
[image: image1.png]OASIS m Advancing E-Business Standards Since 1993

eXtensible Access Control Markup Language (XACML) Version 2.0

Working draft 11, 14 May 2004

Document identifier: oasis-xacml-2.0-core-spec-wd-11

Location: http://www.oasis-open.org/committees/xacml/repository/oasis-xacml-2.0-core-spec-wd-11.pdf
Editors:

Simon Godik, Overxeer

Tim Moses, Entrust

Committee members:

Anne Anderson, Sun Microsystems

Antony Nadalin, IBM

Bill Parducci, Overxeer
Daniel Engovatov, BEA Systems

Frank Siebenlist, Argonne National Labs

Hal Lockhart, BEA Systems
Michael McIntosh, IBM

Michiharu Kudo, IBM
Polar Humenn, Self

Seth Proctor, Sun Microsystems

Simon Godik, Overxeer
Steve Anderson, OpenNetwork

Tim Moses, Entrust

Abstract:

This specification defines version 2.0 of the extensible access-control markup language.

Status:

This version of the specification is a working draft of the committee. As such, it is expected to change prior to adoption as an OASIS standard.

If you are on the xacml@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, you may subscribe to the xacml-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xacml-comment-digest-subscribe@lists.oasis-open.org. Alternatively, you may use the following link and complete the comment form:

http://www.oasis-open.org/committees/comments/form.php?wg_abbrev=xacml
Copyright (C) OASIS Open 2004. All Rights Reserved.

Table of contents

1.Introduction (non-normative)
7

1.1.Glossary
7

1.1.1Preferred terms
7

1.1.2Related terms
8

1.2.Notation
8

1.3.Schema organization and namespaces
9

2.Background (non-normative)
9

2.1.Requirements
10

2.2.Rule and policy combining
10

2.3.Combining algorithms
11

2.4.Multiple subjects
11

2.5.Policies based on subject and resource attributes
11

2.6.Multi-valued attributes
12

2.7.Policies based on resource contents
12

2.8.Operators
12

2.9.Policy distribution
13

2.10.Policy indexing
13

2.11.Abstraction layer
13

2.12.Actions performed in conjunction with enforcement
14

3.Models (non-normative)
14

3.1.Data-flow model
14

3.2.XACML context
16

3.3.Policy language model
16

3.3.1Rule
17

3.3.2Policy
19

3.3.3Policy set
20

4.Examples (non-normative)
20

4.1.Example one
20

4.1.1Example policy
20

4.1.2Example request context
22

4.1.3Example response context
23

4.2.Example two
24

4.2.1Example medical record instance
24

4.2.2Example request context
25

4.2.3Example plain-language rules
27

4.2.4Example XACML rule instances
28

5.Policy syntax (normative, with the exception of the schema fragments)
39

5.1.Element <PolicySet>
39

5.2.Element <Description>
41

5.3.Element <PolicySetDefaults>
41

5.4.Element <XPathVersion>
42

5.5.Element <Target>
42

5.6.Element <Subjects>
43

5.7.Element <Subject>
43

5.8.Element <SubjectMatch>
43

5.9.Element <Resources>
44

5.10.Element <Resource>
44

5.11.Element <ResourceMatch>
45

5.12.Element <Actions>
45

5.13.Element <Action>
45

5.14.Element <ActionMatch>
46

5.15.Element <Environments>
46

5.16.Element <Environment>
47

5.17.Element <EnvironmentMatch>
47

5.18.Element <PolicySetIdReference>
48

5.19.Element <PolicyIdReference>
48

5.20.Simple type VersionType
49

5.21.Simple type VersionMatchType
49

5.22.Element <Policy>
49

5.23.Element <PolicyDefaults>
51

5.24.Element <CombinerParameters>
51

5.25.Element <CombinerParameter>
51

5.26.Element <RuleCombinerParameters>
52

5.27.Element <PolicyCombinerParameters>
52

5.28.Element <PolicySetCombinerParameters>
53

5.29.Element <Rule>
54

5.30.Simple type EffectType
54

5.31.Element <VariableDefinition>
55

5.32.Element <VariableReference>
55

5.33.Element <Expression>
56

5.34.Element <Condition>
56

5.35.Element <Apply>
56

5.36.Element <Function>
57

5.37.Complex type AttributeDesignatorType
57

5.38.Element <SubjectAttributeDesignator>
58

5.39.Element <ResourceAttributeDesignator>
59

5.40.Element <ActionAttributeDesignator>
59

5.41.Element <EnvironmentAttributeDesignator>
60

5.42.Element <AttributeSelector>
60

5.43.Element <AttributeValue>
61

5.44.Element <Obligations>
62

5.45.Element <Obligation>
62

5.46.Element <AttributeAssignment>
63

6.Context syntax (normative with the exception of the schema fragments)
63

6.1.Element <Request>
63

6.2.Element <Subject>
64

6.3.Element <Resource>
65

6.4.Element <ResourceContent>
65

6.5.Element <Action>
65

6.6.Element <Environment>
66

6.7.Element <Attribute>
66

6.8.Element <AttributeValue>
67

6.9.Element <Response>
67

6.10.Element <Result>
67

6.11.Element <Decision>
68

6.12.Element <Status>
69

6.13.Element <StatusCode>
69

6.14.Element <StatusMessage>
69

6.15.Element <StatusDetail>
69

6.16.Element <MissingAttributeDetail>
70

7.Functional requirements (normative)
71

7.1.Policy enforcement point
71

7.1.1.Base PEP
71

7.1.2.Deny-biased PEP
71

7.1.3.Permit-biased PEP
71

7.2.Attribute evaluation
71

7.2.1.Structured attributes
72

7.2.2.Attribute bags
72

7.2.3.Multivalued attributes
72

7.2.4.Attribute Matching
72

7.2.5.Attribute Retrieval
73

7.2.6.Environment Attributes
73

7.3.Expression evaluation
73

7.4.Arithmetic evaluation
74

7.5.Match evaluation
74

7.6.Target evaluation
75

7.7.VariableReference Evaluation
75

7.8.Condition evaluation
76

7.9.Rule evaluation
76

7.10.Policy evaluation
76

7.11.Policy Set evaluation
77

7.12.Hierarchical resources
78

7.13.Authorization decision
79

7.14.Obligations
79

7.15.Exception handling
79

7.15.1.Unsupported functionality
79

7.15.2.Syntax and type errors
79

7.15.3.Missing attributes
80

8.XACML extensibility points (non-normative)
80

8.1. Extensible XML attribute types
80

8.2. Structured attributes
80

9.Security and privacy considerations (non-normative)
81

9.1.Threat model
81

9.1.1.Unauthorized disclosure
81

9.1.2.Message replay
82

9.1.3.Message insertion
82

9.1.4.Message deletion
82

9.1.5.Message modification
82

9.1.6.NotApplicable results
82

9.1.7.Negative rules
83

9.2.Safeguards
83

9.2.1.Authentication
83

9.2.2.Policy administration
84

9.2.3.Confidentiality
84

9.2.4.Policy integrity
84

9.2.5.Policy identifiers
85

9.2.6.Trust model
85

9.2.7.Privacy
85

10. Conformance (normative)
86

10.1. Introduction
86

10.2.Conformance tables
86

3.1. Schema elements
86

3.2.Identifier Prefixes
87

3.3. Algorithms
87

3.4. Status Codes
88

3.5. Attributes
88

3.6. Identifiers
88

3.7. Data-types
89

3.8. Functions
89

11. References
93

Appendix A.Data-types and functions (normative)
95

A.1.Introduction
95

A.2.Data-types
95

A.3.Functions
96

A.3.1Equality predicates
96

A.3.2Arithmetic functions
99

A.3.3String conversion functions
99

A.3.4Numeric data-type conversion functions
99

A.3.5Logical functions
100

A.3.6Numeric comparison functions
100

A.3.7Date and time arithmetic functions
101

A.3.8Non-numeric comparison functions
102

A.3.9String functions
104

A.3.10Bag functions
105

A.3.11Set functions
105

A.3.12Higher-order bag functions
106

A.3.13Special match functions
111

A.3.14XPath-based functions
113

A.3.15Extension functions and primitive types
113

Appendix B.XACML identifiers (normative)
115

B.1.XACML namespaces
115

B.2.Access subject categories
115

B.3.Data-types
115

B.4.Subject attributes
116

B.6.Resource attributes
117

B.7.Action attributes
117

B.8.Environment attributes
118

B.9.Status codes
118

B.10.Combining algorithms
118

Appendix C.Combining algorithms (normative)
120

C.1.Deny-overrides
120

C.2.Ordered-deny-overrides
122

C.3.Permit-overrides
122

C.4.Ordered-permit-overrides
124

C.5.First-applicable
125

C.6.Only-one-applicable
126

Appendix D.Acknowledgments
128

Appendix E.Revision history
129

Appendix F.Notices
131

Table of Contents

7.Functional requirements (normative)
7

7.1.Policy enforcement point
7

7.1.1.Base PEP
7

7.1.2.Deny-biased PEP
7

7.1.3.Permit-biased PEP
7

7.2.Attribute evaluation
7

7.2.1.Structured attributes
8

7.2.2.Attribute bags
8

7.2.3.Multivalued attributes
8

7.2.4.Attribute Matching
8

7.2.5.Attribute Retrieval
9

7.2.6.Environment Attributes
9

7.3.Expression evaluation
9

7.4.Arithmetic evaluation
10

7.5.Match evaluation
10

7.6.Target evaluation
11

7.7.VariableReference Evaluation
12

7.8.Condition evaluation
13

7.9.Rule evaluation
13

7.10.Policy evaluation
13

7.11.Policy Set evaluation
14

7.12.Hierarchical resources
15

7.13.Authorization decision
16

10. References
16

7. Functional requirements (normative)

This section specifies certain functional requirements that are not directly associated with the production or consumption of a particular XACML element.

7.1. Policy enforcement point

This section describes the requirements for the PEP.

An application functions in the role of the PEP if it guards access to a set of resources and asks the PDP for an authorization decision. The PEP MUST abide by the authorization decision as described in one of the following sub-sections

7.1.1. Base PEP

If the decision is "Permit", then the PEP SHALL permit access. If obligations accompany the decision, then the PEP SHALL permit access only if it understands and it can and will discharge those obligations.

If the decision is "Deny", then the PEP SHALL deny access. If obligations accompany the decision, then the PEP shall deny access only if it understand, and it can and will discharge those obligations.

If the decision is “Not Applicable”, then the PEP’s behavior is undefined.

If the decision is “Indeterminate”, then the PEP’s behavior is undefined.

7.1.2. Deny-biased PEP

If the decision is "Permit", then the PEP SHALL permit access. If obligations accompany the decision, then the PEP SHALL permit access only if it understands and it can and will discharge those obligations.

All other decisions SHALL result in the denial of access.

Note: other actions, e.g. consultation of additional PDPs, reformulation/resubmission of the decision request, etc., are not prohibited.

7.1.3. Permit-biased PEP

If the decision is "Deny", then the PEP SHALL deny access. If obligations accompany the decision, then the PEP shall deny access only if it understands, and it can and will discharge those obligations.

All other decisions SHALL result in the permission of access.

Note: other actions, e.g. consultation of additional PDPs, reformulation/resubmission of the decision request, etc., are not prohibited.

7.2. Attribute evaluation

Attributes are specified in the request context, regardless of whether or not they appeared in the original decision request, and are referred to in the policy by subject, resource, action and environment attribute designators and attribute selectors. A named attribute is the term used for the criteria that the specific subject, resource, action and environment attribute designators and selectors use to refer to particular attributes in the subject, resource, action and environment elements of the request context, respectively.

7.2.1. Structured attributes

<xacml:AttributeValue> and <xacml-context:AttributeValue> elements MAY contain an instance of a structured XML data-type, for example <ds:KeyInfo>. XACML 2.0 supports several ways for comparing such elements.

1. In some cases, such elements MAY be compared using one of the XACML string functions, such as “regexp-string-match”, described below. This requires that the element be given the DataType="http://www.w3.org/2001/XMLSchema#string", and expressed using appropriate escape characters. For example, a structured data-type that is actually a ds:KeyInfo/KeyName would appear in the Context as:

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

<ds:KeyName>jhibbert-key</ds:KeyName>

</AttributeValue>

In general, this method will not be adequate unless the structured data-type is quite simple.

2. An <AttributeSelector> element MAY be used to select the value of a leaf sub-element of the structured data-type by means of an XPath expression. That value MAY then be compared using one of the supported XACML functions appropriate for its primitive data-type. This method requires support by the PDP for the optional XPath expressions feature.

3. An <AttributeSelector> element MAY be used to select any node in the structured data-type by means of an XPath expression. This node MAY then be compared using one of the XPath-based functions described in Section . This method requires support by the PDP for the optional XPath expressions and XPath functions features.

See also Section .

7.2.2. Attribute bags

XACML defines implicit collections of its data-types. XACML refers to a collection of values that are of a single data-type as a bag. Bags of data-types are needed because selections of nodes from an XML resource or XACML request context may return more than one value.

The <AttributeSelector> element uses an XPath expression to specify the selection of data from an XML resource. The result of an XPath expression is termed a node-set, which contains all the leaf nodes from the XML resource that match the predicate in the XPath expression. Based on the various indexing functions provided in the XPath specification, it SHALL be implied that a resultant node-set is the collection of the matching nodes. XACML also defines the <AttributeDesignator> element to have the same matching methodology for attributes in the XACML request context.

The values in a bag are not ordered, and some of the values may be duplicates. There SHALL be no notion of a bag containing bags, or a bag containing values of differing types. I.e. a bag in XACML SHALL contain only values that are of the same data-type.

7.2.3. Multivalued attributes

If a single <Attribute> element in a request context contains multiple <xacml-context:AttributeValue> child elements, then the bag of values resulting from evaluation of the <Attribute> element MUST be identical to the bag of values that results from evaluating a context in which each <xacml-context:AttributeValue> element appears in a separate <Attribute> element, each carrying identical meta-data.

7.2.4. Attribute Matching

A named attribute includes specific criteria with which to match attributes in the context. An attribute specifies an AttributeId and DataType, and a named attribute also specifies the Issuer. A named attribute SHALL match an attribute if the values of their respective AttributeId, DataType and optional Issuer attributes match within their particular element - subject, resource, action or environment - of the context. The AttributeId of the named attribute MUST match, by URI equality, the AttributeId of the context attribute. The DataType of the named attribute MUST match, by URI equality, the DataType of the same context attribute. If Issuer is supplied in the named attribute, then it MUST match, using the urn:oasis:names:tc:xacml:1.0:function:string-equal function, the Issuer of the corresponding context attribute. If Issuer is not supplied in the named attribute, then the matching of the context attribute to the named attribute SHALL be governed by AttributeId and DataType alone, regardless of the presence, absence, or actual value of Issuer. In the case of an attribute selector, the matching of the attribute to the named attribute SHALL be governed by the XPath expression and DataType.

7.2.5. Attribute Retrieval

The PDP SHALL request the values of attributes in the request context from the context handler. The PDP SHALL reference the attributes as if they were in a physical request context document, but the context handler is responsible for obtaining and supplying the requested values by whatever means it deems appropriate. The context handler SHALL return the values of attributes that match the attribute designator or attribute selector and form them into a bag of values with the specified data-type. If no attributes from the request context match, then the attribute SHALL be considered missing. If the attribute is missing, then MustBePresent governs whether the attribute designator or attribute selector returns an empty bag or an “Indeterminate” result. If MustBePresent is “False” (default value), then a missing attribute SHALL result in an empty bag. If MustBePresent is “True”, then a missing attribute SHALL result in “Indeterminate”. This “Indeterminate” result SHALL be handled in accordance with the specification of the encompassing expressions, rules, policies and policy sets. If the result is “Indeterminate”, then the AttributeId, DataType and Issuer of the attribute MAY be listed in the authorization decision as described in Section . However, a PDP MAY choose not to return such information for security reasons.

7.2.6. Environment Attributes

Standard environment attributes are listed in Section . If a value for one of these attributes is supplied in the decision request, then the context handler SHALL use that value. Otherwise, the context handler SHALL supply a value. In the case of date and time attributes, the supplied value SHALL have the semantics of the "date and time that apply to the decision request".

7.3. Expression evaluation

XACML specifies expressions in terms of the elements listed below, of which the <Apply> and <Condition> elements recursively compose greater expressions. Valid expressions SHALL be type correct, which means that the types of each of the elements contained within <Apply> and <Condition> elements SHALL agree with the respective argument types of the function that is named by the FunctionId attribute. The resultant type of the <Apply> or <Condition> element SHALL be the resultant type of the function, which MAY be narrowed to a primitive data-type, or a bag of a primitive data-type, by type-unification. XACML defines an evaluation result of "Indeterminate", which is said to be the result of an invalid expression, or an operational error occurring during the evaluation of the expression.

XACML defines these elements to be in the substitution group of the <Expression> element:

· <xacml:AttributeValue>

· <SubjectAttributeDesignator>

·
· <ResourceAttributeDesignator>

· <ActionAttributeDesignator>

· <EnvironmentAttributeDesignator>

· <AttributeSelector>

· <Apply>

· <Condition>

· <Function>

· <VariableReference>

7.4. Arithmetic evaluation

IEEE 754 [IEEE 754] specifies how to evaluate arithmetic functions in a context, which specifies defaults for precision, rounding, etc. XACML SHALL use this specification for the evaluation of all integer and double functions relying on the Extended Default Context, enhanced with double precision:

flags - all set to 0

trap-enablers - all set to 0 (IEEE 854 §7) with the exception of the “division-by-zero” trap enabler, which SHALL be set to 1

precision - is set to the designated double precision

rounding - is set to round-half-even (IEEE 854 §4.1)

7.5. Match evaluation

Matching elements appear in the <Target> element of rules, policies and policy sets. They are the following:

<SubjectMatch>

<ResourceMatch>

<ActionMatch>

<EnvironmentMatch>

These elements represent boolean expressions over attributes of the subject, resource, action and environment, respectively. A matching element contains a MatchId attribute that specifies the function to be used in performing the match evaluation, an <xacml:AttributeValue> and an <AttributeDesignator> or <AttributeSelector> element that specifies the attribute in the context that is to be matched against the specified value.

The MatchId attribute SHALL specify a function that compares two arguments, returning a result type of "http://www.w3.org/2001/XMLSchema#boolean". The attribute value specified in the matching element SHALL be supplied to the MatchId function as its first argument. An element of the bag returned by the <AttributeDesignator> or <AttributeSelector> element SHALL be supplied to the MatchId function as its second argument. The data-type of the <xacml:AttributeValue> SHALL match the data-type of the first argument expected by the MatchId function. The data-type of the <AttributeDesignator> or <AttributeSelector> element SHALL match the data-type of the second argument expected by the MatchId function.

The XACML standard functions that meet the requirements for use as a MatchId attribute value are:

 urn:oasis:names:tc:xacml:2.0:function:-type-equal

 urn:oasis:names:tc:xacml:2.0:function:-type-greater-than

 urn:oasis:names:tc:xacml:2.0:function:-type-greater-than-or-equal

 urn:oasis:names:tc:xacml:2.0:function:-type-less-than

 urn:oasis:names:tc:xacml:2.0:function:-type-less-than-or-equal

 urn:oasis:names:tc:xacml:2.0:function:-type-match

In addition, functions that are strictly within an extension to XACML MAY appear as a value for the MatchId attribute, and those functions MAY use data-types that are also extensions, so long as the extension function returns a boolean result and takes an <xacml:AttributeValue> as its first argument and an <AttributeDesignator> or <AttributeSelector> as its second argument. The function used as the value for the MatchId attribute SHOULD be easily indexable. Use of non-indexable or complex functions may prevent efficient evaluation of decision requests.

The evaluation semantics for a matching element is as follows. If an operational error were to occur while evaluating the <AttributeDesignator> or <AttributeSelector> element, then the result of the entire expression SHALL be "Indeterminate". If the <AttributeDesignator> or <AttributeSelector> element were to evaluate to an empty bag, then the result of the expression SHALL be "False". Otherwise, the MatchId function SHALL be applied between the <xacml:AttributeValue> and each element of the bag returned from the <AttributeDesignator> or <AttributeSelector> element. If at least one of those function applications were to evaluate to "True", then the result of the entire expression SHALL be "True". Otherwise, if at least one of the function applications results in "Indeterminate", then the result SHALL be "Indeterminate". Finally, if all function applications evaluate to "False", then the result of the entire expression SHALL be "False".

It is possible to express the semantics of a target matching element in a condition. For instance, the target match expression that compares a “subject-name” starting with the name “John” can be expressed as follows:

<SubjectMatch

MatchId=”urn:oasis:names:tc:xacml:1.0:function:regexp-string-match”>

 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>

 John.*

 </AttributeValue>

 <SubjectAttributeDesignator

 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject-id”

 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
</SubjectMatch>

Alternatively, the same match semantics can be expressed as an <Apply> element in a condition by using the “urn:oasis:names:tc:xacml:1.0:function:any-of” function, as follows:

<Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:any-of”>
 <Function

FunctionId=”urn:oasis:names:tc:xacml:1.0:function:regexp-string-match”/>
 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>

 John.*

 </AttributeValue>
 <SubjectAttributeDesignator

 AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject-id”

 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
</Apply>

7.6. Target evaluation

The target value SHALL be "Match" if the subjects, resources, actions and environments specified in the target all match values in the request context. The target value SHALL also be “Match” if the target is missing. The subjects, resources, actions and environments SHALL match values in the request context if at least one of their <Subject>, <Resource>, <Action>, or <Environment> elements, respectively, matches a value in the request context. A <Subject>, <Resource>, <Action>, or <Environment> element SHALL match a value in the request context if the value of all its <SubjectMatch>, <ResourceMatch>, <ActionMatch> or <EnvironmentMatch> elements, respectively, are “True”. If the value of a <SubjectMatch>, <ResourceMatch>, <ActionMatch> or <EnvironmentMatch> element is “Indeterminate”, then the value of its corresponding <Subject>, <Resource>, <Action>, or <Environment> element SHALL be “Indeterminate”. If all <Subject>, or all <Resource>, or all <Action>, or all <Environment> elements are “Indeterminate”, then the target value SHALL be “Indeterminate”. If the target value is neither “Indeterminate” nor “True”, then the target value SHALL be “No match”. The target match table is shown in Table 1.
Subjects

 value
Resources value
Actions

 value
Environments value
 Target value

“Match”
“Match”
“Match”
“Match”
“Match”

“No match”
“Match” or “No match”
“Match” or “No match”
“Match” or “No match”
“No match”

“Match” or “No match”
“No match”
“Match” or “No match”
“Match” or “No match”
“No match”

“Match” or “No match”
“Match” or “No match”
“No match”
“Match” or “No match”
“No match”

“Match” or “No match”
“Match” or “No match”
“Match” or “No match”
“No match”
“No match”

“Indeterminate”
Don't care
Don't care
Don't care
“Indeterminate”

Don't care
“Indeterminate”
Don't care
Don't care
“Indeterminate”

Don't care
Don't care
“Indeterminate”
Don't care
“Indeterminate”

Don't care
Don't care
Don't care
“Indeterminate”
“Indeterminate”

Table 1 - Target match table

The subjects match table is shown in Table 2. The resources, actions, and environments match tables are analogous.
<Subject> values
 Subjects Value

At least one “Match”
“Match”

None matches and at least one “Indeterminate”
“Indeterminate”

All “No match”
“No match”

Table 2 - Subjects match table

The <Subject> match table is shown in Table 3. The <Resource>, <Action>, and <Environment> matches tables are analogous.

<SubjectMatch> values
 <Subject> Value

All “Match”
“Match”

At least one “Indeterminate”
“Indeterminate”

All “No match”
“No match”

Table 3 - Subjects match table

7.7. VariableReference Evaluation

The <VariableReference> element references a single <VariableDefinition> element contained within the same <Policy> element. A <VariableReference> that does not reference a particular <VariableDefinition> element within the encompassing <Policy> element is called an undefined reference. Policies with undefined references are invalid.

In any place where a <VariableReference> occurs, it has the effect as if the text of the <Expression> element defined in the <VariableDefinition> element replaces the <VariableReference> element. Any evaluation scheme that preserves this semantic is acceptable. For instance, the expression in the <VariableDefinition> element may be evaluated to a particular value and cached for multiple references without consequence. (I.e. <Expression> evaluates to the value and this value remains the same for the entire evaluation.) This characteristic is one of the benefits of XACML being a declarative language.

7.8. Condition evaluation

The condition value SHALL be "True" if the <Condition> element is absent, or if it evaluates to "True". Its value SHALL be "False" if the <Condition> element evaluates to "False". The condition value SHALL be "Indeterminate", if the expression contained in the <Condition> element evaluates to "Indeterminate."

7.9. Rule evaluation

A rule has a value that can be calculated by evaluating its contents. Rule evaluation involves separate evaluation of the rule's target and condition. The rule truth table is shown in Table 4.

Target
Condition
 Rule Value

“Match”
“True”
Effect

“Match”
“False”
“NotApplicable”

“Match”
“Indeterminate”
“Indeterminate”

“No-match”
Don’t care
“NotApplicable”

“Indeterminate”
Don’t care
“Indeterminate”

Table 4 - Rule truth table

If the target value is "No-match" or “Indeterminate” then the rule value SHALL be “NotApplicable” or “Indeterminate”, respectively, regardless of the value of the condition. For these cases, therefore, the condition need not be evaluated.

If the target value is “Match” and the condition value is “True”, then the effect specified in the enclosing <Rule> element SHALL determine the rule’s value.

7.10. Policy evaluation

The value of a policy SHALL be determined only by its contents, considered in relation to the contents of the request context. A policy's value SHALL be determined by evaluation of the policy's target and rules.

The policy's target SHALL be evaluated to determine the applicability of the policy. If the target evaluates to "Match", then the value of the policy SHALL be determined by evaluation of the policy's rules, according to the specified rule-combining algorithm. If the target evaluates to "No-match", then the value of the policy SHALL be "NotApplicable". If the target evaluates to "Indeterminate", then the value of the policy SHALL be "Indeterminate".

The policy truth table is shown in Table 5.

Target
Rule values
 Policy Value

“Match”
At least one rule value is its Effect
Specified by the rule-combining algorithm

“Match”
All rule values are “NotApplicable”
“NotApplicable”

“Match”
At least one rule value is “Indeterminate”
Specified by the rule-combining algorithm

“No-match”
Don’t care
“NotApplicable”

“Indeterminate”
Don’t care
“Indeterminate”

Table 5 - Policy truth table

A rules value of "At least one rule value is its Effect" means either that the <Rule> element is absent, or one or more of the rules contained in the policy is applicable to the decision request (i.e., it returns the value of its “Effect”; see Section 7.9). A rules value of “All rule values are ‘NotApplicable’” SHALL be used if no rule contained in the policy is applicable to the request and if no rule contained in the policy returns a value of “Indeterminate”. If no rule contained in the policy is applicable to the request, but one or more rule returns a value of “Indeterminate”, then the rules SHALL evaluate to "At least one rule value is ‘Indeterminate’".

If the target value is "No-match" or “Indeterminate” then the policy value SHALL be “NotApplicable” or “Indeterminate”, respectively, regardless of the value of the rules. For these cases, therefore, the rules need not be evaluated.

If the target value is “Match” and the rule value is “At least one rule value is it’s Effect” or “At least one rule value is ‘Indeterminate’”, then the rule-combining algorithm specified in the policy SHALL determine the policy value.

Note that none of the rule-combining algorithms defined by XACML 2.0 take parameters. However, non-standard combining algorithms MAY take parameters. In such a case, the values of these parameters associated with the rules, MUST be taken into account when evaluating the policy. The parameters and their types should be defined in the specification of the combining algorithm. If the implementation supports combiner parameters and if combiner parameters are present in a policy, then the parameter values MUST be supplied to the combining algorithm implementation.

7.11. Policy Set evaluation

The value of a policy set SHALL be determined by its contents, considered in relation to the contents of the request context. A policy set's value SHALL be determined by evaluation of the policy set's target, policies and policy sets, according to the specified policy-combining algorithm.

The policy set's target SHALL be evaluated to determine the applicability of the policy set. If the target evaluates to "Match" then the value of the policy set SHALL be determined by evaluation of the policy set's policies and policy sets, according to the specified policy-combining algorithm. If the target evaluates to "No-match", then the value of the policy set shall be "NotApplicable". If the target evaluates to "Indeterminate", then the value of the policy set SHALL be "Indeterminate".

The policy set truth table is shown in Table 6.

Target
Policy values
Policy Set Value

“Match”
At least one policy value is its Decision
Specified by the policy-combining algorithm

“Match”
All policy values are “NotApplicable”
“NotApplicable”

“Match”
At least one policy value is “Indeterminate”
Specified by the policy-combining algorithm

“No-match”
Don’t care
“NotApplicable”

“Indeterminate”
Don’t care
“Indeterminate”

Table 6 – Policy set truth table

A policies value of "At least one policy value is its Decision" SHALL be used if there are no contained or referenced policies or policy sets, or if one or more of the policies or policy sets contained in or referenced by the policy set is applicable to the decision request (i.e., returns a value determined by its rule-combining algorithm; see Section 7.10). A policies value of “All policy values are ‘NotApplicable’” SHALL be used if no policy or policy set contained in or referenced by the policy set is applicable to the request and if no policy or policy set contained in or referenced by the policy set returns a value of “Indeterminate”. If no policy or policy set contained in or referenced by the policy set is applicable to the request but one or more policy or policy set returns a value of “Indeterminate”, then the policies SHALL evaluate to "At least one policy value is ‘Indeterminate’".

If the target value is "No-match" or “Indeterminate” then the policy set value SHALL be “NotApplicable” or “Indeterminate”, respectively, regardless of the value of the policies. For these cases, therefore, the policies need not be evaluated.

If the target value is “Match” and the policies value is “At least one policy value is it’s Decision” or “At least one policy value is ‘Indeterminate’”, then the policy-combining algorithm specified in the policy set SHALL determine the policy set value.

Note that none of the policy-combining algorithms defined by XACML 2.0 take parameters. However, non-standard combining algorithms MAY take parameters. In such a case, the values of these parameters associated with the policies, MUST be taken into account when evaluating the policy set. The parameters and their types should be defined in the specification of the combining algorithm. If the implementation supports combiner parameters and if combiner parameters are present in a policy, then the parameter values MUST be supplied to the combining algorithm implementation.

7.12. Hierarchical resources

It is often the case that a resource is organized as a hierarchy (e.g. file system, XML document). See the XACML Profile for Hierarchical Resources [Hier] and the XACML Profile for Requests for Multiple Resources [Multi] for a description of ways in which XACML can support hierarchical resources. Support for hierarchical resources within XACML is OPTIONAL.

10. References

[DS]
D. Eastlake et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

[Hancock]
Hancock, "Polymorphic Type Checking", in Simon L. Peyton Jones,
"Implementation of Functional Programming Languages", Section 8,
Prentice-Hall International, 1987

[Haskell]
Haskell, a purely functional language. Available at http://www.haskell.org/
[Hier]
A. Anderson, ed., The XACML Profile for Hierarchical Resources,

[Hinton94]
Hinton, H, M, Lee,, E, S, The Compatibility of Policies, Proceedings 2nd ACM Conference on Computer and Communications Security, Nov 1994, Fairfax, Virginia, USA.

[IEEE754]
IEEE Standard for Binary Floating-Point Arithmetic 1985, ISBN 1-5593-7653-8, IEEE Product No. SH10116-TBR

 [ISO10181-3]
ISO/IEC 10181-3:1996 Information technology – Open Systems Interconnection -- Security frameworks for open systems: Access control framework.

 [Kudo00]
Kudo M and Hada S, XML document security based on provisional authorization, Proceedings of the Seventh ACM Conference on Computer and Communications Security, Nov 2000, Athens, Greece, pp 87-96.

[LDAP-1]
RFC2256, A summary of the X500(96) User Schema for use with LDAPv3, Section 5, M Wahl, December 1997 http://www.ietf.org/rfc/rfc2798.txt
[LDAP-2]
RFC2798, Definition of the inetOrgPerson, M. Smith, April 2000 http://www.ietf.org/rfc/rfc2798.txt
[MathML]
Mathematical Markup Language (MathML), Version 2.0, W3C Recommendation, 21 February 2001. Available at: http://www.w3.org/TR/MathML2/
[Multi]
A. Anderson, ed., The XACML Profile for Requests for Multiple Resources,

[Perritt93]
Perritt, H. Knowbots, Permissions Headers and Contract Law, Conference on Technological Strategies for Protecting Intellectual Property in the Networked Multimedia Environment, April 1993. Available at: http://www.ifla.org/documents/infopol/copyright/perh2.txt

[RBAC]
Role-Based Access Controls, David Ferraiolo and Richard Kuhn, 15th National Computer Security Conference, 1992. Available at: http://csrc.nist.gov/rbac
[RegEx]
XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001, Appendix D. Available at: http://www.w3.org/TR/xmlschema-0/
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997

[RFC2396]
Berners-Lee T, Fielding R, Masinter L, Uniform Resource Identifiers (URI): Generic Syntax. Available at: http://www.ietf.org/rfc/rfc2396.txt

[RFC2732
Hinden R, Carpenter B, Masinter L, Format for Literal IPv6 Addresses in URL's. Available at: http://www.ietf.org/rfc/rfc2732.txt

[RFC3198]
IETF RFC 3198: Terminology for Policy-Based Management, November 2001. http://www.ietf.org/rfc/rfc3198.txt
[SAML]
Security Assertion Markup Language available from http://www.oasis-open.org/committees/security/#documents
[Sloman94]
Sloman, M. Policy Driven Management for Distributed Systems. Journal of Network and Systems Management, Volume 2, part 4. Plenum Press. 1994.

[XACMLv1.0]
Extensible access control markup language (XACML) Version 1.0. OASIS Standard. 18 February 2003. Available at: http://www.oasis-open.org/apps/org/workgroup/xacml/download.php/940/oasis-xacml-1.0.pdf
[XACMLv1.1]
Extensible access control markup language (XACML) Version 1.1. OASIS Committee Specification. 7 August 2003. Available at: http://www.oasis-open.org/apps/org/workgroup/xacml/download.php/4104/cs-xacml-specification-1.1.pdf
[XF]
XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft 16 August 2002. Available at: http://www.w3.org/TR/2002/WD-xquery-operators-20020816
[XS]
XML Schema, parts 1 and 2. Available at: http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/
[XPath]
XML Path Language (XPath), Version 1.0, W3C Recommendation 16 November 1999. Available at: http://www.w3.org/TR/xpath
[XSLT]
XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November 1999. Available at: http://www.w3.org/TR/xslt
 oasis-xacml-2.0-core-spec-wd-11

16
oasis-xacml-2.0-core-spec-wd-11

