny,obls) =
 ResponseContext
 [Result Deny (Status "ok" "" "") obls]

 check (NotApplicable,[]) =
 ResponseContext
 [Result NotApplicable (Status "ok" "" "") []]

 check (Indeterminate, []) =
 ResponseContext
 [Result Indeterminate (Status "error?" "" "") []]

XACML has not yet formalized the specific semantics of status, and this situation is quite
obvious from looking at the formal description.

Converting the Policy Description
We have formally specified the abstract data types that model the XACML Request
Context, Response Context, Policy, Policy Set, which are straight forwardly convertible
to their Haskell counter parts. We have also formally specified the semantics of
evaluating aspects of XACML as functions. The correlations between those functions and
their purpose over the XACML context is intuitive, yet we formalize this with a function
that takes an instance of the “PolicyT” data type and returns a function of type “PolicyF”
according to the formally specified functions in the last section.

Function Environment
XACML has a number of functions that are named by URN identifiers of which their
semantics are defined by other standards, or in the document itself. There must be some
way of retrieving the corresponding Haskell function that the identifier represents. We
use the following function:

get :: [(String,b)]-> String -> b

get ((a,v):vs) a' = if a == a' then v else get vs a'

Note that a clause for the empty list is not declared for “get”. Therefore, if the identifier is
not in the list of tuples. This stipulates that this particular application of this function

10/29/03 DRAFT 33

Polar Humenn DRAFT Syracuse University

would fail. Therefore, we do not model policies that have undefined functions.

Our Function Environment consists of a list of identifier, FunctionF pairs.

type FunctionEnv = [(String, FunctionF)]

fenv :: FunctionEnv

menv :: FunctionEnv

funcEnv :: String -> FunctionF

funcEnv = get fenv

matchEnv :: String -> FunctionF

matchEnv = get menv

Combinator Environments
Rule and policy combinators are also contained in environments using the same
identifier, function pairing mechanism..

type RuleCombinatorEnv = [(String,RuleCombiningAlgF)]

ruleCenv :: RuleCombinatorEnv

ruleCombinator :: String -> RuleCombiningAlgF

ruleCombinator = get ruleCenv

type PolicyCombinatorEnv = [(String, PolicyCombiningAlgF)]

policyCenv :: PolicyCombinatorEnv

policyCombinator :: String -> PolicyCombiningAlgF

policyCombinator = get policyCenv

The elements “ruleCenv” and “policyCenv” are described in the Appendix.

Compiling a Policy
Compiling an instance of a “PolicyT” data type to a function of type “PolicyF” is straight
forward with the following functions.

compilePolicy :: PolicyT -> (PredicateF,PolicyF)

compilePolicy (Policy id target comb rules obls) = (targ,policyf)
 where targ = compileTarget target
 policyf = policySemantics targ
 (ruleCombinator comb)
 (map compileRule rules) obls

10/29/03 DRAFT 34

Polar Humenn DRAFT Syracuse University

compilePolicy (PolicySet id target comb policies obls) = (targ,policyf)
 where targ = compileTarget target
 policyf = policySetSemantics targ
 (policyCombinator comb)
 (map compilePolicy policies) obls

The “compilePolicy” function compiles both “Policy” and “PolicySet” constructions. It
returns a tuple containing the policy or policy sets compiled target, and the compiled
policy function. The Policy function for a Policy construction is an application of the
“policySemantics” function applied to the compiled target, retrieved rule combinator and
a list of compiled rules, and last but not least, the obligations. The Policy function for a
“PolicySet” construction is an application of the “policySetSemantics” function applied
to the compiled target, retrieved policy combinator and a list of compiled policies, and
last but not least, the obligations.

compileRule (Rule target cond effect) = (effect,rulef)
 where
 rulef = ruleSemantics (compileTarget target)
 (compileExpression cond) effect

The “compileRule” function applies the “ruleSemantics” function to the compiled target,
the compiled expression for the condition, and the effect.

compileTarget EmptyTarget = constVal (BoolAtom True)
compileTarget (Target subs res acts) =
 targetSemantics (compileSubjects subs)
 (compileResources res)
 (compileActions acts)

The “compileTarget” function returns a function that is constantly true for the
“EmptyTarget”. For an explicitly defined target, the result is defined by applying the
“targetSemantics” to the compiled version of the Subjects, Resources, and Actions
sections.

compileSubjects (Subjects subs) =
 subjects (map compileSubjectTarget subs)
compileSubjects (AnySubject) = constVal (BoolAtom True)

compileSubjectTarget (SubjectTarget matches) =
 subject (map compileSubjectMatch matches)

compileSubjectMatch (SubjectMatch id val desig) =
 match (matchEnv id) val (compileExpression desig)

The “compileSubjects” function returns a function that is constantly true for the
“AnySubject”. For an explicitly defined subjects section, the result is defined by applying
the “subjects” function to a list containing the compiled version of each target subject.
Compiling a “SubjectTarget” construction applies the “subject” function to a list

10/29/03 DRAFT 35

Polar Humenn DRAFT Syracuse University

containing the compiled subject matches. Finally, compiling a “SubjectMatch”
construction applies the “match” function to the retrieved matching function, embedded
attribute value, and the complied version of the attribute designator.

compileResources (Resources res) =
 resources (map compileResourceTarget res)
compileResources (AnyResource) = constVal (BoolAtom True)

compileResourceTarget (ResourceTarget matches) =
 resource (map compileResourceMatch matches)

compileResourceMatch (ResourceMatch id val desig) =
 match (matchEnv id) val (compileExpression desig)

The “compileResources” function returns a function that is constantly true for the
“AnyResource”. For an explicitly defined subjects section, the result is defined by
applying the “subjects” function to a list containing the compiled version of each target
subject. Compiling a “ResourceTarget” construction applies the “subject” function to a
list containing the compiled resource matches. Finally, compiling a “ResourceMatch”
construction applies the “match” function to the retrieved matching function, embedded
attribute value, and the complied version of the attribute designator.

compileActions (Actions acts) =
 actions (map compileActionTarget acts)
compileActions (AnyAction) = constVal (BoolAtom True)

compileActionTarget (ActionTarget matches) =
 action (map compileActionMatch matches)

compileActionMatch (ActionMatch id val desig) =
 match (matchEnv id) val (compileExpression desig)

The “compileActionss” function returns a function that is constantly true for the
“AnyAction”. For an explicitly defined subjects section, the result is defined by applying
the “subjects” function to a list containing the compiled version of each target subject.
Compiling a “ActionTarget” construction applies the “subject” function to a list
containing the compiled action matches. Finally, compiling a “ResourceMatch”
construction applies the “match” function to the retrieved matching function, embedded
attribute value, and the complied version of the attribute designator.

compileExpression (Value x) = constVal x
compileExpression (Apply id exps) =
 apply (funcEnv id) (map compileExpression exps)
compileExpression (SubjectAttributeDesignator cat id dt issuer mbp) =

 subjectAttributeDesignator cat id dt issuer mbp
compileExpression (ResourceAttributeDesignator id dt issuer mbp) =
 resourceAttributeDesignator id dt issuer mbp
compileExpression (ActionAttributeDesignator id dt issuer mbp) =
 actionAttributeDesignator id dt issuer mbp
compileExpression (EnvironmentAttributeDesignator id dt issuer mbp) =
 environmentAttributeDesignator id dt issuer mbp

10/29/03 DRAFT 36

Polar Humenn DRAFT Syracuse University

Compiling an Expression is straight forward.

The PAP function
A PAP complies the policy and we apply the function that specifies status to make the
PDP.

pap :: PAP

pap policyt = pdpf policyf
 where (targetf,policyf) = (compilePolicy policyt)

Conclusions
We present the formal semantics of XACML. Instead of standard denotational semantics,
we use a functional, declarative programming language, Haskell. This approach gives us
the benefit of a standard syntax, and advantage of all the formal theory already behind the
Haskell language.

Some important points, where the ambiguities lie, are called out as a result of this formal
analysis.

Future Work
This document will serve as a way in which the community may discuss XACML with
respect to its semantics. When new versions of XACML gain new features, using these
semantics, perhaps properties can be proved about policies in general, or even a specific
policy.

References
[DS] D. Eastlake et al., XML-Signature Syntax and Processing,

http://www.w3.org/TR/xmldsig-core/, World Wide Web
Consortium.

[Hancock] Hancock, "Polymorphic Type Checking", in Simon L. Peyton
Jones,
"Implementation of Functional Programming Languages", Section
8,
Prentice-Hall International, 1987

[Haskell] Haskell, a purely functional language. Available at
http://www.haskell.org/

[Hinton94] Hinton, H, M, Lee,, E, S, The Compatibility of Policies,
Proceedings 2nd ACM Conference on Computer and
Communications Security, Nov 1994, Fairfax, Virginia, USA.

[SAML] Security Assertion Markup Language available from

10/29/03 DRAFT 37

Polar Humenn DRAFT Syracuse University

http://www.oasis-open.org/committees/security/#documents
[Sloman94] Sloman, M. Policy Driven Management for Distributed Systems.

Journal of Network and Systems Management, Volume 2, part 4.
Plenum Press. 1994.

Appendix

Functions
We will explain via Haskell the semantics that are specified in the XACML document.
Functions that refer to other standards and are explicitly clear, we will assume that they
are primitive functions, such as string equality. These functions include all matching
functions, arithmetic functions, string conversion functions, primitive type conversion
functions, arithmetic comparison functions, date and time functions, non numeric
comparison functions, set functions, and the special match functions.

In this section we do define the logical functions, the bag functions, and the higher order
bag functions that are explicitly defined in the XACML specification. In the XACML
specification the higher order bag functions are already specified in Haskell, however, we
will respecify them here in the context the scheme we used for our semantics.

Logical Functions
We will formally describe the logical functions as specified in the XACML document.

Logical Or
The logical OR function takes a list of boolean values and returns a boolean value
according to standard propositional logic use of OR. The XACML 1.1 Specification
Section A.14.5 Logical Functions states the semantics of “or” as follows:

This function SHALL return "False" if it has no arguments and SHALL return
"True" if one of its arguments evaluates to "True". The order of evaluation
SHALL be from first argument to last. The evaluation SHALL stop with a
result of "True" if any argument evaluates to "True", leaving the rest of the
arguments unevaluated. In an expression that contains any of these functions, if
any argument is "Indeterminate", then the expression SHALL evaluate to
"Indeterminate".

The description states that the order of evaluation shall be from first to last and if any
element evaluates to True the evaluation shall stop. However, it does state that if any
element is deemed to evaluate to indeterminate, the result shall be indeterminate.

10/29/03 DRAFT 38

Polar Humenn DRAFT Syracuse University

Note: This situation is ambiguous because “leaving the rest of the arguments
unevaluated” and the last clause states that all arguments really must already be
evaluated before applying the function. The last sentence implies strict evaluation
for all arguments regardless.

We will model this function with the “fold left” standard Haskell function, which
evaluates every argument since it must traverse the entire list of its argument.

logical_or :: FunctionF

logical_or = foldl f (BoolAtom False)

 where
 f IndeterminateVal _ = IndeterminateVal
 f _ IndeterminateVal = IndeterminateVal
 f (BoolAtom a) (BoolAtom b) = BoolAtom (a || b)
 f _ _ = IndeterminateVal

Note: This semantics specifies that Indeterminate takes precedence over an evaluation of
True.

Logical And
The logical and function takes a list of boolean values and returns a boolean value
according to standard propositional logic. The XACML 1.1 Specification Section A.14.5
Logical Functions states the semantics of “and” as follows:

This function SHALL return "True" if it has no arguments and SHALL return
"False" if one of its arguments evaluates to "False". The order of evaluation
SHALL be from first argument to last. The evaluation SHALL stop with a
result of "False" if any argument evaluates to "False", leaving the rest of the
arguments unevaluated. In an expression that contains any of these functions, if
any argument is "Indeterminate", then the expression SHALL evaluate to
"Indeterminate".

The description states that the order of evaluation shall be from first to last and if any
element evaluates to False the evaluation shall stop. However, it does state that if any
element is deemed to evaluate to Indeterminate, the result shall be indeterminate.

Note: This situation is ambiguous because “leaving the rest of the arguments
unevaluated” and the last clause states that all arguments really must already be
evaluated before applying the function. The last sentence implies strict evaluation
for all arguments regardless.

We model this function with the “fold left” standard Haskell function, which evaluates
every argument since it must traverse the entire list of its argument.

logical_and :: FunctionF

10/29/03 DRAFT 39

Polar Humenn DRAFT Syracuse University

logical_and = foldl f (BoolAtom True)
 where
 f IndeterminateVal _ = IndeterminateVal
 f _ IndeterminateVal = IndeterminateVal
 f (BoolAtom a) (BoolAtom b) = BoolAtom (a && b)
 f _ _ = IndeterminateVal

Note: This semantics specifies that Indeterminate takes precedence over an evaluation of
False.

Logical N-Of
The logical n-of function requires that there be a certain number of Trues in a list of
arguments. The XACML 1.1 Specification Section A.14.5 Logical Functions states the
semantics of “n-of” as follows:

The first argument to this function SHALL be of data-type
“http://www.w3.org/2001/XMLSchema#integer”, specifying the number of the
remaining arguments that MUST evaluate to "True" for the expression to be
considered "True". If the first argument is 0, the result SHALL be "True". If
the number of arguments after the first one is less than the value of the first
argument, then the expression SHALL result in "Indeterminate". The order of
evaluation SHALL be: first evaluate the integer value, then evaluate each
subsequent argument. The evaluation SHALL stop and return "True" if the
specified number of arguments evaluate to "True". The evaluation of arguments
SHALL stop if it is determined that evaluating the remaining arguments will not
satisfy the requirement. In an expression that contains any of these functions, if
any argument is "Indeterminate", then the expression SHALL evaluate to
"Indeterminate".

The description states that each argument will be evaluated according to the order they
are listed. However, if the number of expressions supplied is less than the number
specified as the first argument, then it must return indeterminate. The evaluation should
not proceed once the requirement is satisfied. However, it does state that if any element is
deemed to evaluate to Indeterminate, the result shall be indeterminate.

Note: This situation is ambiguous because “leaving the rest of the arguments
unevaluated” and the last clause states that all arguments really must already be
evaluated before applying the function. The last sentence implies strict evaluation
for all arguments regardless.

We model this function, in which the length is checked, and if that is okay, then all the
arguments are technically evaluated until an indeterminate is found, regardless of
evaluating to true..

logical_n_of :: FunctionF

10/29/03 DRAFT 40

Polar Humenn DRAFT Syracuse University

logical_n_of ((IntAtom n):vs) =
 if (n > length vs) then IndeterminateVal
 else n_of n vs
 where
 n_of 0 (IndeterminateVal:_) = IndeterminateVal
 n_of 0 (BoolAtom True:vs) = n_of 0 vs
 n_of 0 (BoolAtom False:vs) = n_of 0 vs
 n_of n [] = BoolAtom (n /= 0)
 n_of (n+1) (IndeterminateVal:_) = IndeterminateVal
 n_of (n+1) (BoolAtom True:vs) = n_of n vs
 n_of (n+1) (BoolAtom False:vs) = n_of (n+1) vs
 n_of _ _ = IndeterminateVal

The first clause of “n_of” states that 0 with an indeterminate value for the next argument
is indeterminate, regardless of the other arguments. However, if 0 with a true for the next
argument is dependent on the rest of the arguments regardless. The same is true with 0
and false. However, if we have no arguments, the result is only true if we are looking 0 to
be true. For the inductive cases, If the next argument is true, the result is the same as
applying the “n_of” function to one less and the rest of the arguments.. However, if the
next argument is false, then the result is the same as applying the “n_of” function to the
same number and the rest of the arguments. If we encounter an indeterminate along the
way, it immediately results in indeterminate.

Note: This semantics specifies that Indeterminate takes precedence over an evaluation of
True or False.

Logical Not
The logical not function evaluates to the logical opposite, except if the argument is
Indeterminate. The XACML 1.1 Specification A. 14.5 Logical Functions states the
semantics for “not” as the following:

This function SHALL take one logical argument. If the argument evaluates to
"True", then the result of the expression SHALL be "False". If the argument
evaluates to "False", then the result of the expression SHALL be "True". In an
expression that contains any of these functions, if any argument is
"Indeterminate", then the expression SHALL evaluate to "Indeterminate".

logical_not :: FunctionF

logical_not [BoolAtom t] = BoolAtom (not t)

logical_not _ = IndeterminateVal

Bag Functions
The Bag Functions specified in the XACML document are specific for each type.
However, their descriptions are polymorphic. Our formal specification of their semantics
can be polymorphic as well.

10/29/03 DRAFT 41

Polar Humenn DRAFT Syracuse University

One and Only
The XACML 1.1 Specification Section 14.9 Bag Functions states the semantics for the
“one-and-only” function as:

This function SHALL take an argument of a bag of type values and SHALL
return a value of data-type. It SHALL return the only value in the bag. If the
bag does not have one and only one value, then the expression SHALL evaluate
to "Indeterminate".

bag_one_and_only :: FunctionF

bag_one_and_only [Bag [v]] = v
bag_one_and_only _ = IndeterminateVal

The above specification matches if there is only a Bag with one element in it, otherwise
indeterminate results.

Bag Size
The XACML 1.1 Specification Section 14.9 Bag Functions states the semantics for the
“bag-size” function as:

This function SHALL take a bag of type values as an argument and SHALL
return an “http://www.w3.org/2001/XMLSchema#integer” indicating the
number of values in the bag.

bag_size :: FunctionF

bag_size [Bag []] = IntAtom 0
bag_size [Bag (v:vs)] = IntAtom (length (v:vs))

Is In
The XACML 1.1 Specification Section 14.9 Bag Functions states the semantics for the
“is_in” function as:

This function SHALL take an argument of data-type type as the first argument
and a bag of type values as the second argument. The expression SHALL
evaluate to "True" if the first argument matches by the
"urn:oasis:names:tc:xacml:1.0:function:type-equal" to any value in the bag.

We model this semantic with the “bag_is_in” function that takes a list containing only
two elements.

bag_is_in :: FunctionF

10/29/03 DRAFT 42

Polar Humenn DRAFT Syracuse University

bag_is_in [a, Bag as] = if (not (elem a as)) then checkDT a as
 else BoolAtom True
bag_is_in _ = IndeterminateVal

checkDT _ [] = BoolAtom True
checkDT a@(IntAtom _) (IntAtom _:as) = checkDT a as
checkDT a@(StringAtom _) (StringAtom _:as) = checkDT a as
checkDT a@(BoolAtom _) (BoolAtom _:as) = checkDT a as
checkDT a@(DoubleAtom _) (DoubleAtom _:as) = checkDT a as
checkDT a@(DateTimeAtom _) (DateTimeAtom _:as) = checkDT a as
checkDT a@(DateAtom _) (DateAtom _:as) = checkDT a as
checkDT a@(TimeAtom _) (TimeAtom _:as) = checkDT a as
checkDT a@(HexBinaryAtom _) (HexBinaryAtom _:as) = checkDT a as
checkDT a@(Base64BinaryAtom _) (Base64BinaryAtom _:as) = checkDT a as
checkDT a@(AnyURIAtom _) (AnyURIAtom _:as) = checkDT a as
checkDT a@(YearMonthDurationAtom _ _) (YearMonthDurationAtom _ _:as) =
 checkDT a as
checkDT a@(MonthDayDurationAtom _ _) (MonthDayDurationAtom _ _:as) =
 checkDT a as
checkDT _ _ = IndeterminateVal

The function “elem” is a standard Haskell function that returns true if the first argument
is equal to an element in the second argument, which is a list. The “elem” function will
apply the correct equality predicate. The function “checkDT” is needed to specify the
semantics for checking to see if the data type of the compared value is consistent with the
type of the Bag. This check can be factored away for compilations that conform to
XACML's type safety. The “checkDT” function returns true or indeterminate.

Bag
The XACML 1.1 Specification Section A.14.9 Bag Functions states the semantics for the
“bag” function as:

This function SHALL take any number of arguments of a single data-type and
return a bag of type values containing the values of the arguments. An
application of this function to zero arguments SHALL produce an empty bag of
the specified data-type.

We model this with the “bag” function. It takes a list of arguments of the same type and
turn them into a bag.

Note: It is not specified in the document, but if any of those arguments evaluate to
Indeterminate, the entire bag expression should evaluate to Indeterminate to be
consistent.

The way this function is defined, ensures that the data types will be consistent amongst
the arguments, otherwise the expression results in Indeterminate.

bag :: FunctionF

10/29/03 DRAFT 43

Polar Humenn DRAFT Syracuse University

bag [] = Bag []

bag (IntAtom a:vs) = foldl f (Bag [(IntAtom a)]) vs
 where f (Bag a@((IntAtom _):bs)) b@(IntAtom _) = Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (DoubleAtom a:vs) = foldl f (Bag [(DoubleAtom a)]) vs
 where f (Bag a@((DoubleAtom _):bs)) b@(DoubleAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (StringAtom a:vs) = foldl f (Bag [(StringAtom a)]) vs
 where f (Bag a@((StringAtom _):bs)) b@(StringAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (BoolAtom a:vs) = foldl f (Bag [(BoolAtom a)]) vs
 where f (Bag a@((BoolAtom _):bs)) b@(BoolAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (DateAtom a:vs) = foldl f (Bag [(DateAtom a)]) vs
 where f (Bag a@((DateAtom _):bs)) b@(DateAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal
bag (TimeAtom a:vs) = foldl f (Bag [(TimeAtom a)]) vs
 where f (Bag a@((TimeAtom _:bs))) b@(TimeAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal
bag (DateTimeAtom a:vs) = foldl f (Bag [(DateTimeAtom a)]) vs
 where f (Bag a@((DateTimeAtom _):bs)) b@(DateTimeAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal
bag (HexBinaryAtom a:vs) = foldl f (Bag [(HexBinaryAtom a)]) vs
 where f (Bag a@((HexBinaryAtom _):bs)) b@(HexBinaryAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (Base64BinaryAtom a:vs) = foldl f (Bag [(Base64BinaryAtom a)]) vs
 where f (Bag a@((Base64BinaryAtom _):bs)) b@(Base64BinaryAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (DoubleAtom a:vs) = foldl f (Bag [(DoubleAtom a)]) vs
 where f (Bag a@((DoubleAtom _):bs)) b@(DoubleAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (AnyURIAtom a:vs) = foldl f (Bag [(AnyURIAtom a)]) vs
 where f (Bag a@((AnyURIAtom _):bs)) b@(AnyURIAtom _) =
 Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (YearMonthDurationAtom y d:vs) =
 foldl f (Bag [(YearMonthDurationAtom y d)]) vs
 where f (Bag a@(YearMonthDurationAtom _ _ :bs))
 b@(YearMonthDurationAtom _ _) = Bag (a ++ [b])
 f _ _ = IndeterminateVal

bag (MonthDayDurationAtom m d:vs) =
 foldl f (Bag [(MonthDayDurationAtom m d)]) vs
 where f (Bag a@(MonthDayDurationAtom _ _ :bs))
 b@(MonthDayDurationAtom _ _) = Bag (a ++ [b])
 f _ _ = IndeterminateVal

10/29/03 DRAFT 44

Polar Humenn DRAFT Syracuse University

Higher Order Bag Functions
In this section we redefine the higher order bag functions to work with our value scheme.
They follow the same logical semantics, except our arguments are lists of “ValueT” and
functions return “ValueT”.

Any of
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “any-of” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a value of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression SHALL be evaluated as if the function named in the <Function>
element is applied to the second argument and each element of the third
argument (the bag) and the results are combined with
“urn:oasis:names:tc:xacml:1.0:function:or”.

any_of :: FunctionF
any_of [f,a,Bag []] = BoolAtom False
any_of [f@(StringAtom fid),a,Bag (x:xs)] =
 logical_or [(funcEnv fid) [a,x],(any_of [f,a,Bag xs])]
any_of _ = IndeterminateVal

All of
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “all-of” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a value of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression SHALL be evaluated as if the function named in the <Function>
element were applied to the second argument and each element of the third
argument (the bag) and the results were combined using
“urn:oasis:names:tc:xacml:1.0:function:and”.

all_of :: FunctionF
all_of [f,a,Bag []] = BoolAtom True
all_of [f@(StringAtom fid),a,Bag (x:xs)] =
 logical_and [(funcEnv fid) [a,x],(all_of [f,a,Bag xs])]
all_of _ = IndeterminateVal

10/29/03 DRAFT 45

Polar Humenn DRAFT Syracuse University

Any Of Any
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “any-of-any” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression SHALL be evaluated as if the function named in the <Function>
element were applied between every element in the second argument and every
element of the third argument (the bag) and the results were combined using
“urn:oasis:names:tc:xacml:1.0:function:or”. The semantics are that the result of
the expression SHALL be "True" if and only if the applied predicate is "True"
for any comparison of elements from the two bags.

any_of_any :: FunctionF
any_of_any [f,Bag [],Bag ys] = BoolAtom False
any_of_any [f,Bag (x:xs),Bag ys] =
 logical_or [any_of [f,x,Bag ys,any_of_any [f,Bag xs,Bag ys]]]
any_of_any _ = IndeterminateVal

All of Any
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “all-of-any” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression SHALL be evaluated as if function named in the <Function>
element were applied between every element in the second argument and every
element of the third argument (the bag) using
“urn:oasis:names:tc:xacml:1.0:function:and”. The semantics are that the result
of the expression SHALL be "True" if and only if the applied predicate is "True"
for each element of the first bag and any element of the second bag.

all_of_any :: FunctionF
all_of_any [f,Bag [],Bag ys] = BoolAtom False
all_of_any [f,Bag (x:xs),Bag ys] = logical_and
 [any_of [f,x,Bag ys,all_of_any [f,Bag xs,Bag ys]]]
all_of_any _ = IndeterminateVal

10/29/03 DRAFT 46

Polar Humenn DRAFT Syracuse University

Any of All
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “any-of-all” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression SHALL be evaluated as if the function named in the <Function>
element were applied between every element in the second argument and every
element of the third argument (the bag) and the results were combined using
“urn:oasis:names:tc:xacml:1.0:function:or”. The semantics are that the result of
the expression SHALL be "True" if and only if the applied predicate is "True"
for any element of the first bag compared to all the elements of the second bag.

any_of_all :: FunctionF
any_of_all [f,Bag [],Bag ys] = BoolAtom False
any_of_all [f,Bag (x:xs),Bag ys] =
 logical_or [all_of [f,x,Bag ys,any_of_all [f,Bag xs,Bag ys]]]
any_of_all _ = IndeterminateVal

All of All
The XACML 1.1 Specification Section A.14.11 Higher-order bag functions states the
semantics for the “any-of-all” function as:

This function SHALL take three arguments. The first argument SHALL be a
<Function> element that names a boolean function that takes two arguments of
primitive types. The second argument SHALL be a bag of a primitive data-
type. The third argument SHALL be a bag of a primitive data-type. The
expression is evaluated as if the function named in the <Function> element
were applied between every element in the second argument and every element
of the third argument (the bag) and the results were combined using
“urn:oasis:names:tc:xacml:1.0:function:and”. The semantics are that the result
of the expression is "True" if and only if the applied predicate is "True" for all
elements of the first bag compared to all the elements of the second bag.

all_of_all :: FunctionF
all_of_all [f,Bag [],Bag ys] = BoolAtom False
all_of_all [f,Bag (x:xs),Bag ys] =
 logical_and [all_of [f,x,Bag ys,all_of_all [f,Bag xs,Bag ys]]]
all_of_all _ = IndeterminateVal

10/29/03 DRAFT 47

Polar Humenn DRAFT Syracuse University

Lookup Environments
The functions that supply the functions, predicates, and combinators are listed as
identifier, function name pairs. We refer you to the XACML document for their specific
names, and other than the functions described above, their semantics are described
elsewhere.

Function Environment
The Function Environment holds all the functions that are nameable in an XACML
expression.

value_eq :: [ValueT] -> ValueT
value_eq [a,b] = BoolAtom (a == b)

integer_greaterthan :: [ValueT] -> ValueT
integer_greaterthan [IntAtom a, IntAtom b] = BoolAtom (a > b)

fenv = [
 ("or", logical_or),
 ("and", logical_and),
 ("any-of", any_of),
 ("all-of", all_of),
 ("any-of-any", any_of_any),
 ("all-of-any", all_of_any),
 ("any-of-all", any_of_all),
 ("all-of-all", all_of_all),
 ("integer-one-and-only", bag_one_and_only),
 ("integer-greaterthan", integer_greaterthan),
 ("string-equal", value_eq),
 ("boolean-equal", value_eq),
 ("integer-equal", value_eq)

 --- etc
]

Match Environment
The Match Environment holds all the functions that are allowed in the matching
elements. These names should also be in the Function Environment.

menv = [
 ("string-equal", value_eq),
 ("boolean-equal", value_eq),
 ("integer-equal", value_eq)

 --- etc
]

Rule Combinator Environment
The Rule Combinator Environment contains the standard combinators.

10/29/03 DRAFT 48

Polar Humenn DRAFT Syracuse University

ruleCenv = [
 (“deny-overrides”, rule_deny_overrides),
 ("permit-overrides", rule_permit_overrides),
 ("first-applicable", rule_first_appl)

]

Rule Deny Overrides

The XACML 1.1 Specification Section C.1 Deny Overrides states the semantics of the
rule combining algorithm “deny-overrides” as follows:

In the entire set of rules in the policy, if any rule evaluates to "Deny", then the
result of the rule combination SHALL be "Deny". If any rule evaluates to
"Permit" and all other rules evaluate to "NotApplicable", then the result of the
rule combination SHALL be "Permit". In other words, "Deny" takes
precedence, regardless of the result of evaluating any of the other rules in the
combination. If all rules are found to be "NotApplicable" to the decision
request, then the rule combination SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target or condition of a rule that contains
an effect value of "Deny" then the evaluation SHALL continue to evaluate
subsequent rules, looking for a result of "Deny". If no other rule evaluates to
"Deny", then the combination SHALL evaluate to "Indeterminate", with the
appropriate error status.

If at least one rule evaluates to "Permit", all other rules that do not have
evaluation errors evaluate to "Permit" or "NotApplicable" and all rules that do
have evaluation errors contain effects of "Permit", then the result of the
combination SHALL be "Permit".

The semantics of the Rule Deny Overrides algorithm takes into account the effect of the
rule. It is formally described as follows:

rule_deny_overrides :: RuleCombiningAlgF

rule_deny_overrides [] req = NotApplicable

rule_deny_overrides ((eff,rf): rs) req =
 check eff (rf req) (rule_deny_overrides rs req)

 where check _ Permit NotApplicable = Permit
 check _ Permit next = next
 check _ Deny _ = Deny
 check Deny Indeterminate Indeterminate = Indeterminate
 check Deny Indeterminate Deny = Deny
 check Deny Indeterminate Permit = Indeterminate
 check Deny Indeterminate NotApplicable = Indeterminate
 check Permit Indeterminate Indeterminate = Indeterminate
 check Permit Indeterminate Deny = Deny
 check Permit Indeterminate Permit = Permit

10/29/03 DRAFT 49

Polar Humenn DRAFT Syracuse University

 check _ NotApplicable next = next

The rule_deny_overrides function specifies the complex semantics for the this
combinator. The first clause holds the property that if there are no rules, NotApplicable is
always the result. The next clause evaluates each rule and potential effect with the
combination of the rest of the rules.

The check function checks a rule with respect to its potential effect with the rest of the
rules. For example, the first clause states that if a rule results in “Permit” and the rest of
the combinator is “NotApplicable” the result is “Permit”. Noted is the set of clauses that
say “Deny Indeterminate” which states that if the potential effect is the rule is “Deny”
and the rule results in “Indeterminate” and the rest of the combination is anything but
“Deny”, the result must be “Indeterminate”.

Rule Permit Overrides

The XACML 1.1 Specification Section C.1 Deny Overrides states the semantics of the
rule combining algorithm “permit-overrides” as follows:

In the entire set of rules in the policy, if any rule evaluates to "Permit", then the
result of the rule combination SHALL be "Permit". If any rule evaluates to
"Deny" and all other rules evaluate to "NotApplicable", then the policy SHALL
evaluate to "Deny". In other words, "Permit" takes precedence, regardless of the
result of evaluating any of the other rules in the policy. If all rules are found to
be "NotApplicable" to the decision request, then the policy SHALL evaluate to
"NotApplicable".

If an error occurs while evaluating the target or condition of a rule that contains
an effect of "Permit" then the evaluation SHALL continue looking for a result of
"Permit". If no other rule evaluates to "Permit", then the policy SHALL
evaluate to "Indeterminate", with the appropriate error status.

If at least one rule evaluates to "Deny", all other rules that do not have
evaluation errors evaluate to "Deny" or "NotApplicable" and all rules that do
have evaluation errors contain an effect value of "Deny", then the policy SHALL
evaluate to "Deny".

The semantics of the Permit Deny Overrides algorithm takes into account the effect of the
rule. It is formally described as follows:

rule_permit_overrides :: RuleCombiningAlgF

rule_permit_overrides [] req = NotApplicable

rule_permit_overrides ((eff,rf): rs) req =
 check eff (rf req) (rule_permit_overrides rs req)

10/29/03 DRAFT 50

Polar Humenn DRAFT Syracuse University

 where check _ Deny NotApplicable = Deny
 check _ Deny next = next
 check _ Permit _ = Permit
 check Permit Indeterminate Indeterminate = Indeterminate
 check Permit Indeterminate Permit = Permit
 check Permit Indeterminate Deny = Indeterminate
 check Permit Indeterminate NotApplicable = Indeterminate
 check Deny Indeterminate Indeterminate = Indeterminate
 check Deny Indeterminate Permit = Permit
 check Deny Indeterminate Deny = Deny

 check _ NotApplicable next = next

The rule_permit_overrides function specifies the complex semantics for the this
combinator. The first clause holds the property that if there are no rules, NotApplicable is
always the result. The next clause evaluates each rule and potential effect with the
combination of the rest of the rules.

The check function checks a rule with respect to its potential effect with the rest of the
rules. For example, the first clause states that if a rule results in “Deny” and the rest of the
combinator is “NotApplicable” the result is “Deny”. Noted is the set of clauses that say
“Permit Indeterminate” which states that if the potential effect is the rule is “Permit” and
the rule results in “Indeterminate” and the rest of the combination is anything but
“Permit”, the result must be “Indeterminate”.

Rule First Applicable

The XACML 1.1 Specification Section C.1 Deny Overrides states the semantics of the
rule combining algorithm “first-applicable” as follows:

Each rule SHALL be evaluated in the order in which it is listed in the policy.
For a particular rule, if the target matches and the condition evaluates to "True",
then the evaluation of the policy SHALL halt and the corresponding effect of the
rule SHALL be the result of the evaluation of the policy (i.e. "Permit" or
"Deny"). For a particular rule selected in the evaluation, if the target evaluates
to "False" or the condition evaluates to "False", then the next rule in the order
SHALL be evaluated. If no further rule in the order exists, then the policy
SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target or condition of a rule, then the
evaluation SHALL halt, and the policy shall evaluate to "Indeterminate", with
the appropriate error status.

The first applicable rule selects the first rule that evaluates to anything but
NotApplicable. This combining algorithm does not take into account the potential effect
of the rule.

rule_first_appl :: RuleCombiningAlgF

10/29/03 DRAFT 51

Polar Humenn DRAFT Syracuse University

rule_first_appl [] req = NotApplicable

rule_first_appl ((eff,rf): rs) req =
 check (rf req) (rule_first_appl rs req)

 where check Permit _ = Permit
 check Deny _ = Deny
 check Indeterminate _ = Indeterminate
 check NotApplicable next = next

Policy Combinator Environment
The Policy Combinator Environment contains the standard combinators.

policyCenv = [
 (“deny-overrides”, policy_deny_overrides),
 ("permit-overrides", policy_permit_overrides),
 ("first-applicable", policy_first_appl),
 ("only-one-applicable", policy_only_one_appl)

]

Policy Deny Overrides

The semantics of the policy deny overrides combinator is vastly simpler than the rule
combinator, because there is no potential effect to consider. However, we do have to
formally specify the handling of obligations.

The XACML 1.1 Specification Section C.1 Deny Overrides states the semantics of the
policy combining algorithm “deny-overrides” as follows:

In the entire set of policies in the policy set, if any policy evaluates to "Deny",
then the result of the policy combination SHALL be "Deny". In other words,
"Deny" takes precedence, regardless of the result of evaluating any of the other
policies in the policy set. If all policies are found to be "NotApplicable" to the
decision request, then the policy set SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target of a policy, or a reference to a
policy is considered invalid or the policy evaluation results in "Indeterminate",
then the policy set SHALL evaluate to "Deny".

The semantics of the Policy Deny Overrides algorithm is as follows:

policy_deny_overrides :: PolicyCombiningAlgF

policy_deny_overrides [] obls req = (NotApplicable,[])

policy_deny_overrides ((targ,pf): ps) obls req =

 combine obls (check (pf req) (policy_deny_overrides ps obls req))

10/29/03 DRAFT 52

Polar Humenn DRAFT Syracuse University

 where check (Permit,obs) (NotApplicable,obs') = (Permit,obs ++ obs')
 check (Permit,obs) (d,obs') = (d,obs')
 check (Deny,obs) (_,obs') = (Deny,obs ++ obs')
 check (Indeterminate,[]) (_,obs') = (Deny,obs')
 check (NotApplicable,[]) (d,obs') = (d,obs')
 check _ _ = (Indeterminate,[])

 combine obls (effect,obs) =
 (effect,relevant effect (obs ++ obls))

 relevant _ [] = []
 relevant Indeterminate _ = []
 relevant decision ((effect,obl):obls) =
 if decision == effect
 then (effect,obl) : relevant decision obls
 else relevant decision obls

The first clause of the “policy_deny_overrides” function states that if there are no
subordinate policies, then the result is “NotApplicable” without obligations. The second
clause checks the result of each policy with the combined result of the following policies.

The check policy combines the results and collects all the obligations from the evaluated
policies. The combination of decisions is straight forward according to the specification,
explicitly noting that if a policy evaluates to indeterminate, the combined result is Deny.

Note: The semantics for the policy deny overrides combinator are not specified in
XACML. The formal specification given here, which is the only one that will return
a consistent result regardless of evaluation strategy, is strict in its policy evaluation.
Every policy in the combination must be evaluated. This conclusion may be
undesirable.

The obligations are collected from every policy. The check clauses force this by
evaluating at least the obligations of the rest of the combination. Since policies, according
to our formal semantics, only issue obligations pertaining to their specific decision,
extracting the relevant obligations from the combination of all obligations and only
extracting the the obligations relevant to the combined decision will not select any
undesired obligations.

A policy deny overrides combinator that does not implement obligations should not be
restricted to evaluate every policy. The following combinator has those semantics. We
will keep the same type signature, but ignore the obligations.

policy_deny_overrides_noobl :: PolicyCombiningAlgF

policy_deny_overrides_noobl [] obls req = (NotApplicable,[])

policy_deny_overrides_noobl ((targ,pf): ps) obls req =

 check (pf req) (policy_deny_overrides_noobl ps obls req)

10/29/03 DRAFT 53

Polar Humenn DRAFT Syracuse University

 where check (Permit,_) (NotApplicable,_) = (Permit,[])
 check (Permit,_) rest = rest
 check (Deny,_) _ = (Deny,[])
 check (Indeterminate,[]) _ = (Deny,[])
 check (NotApplicable,[]) rest = rest
 check _ _ = (Indeterminate,[])

One will notice that the check clauses only cause full evaluation of all subordinate
policies by virtue of “Permit” and “NotApplicable”.

Note: Depending upon the semantics chosen for the “deny-overrides” policy combinator,
mixing policies and policy sets with both is notoriously dangerous, as this
combinator ditches all obligations that may have been emitted from subordinate
policies. This can be a problem when policies are distributed and referenced or even
executed by different PDPs.

Policy Permit Overrides

The semantics of the policy permit overrides combinator is vastly simpler than the rule
combinator, because there is no potential effect to consider. However, we do have to
formally specify the handling of obligations.

The XACML 1.1 Specification Section C.1 Permit Overrides states the semantics of the
policy combining algorithm “deny-overrides” as follows:

In the entire set of policies in the policy set, if any policy evaluates to "Permit",
then the result of the policy combination SHALL be "Permit". In other words,
"Permit" takes precedence, regardless of the result of evaluating any of the other
policies in the policy set. If all policies are found to be "NotApplicable" to the
decision request, then the policy set SHALL evaluate to "NotApplicable".

If an error occurs while evaluating the target of a policy, a reference to a policy
is considered invalid or the policy evaluation results in "Indeterminate", then the
policy set SHALL evaluate to "Indeterminate", with the appropriate error status,
provided no other policies evaluate to "Permit" or "Deny".

The semantics of the Policy Permit Overrides algorithm is as follows:

policy_permit_overrides :: PolicyCombiningAlgF

policy_permit_overrides [] obls req = (NotApplicable,[])

policy_permit_overrides ((targ,pf): ps) obls req =

 combine obls (check (pf req) (policy_deny_overrides ps obls req))

10/29/03 DRAFT 54

Polar Humenn DRAFT Syracuse University

 where check (Deny,obs) (NotApplicable,obs') = (Deny,obs ++ obs')
 check (Deny,obs) (d,obs') = (d,obs')
 check (Permit,obs) (_,obs') = (Permit,obs ++ obs')
 check (Indeterminate,[]) (_,obs') = (Indeterminate,[])
 check (NotApplicable,[]) (d,obs') = (d,obs')
 check _ _ = (Indeterminate,[])

 combine obls (effect,obs) =
 (effect,relevant effect (obs ++ obls))

 relevant _ [] = []
 relevant Indeterminate _ = []
 relevant decision ((effect,obl):obls) =
 if decision == effect
 then (effect,obl) : relevant decision obls
 else relevant decision obls

The first clause of the “policy_permit_overrides” function states that if there are no
subordinate policies, then the result is “NotApplicable” without obligations. The second
clause checks the result of each policy with the combined result of the following policies.

The check policy combines the results and collects all the obligations from the evaluated
policies. The combination of decisions is straight forward according to the specification,
explicitly noting that if a policy evaluates to indeterminate, the combined result is
Indeterminate.

Note: The semantics for the policy permit overrides combinator are not specified in
XACML. The formal specification given here, which is the only one that will return
a consistent result regardless of evaluation strategy, is strict in its policy evaluation.
Every policy in the combination must be evaluated. This conclusion may be
undesirable.

The obligations are collected from every policy. The check clauses force this by
evaluating at least the obligations of the rest of the combination. Since policies, according
to our formal semantics, only issue obligations pertaining to their specific decision,
extracting the relevant obligations from the combination of all obligations and only
extracting the the obligations relevant to the combined decision will not select any
undesired obligations.

A policy permit overrides combinator that does not implement obligations should not be
restricted to evaluate every policy. The following combinator has those semantics. We
will keep the same type signature, but ignore the obligations.

policy_permit_overrides_noobl :: PolicyCombiningAlgF

policy_permit_overrides_noobl [] obls req = (NotApplicable,[])

policy_permit_overrides_noobl ((targ,pf):ps) obls req =

 check (pf req) (policy_permit_overrides_noobl ps obls req)

10/29/03 DRAFT 55

Polar Humenn DRAFT Syracuse University

 where check (Deny,_) (NotApplicable,_) = (Deny,[])
 check (Deny,_) rest = rest
 check (Permit,_) _ = (Permit,[])
 check (Indeterminate,[]) _ = (Indeterminate,[])
 check (NotApplicable,[]) rest = rest
 check _ _ = (Indeterminate,[])

One will notice that the check clauses only cause full evaluation of all subordinate
policies by virtue of “Deny” and “NotApplicable”.

Note: Depending upon the semantics chosen for the “deny-overrides” policy combinator,
mixing policies and policy sets with both is notoriously dangerous, as this
combinator ditches all obligations that may have been emitted from subordinate
policies. This can be a problem when policies are distributed and referenced or even
executed by different PDPs.

Policy First Applicable

The XACML 1.1 Specification Section C.3 First Applicable states the semantics of the
policy combining algorithm “first-applicable” as follows:

Each policy is evaluated in the order that it appears in the policy set. For a
particular policy, if the target evaluates to "True" and the policy evaluates to a
determinate value of "Permit" or "Deny", then the evaluation SHALL halt and
the policy set SHALL evaluate to the effect value of that policy. For a particular
policy, if the target evaluate to "False", or the policy evaluates to
"NotApplicable", then the next policy in the order SHALL be evaluated. If no
further policy exists in the order, then the policy set SHALL evaluate to
"NotApplicable".

If an error were to occur when evaluating the target, or when evaluating a
specific policy, the reference to the policy is considered invalid, or the policy
itself evaluates to "Indeterminate", then the evaluation of the policy-combining
algorithm shall halt, and the policy set shall evaluate to "Indeterminate" with an
appropriate error status.

The semantics of the Policy First Applicable algorithm is as follows:

policy_first_appl :: PolicyCombiningAlgF

policy_first_appl [] obls req = (NotApplicable,[])

policy_first_appl ((targ,pf): ps) obls req =
 combine obls (check (pf req) (policy_first_appl ps obls req))

10/29/03 DRAFT 56

Polar Humenn DRAFT Syracuse University

 where check (Permit,obs) _ = (Permit,obs)
 check (Deny,obs) _ = (Deny,obs)
 check (Indeterminate,[]) _ = (Indeterminate,[])
 check (NotApplicable,[]) next = next
 check _ _ = (Indeterminate,[])

 combine obls (effect,obs) =
 (effect,relevant effect (obs ++ obls))

 relevant _ [] = []
 relevant Indeterminate _ = []
 relevant decision ((effect,obl):obls) =
 if decision == effect
 then (effect,obl) : relevant decision obls
 else relevant decision obls

Policy Only One Applicable

This policy combing algorithm only selects policies based on the evaluation of their
targets. The semantics is that of first applicable after ensuring that there is only one
applicable policy.

The XACML 1.1 Specification Section C.4 Only One Applicable states the semantics of
the policy combining algorithm “first-applicable” as follows:

In the entire set of policies in the policy set, if no policy is considered applicable
by virtue of their targets, then the result of the policy combination algorithm
SHALL be "NotApplicable". If more than one policy is considered applicable by
virtue of their targets, then the result of the policy combination algorithm
SHALL be "Indeterminate".

If only one policy is considered applicable by evaluation of the policy targets,
then the result of the policy-combining algorithm SHALL be the result of
evaluating the policy.

If an error occurs while evaluating the target of a policy, or a reference to a
policy is considered invalid or the policy evaluation results in "Indeterminate,
then the policy set SHALL evaluate to "Indeterminate", with the appropriate
error status.

policy_only_one_appl :: PolicyCombiningAlgF

policy_only_one_appl [] obls req = (NotApplicable,[])

policy_only_one_appl ps obls req =

 combine obls
 (check (foldl traverse notappl
 (map (\(t,pf) -> (t req,pf)) ps)))

10/29/03 DRAFT 57

Polar Humenn DRAFT Syracuse University

 where
 notappl = (BoolAtom False, (\r -> (NotApplicable,[])))
 indeterm = (IndeterminateVal, (\r -> (Indeterminate,[])))

 traverse ((BoolAtom True),_) ((BoolAtom True),_) = indeterm
 traverse a@((BoolAtom True),p) _ = a
 traverse ((BoolAtom False),_) rest = rest
 traverse (IndeterminateVal,_) _ = indeterm

 check ((BoolAtom True),policyf) = policyf req
 check ((BoolAtom False),policyf) = policyf req
 check _ = (Indeterminate, [])

 combine obls (effect,obs) =
 (effect,relevant effect (obs ++ obls))

 relevant _ [] = []
 relevant Indeterminate _ = []
 relevant decision ((effect,obl):obls) =
 if decision == effect
 then (effect,obl) : relevant decision obls
 else relevant decision obls

The above description defines the semantics almost literally. The expression containing
the “foldl” function traverses all the targets making sure there are not two targets that
evaluate to True. The check function evaluates the selected policy and returns the
decision with the selected policy's relevant obligations. Those obligations are combined
with the given obligations from the enclosing policy set and returned.

Note: Whether dealing with obligations or not with this combinator, it does not matter as
only one policy is selected. The result does not change with the evaluation order.

10/29/03 DRAFT 58

