Notes from the field: Implementing a security solution for Web Services
A MacPhee (Entrust) and M. O’Neill (Vordel)
Abstract

There are many articles explaining why it is necessary to limit access to sensitive resources that are exposed to traffic originating from untrusted users and networks. Generally, such articles will also describe generic security solutions that address these issues. In this article we go one step further and describe the installation of security technology designed to protect extranet web pages and Web Services of a telecommunications company. We give a brief overview of the PEP-PDP architecture described in RFC 2753 which provides a reference model for the products used in the deployment.
Introduction

XML security articles tend to focus on the theoretical. Most info-security professionals know, by now, why point-to-point security is not sufficient if you are routing XML messages across untrusted intermediaries, how XML-processing applications may be vulnerable to maliciously-crafted XML, and how a “composable architecture” of specifications whose names begin in “WS-” will allow trust to travel across corporate boundaries. But what about the practical aspects? How is security actually being deployed for XML and SOAP? What are the particular vendor applications that implement the security?
This article is intended to answer these practical questions, by taking as its basis a particular customer rollout by Vordel and Entrust in the summer of 2004. The end result is that the customer has a common security framework for communication with their partners across two different channels: Web browser and XML Web Services. The solution has no single point of failure, and can be scaled relatively simply and cheaply.
In the next section we describe the basics of RFC 2573 and the relationship between this model and the way in which access to the customer’s extranet is controlled. We then identify the additional security requirements pertaining to Web Services and how those requirements were met. We show examples of the SAML and WS-Trust messages used in the solution. We conclude with a brief discussion of alternative solutions and how the chosen solution may be extended to provide security for Web Services based on a service-oriented architecture.
Extending the Extranet

Like all case studies, let’s begin with an inventory of the customer’s starting position and a statement of the problem. The customer is a telecoms provider who has a requirement to communicate with its peers. The customer had already rolled out an extranet to allow their partners to interact with their systems using nothing more than a Web browser.
The security architecture for the extranet is based on RFC 2753 [1], which describes “A framework for policy-based admission control”. The main components of this architecture are Policy Enforcement Points (PEPs) and Policy Decision Points (PDPs).

A PEP runs on a network node and passes requests to access protected resources (in the form of HTTP traffic) to a PDP. The PDP will consult the relevant access control policy and return a decision to the PEP. The PEP will enforce that decision, either allowing the traffic to pass through the PEP or stopping the traffic at that point. PDPs often communicate with other resources, such as LDAP directories, to decide whether or not to grant access.

The PEP-PDP architecture has a number of advantages. The first is that policies and passwords do not have to be stored on machines in the DMZ, which, by definition, are untrusted. The second advantage is that policy changes made at the PDP are immediately enforced by the PEPs. If each PEP were a closed system, with its own local policy store, then the policy stores would have to be synchronized.

Before the customer in our case study implemented XML Web Services, they implemented an extranet for browser users. The extranet was for users to access using a Web browser. When a user navigates their Web browser to a protected Web page they must first be authenticated. Although there are several possible authentication methods, our customer uses the standard username/password method over an SSL link so that the password cannot be “sniffed” or replayed.
The authenticated user is mapped to a role, which provides the user with certain “entitlements” to access the customer’s web pages. Before the user is allowed to access a web page, their request is evaluated by the PDP to determine whether their entitlements permit the requested access.
The security for the extranet was provided by the Entrust GetAccess product. GetAccess supports a wide variety of authentication methods, such as Kerberos or RADIUS, in addition to the username/password method used by this customer. GetAccess is architected according to RFC 2753. The PEP is the GetAccess “runtime” component, which is inserted into a Web server and runs in-process with the Web Server (hence the name “runtime”). This PEP acts as a filter to intercept all traffic that has security implications. The PEP communicates with the GetAccess Server, which is the PDP; it performs the decision-making based on the authenticated user’s role, which in turn defines the user’s entitlements. In this customer case study, the Microsoft IIS Web server was used. Therefore, the ISAPI filter version of the GetAccess runtime was used.
A further advantage of the RFC 2753 paradigm is that the architecture scales well. The “front line” IIS Web Servers are optimized for speed, with fast network cards and sufficient memory to ensure that they never need to swap out traffic to their hard drives. The PDP servers, running GetAccess, are optimized for processing power, in order to process policies as fast as possible. Multiple runtimes can connect to multiple GetAccess instances, in an “n by m” manner.
The security solution for the extranet worked very well from the user perspective. Users pointed their browsers at the extranet, and an SSL session was initiated. The user saw the little padlock in their browser’s window, indicating an SSL session was established. The user was then redirected to a password-entry page, and once they were authenticated, they filled out Web forms to communicate with the customer. In the background, the PEP filter in the Web server communicates with the PDP server, to decide if the user has access to the Web resources.

As such, the extranet was perfect for relatively low volumes of traffic per user, where it was feasible for users to key their data into Web forms. However, if a partner wished to send large amounts of data, re-keying it into a Web form in a browser was not an attractive option. If the data were to be sent every night at 1am, for example, the extranet was not an option at all, since it would not be feasible to require the user to start up their Web browser each night and fill out and submit Web forms at that hour of night. For those kind of “back end to back end” integration requirements involving bulk data transfer, an XML-based service interface is the answer.
The customer chose BEA WebLogic as their Web Services platform. They chose to send their Web Services traffic over HTTPS, as opposed to another protocol such as FTP or SMTP, and therefore required a Web server. They chose Microsoft IIS because they already used this Web server for the extranet. In fact, they chose to use the same IIS Web servers for both the extranet and the new Web Services interface. The obvious advantage of this approach is cost: there is no requirement to buy new hardware to install in the DMZ. Note that Web content and Web Services are actually hosted on different servers, the former on the Web servers and the latter on the application servers running BEA WebLogic, which are not in the DMZ.
Pinpointing the security requirements

For moving into this new Web Services phase, the customer defined the following security requirements:

· The PDP for Web browser and Web Services traffic should use a single policy store. The customer did not want to create a new ‘silo’ of access control information for their Web Services;
· The customer should be able to take advantage of the interoperability and platform independence of XML, but must not be exposed to new security vulnerabilities such as “XML denial of service” or viruses in SOAP attachments;
· The security solution should meet regulatory compliance and privacy commitments for data sent over Web Services channels;
· The security solution should support the chosen Web Services platform, BEA WebLogic;
· Ensure that the platforms used are locked-down.
The machines running the IIS Web servers for the extranet were already locked down against security vulnerabilities. However, locking down the Web server just fulfilled one of the security requirements. The larger requirement was to manage access to the Web Services on a per-user basis.
As in the case of the Web servers, parts of the existing infrastructure could be re-used. The customer had already defined roles and entitlements which could be used to enforce access control. Some of the users of the new Web Services interfaces would in fact be the same as the users of the extranet interface, another reason why it made sense to use the same policy and user store across both, rather than creating new profiles for the same users in a new silo.
There was a clear requirement for security services to:

· authenticate the senders of XML against the existing user store, without creating a new silo of passwords or certificates

· enforce the existing access control rules on the XML traffic;

· validate the XML;

· scan the XML for malicious content such as viruses in SOAP attachments.
Protecting Web Services
In order to use a single policy store, the extranet PDP is used to enforce access control rules for both browser and Web Services traffic. Additional PEPs are installed on the web servers to filter Web Services traffic, which is passed to a security server which scans the XML for threats and communicates with the extranet PDP for authentication and authorization.
The extranet PDP exposes two Web Services that are used by the security server: the Identity Service, which is used to authenticate users; and the Entitlements Service, which is used to communicate authorization decisions to the security server. The Identity Service is an implementation of a WS-Trust Security Token Service (STS) and returns a SAML assertion. The Entitlements Service implements the AuthorizationDecisionQuery service and returns a message in the form of a SAML AuthorizationDecisionQuery assertion. Note that the traffic between the security server and the extranet PDP is also protected. The two servers mutually authenticate using SSL over a long-running HTTPS connection.

The security server chosen was VordelDirector, which provides services for enforcing policies over XML messages, as well as services for signing XML, encrypting XML, validating XML, logging XML, and examining XML for threats such as “XML denial of service”. These services are available for use by developers who wish to include XML security functionality in their applications by making use of Web Services, as opposed to embedding an API in their code.
The customer uses Microsoft IIS, so the VordelDirector ISAPI filter is used as the PEP for Web Services traffic and passes it to VordelDirector’s security services. The filter co-exists with the GetAccess runtime ISAPI filter on the same Web server, which intercepts browser traffic. The protected resources are identified by their respective URLs. URLs which are for Web resources (HTML pages, scripts) are protected by the GetAccess Runtime. URLs which are for Web Services (SOAP, XML) are protected by the VordelDirector filter. The Vordel and GetAccess agents both make use of the GetAccess Server for authentication and authorization services related to these resources.
VordelDirector was configured to communicate with the GetAccess Server. The screenshot in Figure 1 shows how VordelDirector was configured to use GetAccess for authentication. A variety of authentication methods are available to the administrator.
[image: image1.png]Management Console - Authentication - Method

step ® uthentctethe Cler Directy O Authentcteth Token suerfSender
* suthertcation
“Method
“Token Veldation
P Ackress Fiering
inert SAML Assetion
 Cortent Fterng
. Decryption
L Enerygton
Request Paraeters User Name Format: [Distinguished! Name
ety
Schema valdeion Credertel apping: Ertrust Repostory e
Content Velciation
“Miscelanzous Fterng
San
* huthorization
“wose
s
Cericte atriutes
“inert SAM Assetion
s pop
“Clarmust
“oethccess
T
* Conversion
-Data Conversion
* Response Fiterng
. Decryption
WL Enerygton
“Miscelaneous Fterng
Schema Valation
Content Velciation
“Data Conversion
Sen

Methodt

Fiter Name: [WS-Securty auhertication over SSL

Authertication Method Canfguration

SOAP ActoriRole: [Cunert actarirol anly

Figure 1 - Configuring authentication in VordelDirector's Managment Console

VordelDirector’s authentication services extract user credentials from the XML messages, and pass them to GetAccess. These credentials may be in the form of a digital certificate or a username and password combination. VordelDirector passes the credentials to the Identity Service provided by the GetAccess Server and requests an authentication token. A typical request containing a username and password is shown in Figure 2.

<?xml version="1.0" encoding="UTF-8" ?>

<soapenv:Envelope

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

<ns1:Security xmlns:ns1="http://www.docs.oasis-open.org/

wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<UsernameToken Id="GA_001">

<Username>JoePartner</Username>

<Password>abcxyz1</Password>

</UsernameToken>

</ns1:Security>

</soapenv:Header>

<soapenv:Body>

<ns2:RequestSecurityToken

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ns2="http://www.docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">

<TokenType>saml:Assertion</TokenType>

<RequestType>ReqIssue</RequestType>

<Base>

<Reference URI="#GA_001" />

</Base>

</ns2:RequestSecurityToken>

</soapenv:Body>

</soapenv:Envelope>
Figure 2: The contents of a WS-Trust RequestSecurityToken message

The GetAccess Server validates the authentication information in the RequestSecurityToken message. If authentication is successful, the GetAccess Server returns a session token for the authenticated client in the form of a SAML assertion. This SAML Assertion includes a session ID for the authenticated client. An example of this assertion is shown in Figure 3.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<soap:Envelope

xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/

http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol">

<wsse:RequestSecurityTokenResponse

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-ssecurity-secext-1.0.xsd ">

<TokenType>saml:Assertion</TokenType>

<RequestedSecurityToken>

<saml:Assertion

AssertionID="0E969CB1A5B870D448ED60CBB395849B271AA7EF"

IssueInstant="2005-04-24T14:55:38Z"

Issuer="Entrust Credential Collector"

MajorVersion="1"

MinorVersion="0">

<saml:AuthenticationStatement

AuthenticationInstant="2005-04-24T14:55:38Z"

AuthenticationMethod="urn:oasis:names:tc:

SAML:1.0:am:unspecified">

<saml:Subject>

<saml:NameIdentifier

Format="http://www.entrust.com/GetAccess/names/sid">

SMS_eponine_e9dcc3::8b58b914d4f31490ed0a3cb91036a1ac

</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:

SAML:1.0:cm:sender-vouches</saml:ConfirmationMethod>

</saml:SubjectConfirmation>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

</RequestedSecurityToken>

</wsse:RequestSecurityTokenResponse>

</soap:Body>

</soap:Envelope>

Figure 3: An example of a SAML authentication assertion

VordelDirector uses references the session ID in the authentication assertion when sending a SAML AuthorizationDecisionQuery message to the Entitlements Service in order to find out if the authenticated user is to be allowed access to the Web Service. In this case, the GetAccess Server is acting as the PDP, and VordelDirector’s ISAPI filter is the PEP.

[image: image2]
The configuration screen for the authorization connection from VordelDirector to GetAccess is shown in Figure 5. Note that the administrator is asked to point VordelDirector to the GetAccess STS (Security Token Service) and PDP (Policy Decision Point) Web Services.
[image: image3.png]Management Console - Authorization - GetAccess

steps: Nare: [Comnect to Getacoess for authorization

* futhertication
ethad

Token Validation STSURL Group: [Group of Ws-Trust Services v

P Adiress Fiering

nsert SAML Asserton Remove
 Cortert Fiterng

ML Desryption

ML Encrypton

Reguest Parameters oup: [oroum o ervioes
s PDP LRL Group: Group of SAML PDP S

Sonam Vel ==

~Contert Validation
Miscellaneaus Fitering Resource.
“Sian

* Authorization O Resource
-LDap
“SaL

Gethcoess WS-Trust STS-

Getacoess SAML PP

Certifcate Atiributes @ Resaurce is inthe message

“sert SAML Assertion
e PP [Resaurce from WS Adsressing in Soap Header
ClearTrust
“Gethccess
Tivol

* Canversion Add SAML asserton to downstream message
“Data Conversion

* Response Fitering ActoriRole. Current actoriole orly
KL Decrygtian
XML Encryption
Miscellaneous Fitering
~Schem Valistion
~Contert Validation
“Data Conversion
sion

Figure 5 - Configuring authorization in VordelDirector's Management Console
The connections from VordelDirector to GetAccess are distributed, so that multiple copies of each product may be deployed in an “n by m” manner. If an instance of either product becomes unavailable, the connections go over the surviving connections. In this way, there is no single point of failure in the system.

It is important, also, to validate that the XML messages are well-formed and conform to the XML Schema Definition (XSD) for the target Web Services. Recall that an XML schema may specify the format and values of certain fields and also defines the overall structure of documents that conform to the schema. VordelDirector includes Schema validation services which are used at this point.

The final piece of the solution is threat analysis of the XML. XML may contain threats such as denial of service attempts, or viruses harbored within SOAP attachments. Even if an XML message has come from a source which has been authenticated and authorized, the XML may still contain these threats. VordelDirector includes XML threat-analysis services that protect the Web Services from such threats. In particular, the following steps are taken:

· Check the size of incoming messages; an abnormally large XML message may be an attempt to “clog” the recipient system.
· Check whether the XML message has attachments; if the recipient system does not require attachments, the presence of an attachment indicates potentially malicious intent, since it could harbour a virus or executable. If the recipient system does expect an attachment, VordelDirector ensures that the attachment has the correct MIME type.

· Check whether there is an XML Denial-of-Service attack within the message. Several platforms are known to be vulnerable to DTD recursion attacks, for example (see http://www.vordel.com/knowledgebase/vordel_view5.html for further details).

· Check whether there is evidence of SQL injection or XPath injection attacks in the message.

· Signature-based check for evidence of other attacks.

We conclude this section with a look at the whole solution. In Figure 6, we see the two data channels, Web browser and Web Service, side-by-side. We see the connection from VordelDirector to GetAccess, using the two Web Services which GetAccess exposes. We see the IIS Web servers which include both the Vordel and Entrust ISAPI filters (plus the WebLogic filter to connect to WebLogic). Each element of the solution can be duplicated, in order to provide redundancy and thereby resilience to failures.

[image: image4.emf]HTTPS

G

e

t

A

c

c

e

s

s

F

i

l

t

e

r

V

o

r

d

e

l

F

i

l

t

e

r

W

e

b

L

o

g

i

c

F

i

l

t

e

r

Web Servers

(Microsoft IIS)

T

e

l

e

c

o

m

s

A

p

p

l

i

c

a

t

i

o

n

s

www42

Application

Server (BEA

WebLogic)

V

o

r

d

e

D

i

r

e

c

t

o

r

www42

VordelDirector

(XML Security

Server)

I

d

e

n

t

i

f

i

c

a

t

i

o

n

S

e

r

v

i

c

e

,

E

n

t

i

t

l

e

m

e

n

t

S

e

r

v

i

c

e

G

e

t

A

c

c

e

s

s

7

.

0

S

e

r

v

e

r

www42

Get Access

7.0 Server

7

3

1

GetAccess runtime communicates with GetAccess to perform authentication and to request

authorisation

2

SOAP or XML message arrives to Web Service protected by Vordel ISAPI agent.

XML message is passed to VordelDirector to request authorization

6

HTTPS

4

HTTP request arrives to Web resource protected by GetAccess

1

4 5

Scenario 1:

Web browser request

Scenario 2:

Web Service Request

(SOAP or plain XML)

Depending on the GetAccess authorisation decision, GetAccess filter allows message to pass

to the BEA WebLogic filter, which forwards the message to the BEA WebLogic application

server

5

VordelDirector requests authentication and authorization from GetAccess, using the

SAML and WS-Trust interface provided by the Identity and Entitlements services

6

GetAccess performs authorization for the destination Web Service

7

8

8

Depending on authorization, XML message is passed back to Web Server where the

WebLogic filter forwards it to the BEA WebLogic application server

The XML message is analyzed for threats. Signing and encryption steps are processed at

this point also (XML Signature and XML Encryption).

2

3

Figure 6 - Solution Diagram
Alternative solutions

It is reasonable to ask “what other ways could this solution have been rolled out?”. The customer may have been tempted to have installed a closed-system solution in the DMZ, perhaps on a dedicated appliance. This would have involved storing passwords or certificates in the DMZ. Aside from the security problems with this approach, it also means that user profiles would have had to be synchronized across multiple silos. Scaling the solution would have involved buying multiple dedicated appliances, rather than using cheaper off-the-shelf servers.
Another approach would have been to code security into the Web Services themselves. The problem with this approach is that if the security rules have to be changed, code must be revisited, edited, and rebuilt. This is likely to be costly and time-consuming.
The solution that has been deployed requires no such reconfiguration of the services. Instead, it is sufficient to revise the single policy referenced by the extranet PDP. Nor does our solution require dedicated equipment: the extranet and Web Services PDPs can run on suitably optimized standard servers.
Going forward

The customer now has a security server installed in their network that provides security services such as XML Encryption, XML Signature, XML content-validation, and XML threat analysis. These will be useful services to include in XML-processing applications that will be developed as the customer moves to a Services Oriented Architecture approach to development. A developer creating Web Services applications in WebLogic can include call-outs to services in the security server. Those same security services are also available to Web Services based on .NET.

The customer also has a central access control policy store across two different channels: Web browser and Web Services. There is no user or policy duplication, and a change to a policy made in GetAccess is immediately enforced across both the extranet and the Web Services channels.

Hopefully this case study has shown the advantages of coordinated access control for Web Services, and has given a flavor of what real-world Web Services security solutions entail.
References
[1]
R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admission Control. RFC 2753, 2000. Available from http://www.faqs.org/rfcs/rfc2753.html.

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope �	xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”�	xmlns:xsd=”http://www.w3.org/2001/XMLSchema”�	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

	<soapenv:Body>�		<ns1:Request IssueInstant="2005-01-24T14:56:22Z"�			MajorVersion="1" MinorVersion="0"�			RequestID="55C4F8D393C08E254BA1C9150B2A2DC3FD8A82E7"�			xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”�			xmlns:ns1="urn:oasis:names:tc:SAML:1.0:protocol">�			<ns1:AuthorizationDecisionQuery �				Resource="https://www.mywebsite.com/services/axis#GetQuote">�				<ns2:Subject xmlns:ns2="urn:oasis:names:tc:SAML:1.0:assertion">�					<ns2:NameIdentifier�						Format="http://www.entrust.com/GetAccess/names/sid">�						SMS_win2ksrv_b14afe::d126fe227146bf6118a4fa19a0c8c434�					</ns2:NameIdentifier>�				</ns2:Subject>�				<ns3:Action Namespace="urn:oasis:names:tc:SAML:1.0:action:ghpp"�						xmlns:ns3="urn:oasis:names:tc:SAML:1.0:assertion">�						GET�				</ns3:Action>�			</ns1:AuthorizationDecisionQuery>�		</ns1:Request>�	</soapenv:Body>

</soapenv:Envelope>

Figure � SEQ Figure * ARABIC �4�: An example of an AuthorizationDecisionQuery message

