
[image: image1.png]OASIS

XML Common Biometric Format

Committee Specification, 11 March 2003

Document identifier:

{Committee Specification}-{XML Common Biometric Format}-{XCBF}-{01} (PDF, Word)

Location:

http://www.oasis-open.org/committees/xcbf
Editor:

Phillip H. Griffin, Griffin Consulting <phil.griffin@asn-1.com>

Contributors:

Tyky Aichelen, IBM

Ed Day, Objective Systems

Dr. Paul Gérôme, AULM

Phillip H. Griffin (chair), Griffin Consulting

John Larmouth, Larmouth T&PDS Ltd

Monica Martin, Sun
Bancroft Scott, OSS Nokalva

Paul Thorpe, OSS Nokalva

Alessandro Triglia, OSS Nokalva

Abstract:

Biometrics are automated methods of recognizing a person based on physiological or behavioral characteristics. They are used to recognize the identity of an individual, or to verify a claimed identity. This specification defines a common set of secure XML encodings for the patron formats specified in CBEFF, the Common Biometric Exchange File Format (NISTIR 6529) [17]. These XML encodings are based on the ASN.1 schema defined in ANSI X9.84 Biometric Information Management and Security [14]. They conform to the canonical variant of the XML Encoding Rules (XER) for ASN.1 defined in ITU-T Rec. X.693, and rely on the security and processing requirements specified in the X9.96 XML Cryptographic Message Syntax (XCMS) [15] and X9.73 Cryptographic Message Syntax (CMS) [13] standards .

Status:

If you are on the xcbf@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the xcbf-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xcbf-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2002, 2003 The Organization for the Advancement of Structured Information Standards (OASIS)

Table of Contents

41
Introduction

52
Terminology

63
Acronyms and Abbreviations

74
Glossary

85
X9.84 and BioAPI 1.1 Interoperability

85.1 BiometricSyntaxSets

95.1.1 BiometricObjects

255.1.2 IntegrityObjects

335.1.3 PrivacyObjects

425.1.4 PrivacyAndIntegrityObjects

456
References

456.1 Normative

477
XCBF Schema

477.1 X9-84-Biometrics Module

517.2 X9-84-CMS Module

547.3 X9-84-Identifiers Module

638
Examples

638.1 BiometricSyntaxSets (cXER, DER)

648.2 SignedData

678.3 EncryptedData (fixedKey)

71Appendix A. Acknowledgments

72Appendix B. Revision History

73Appendix C. Notices

1 Introduction

Biometrics are automated methods of recognizing a person based on physiological or behavioral characteristics. They are used to recognize the identity of an individual, or to verify a claimed identity. This specification defines a common set of secure XML encodings for the patron formats specified in CBEFF, the Common Biometric Exchange File Format (NISTIR 6529). These CBEFF formats currently include the binary biometric objects and information records in two ANSI standards.

These XML encodings are based on the ASN.1 [2] [3] [4] [5] schema defined in ANSI X9.84:2003 Biometric Information Management and Security. They conform to the canonical variant of the XML Encoding Rules (XER) for ASN.1 defined in ITU-T Rec. X.693 [7], and rely on the same security and processing requirements specified in X9.96 XML Cryptographic Message Syntax (XCMS). Values of the Biometric Information Record (BIR) defined in ANSI/INCITS 358-2002 - Information technology - BioAPI Specification [16] that can be represented in the X9.84 biometric object format can also be represented using XML markup and secured using the techniques in this standard.

This standard defines cryptographic messages represented in XML markup for the secure collection, distribution, and processing, of biometric information. These messages provide the means of achieving data integrity, authentication of origin, and privacy of biometric data in XML based systems and applications. Mechanisms and techniques are described for the secure transmission, storage, and integrity and privacy protection of biometric data.

2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [18].

3 Acronyms and Abbreviations

	Term
	Definition

	ANSI
	American National Standards Institute

	ASN.1
	Abstract Syntax Notation One

	BioAPI
	Biometric Application Programming Interface

	BIR
	Biometric Information Record

	CBC
	Cipher Block Chaining

	CBEFF
	Common Biometric Exchange File Format

	CMS
	Cryptographic Message Syntax

	CRL
	Certificate Revocation List

	DER
	Distinguished Encoding Rules

	DES
	Digital Encryption Algorithm

	DSA
	Digital Signature Algorithm

	HMAC
	Hashed Message Authentication Code

	IBIA
	International Biometrics Industry Association

	MAC
	Message Authentication Code

	NIST
	National Institute of Science and Technology

	SHA
	Secure Hash Algorithm

	TDES
	Triple DES

	URL
	Uniform Resource Locator

	UTC
	Universal Coordinated Time

	X9
	Accredited Standards Committee X9 Financial Services

	XCMS
	XML Cryptographic Message Syntax

	XER
	XML Encoding Rules

	XML
	Extensible Markup Language

4 Glossary

	Term
	Definition

	Attacker
	Any individual who is attempting to subvert the operation of the biometric system. The intention may be either to subsequently gain illegal entry to the portal or to deny entry to legitimate users.

	Biometric
	A measurable biological or behavioral characteristic, which reliably distinguishes one person from another, used to recognize the identity, or verify the claimed identity, of an enrollee.

	Biometrics
	Biometrics are automated methods of recognizing a person based on a physiological or behavioral characteristic.

	Biometric Data
	The extracted information taken from the biometric sample and used either to build a reference template or to compare against a previously created reference template.

	Biometric Object
	A data record taken from a biometric source or a logical piece of biometric information, which may stand for either a template, or one or more samples. The header is a set of associate attributes that belong with the opaque data, and can include additional information about the purpose, quality, etc. This must be in line with the information content in X9.84 BiometricObject type.

	Biometric Sample
	Captured data that represents a biometric characteristic of a user of a biometric system.

	Canonical Form
	The complete, unambiguous and unique encoding of an abstract value obtained by the application of encoding rules that allow one and only one way to encode the abstract value.

	Capture
	The collection of a biometric sample from a user.

	Enrollee
	A person who has a biometric reference template stored in a biometric system.

	Hash
	A mathematical function which evenly and randomly distributes values from a large domain into a smaller range.

	HMAC
	A mechanism for message authentication using a cryptographic hash function and a specific key.

	MAC
	A cryptographic value resulting from passing a message through the message authentication algorithm using a specific key.

	Octet
	A sequence of binary digits of length eight that can be represented as two hexadecimal digits, the first hexadecimal digit representing the four most significant bits of the octet, and the second hexadecimal digit representing the four least significant bits.

	Octet String
	A sequence of octets.

	Private Key
	A key of an entity’s key pair known only to that entity.

	Public Key
	A key of an entity’s key pair known publicly.

	Template
	Reference data formed from the biometric measurement of an enrollee and used by a biometric system for comparison against subsequently submitted biometric samples.

5 X9.84 and BioAPI 1.1 Interoperability

This standard defines a set of cryptographic messages represented in XML markup that can be used for the secure collection, distribution, and processing, of biometric information. All of the cryptographic operations provided in this standard are applied to a set of values of the ASN.1 type BiometricObject defined in the ANSI X9.84 standard.

This document describes the process for translating between an X9.84 BiometricObject and a BioAPI-1.1 Biometric Information Record (BIR). The X9.84 schema is the same as the schema defined in this standard and provides a common means of representing in XML markup the binary values described in the X9.84 and BioAPI-1.1 standards. Once BIR format values are represented as values of type BiometricObject they can be secured using the techniques described in this standard.

5.1 BiometricSyntaxSets

Type BiometricSyntaxSets is a series of one or more values of type BiometricSyntax. This type is defined as

BiometricSyntaxSets ::= SEQUENCE SIZE(1..MAX) OF BiometricSyntax

Type BiometricSyntax is a choice type with four choice alternatives, biometricObjects, integrityObjects, privacyObjects and privacyAndIntegrityObjects.

BiometricSyntax ::= CHOICE {

 biometricObjects BiometricObjects,

 integrityObjects IntegrityObjects,

 privacyObjects PrivacyObjects,

 privacyAndIntegrityObjects PrivacyAndIntegrityObjects

}

The choice alternatives of type BiometricSyntax have the following meanings:

biometricObjects

a set of unprotected biometric values

integrityObjects

a digitally signed set of biometric values

privacyObjects

an encrypted set of biometric values

privacyAndIntegrityObjects
a digitally signed and encrypted set of biometric values

Type BiometricSyntaxSets is a series of one or more choice alternatives. Since each of these alternatives is itself a set of one or more biometric objects, BiometricSyntaxSets is a set of sets. Using these choice alternatives useful collections of biometric information can be constructed. The message sender controls the order of the items in each set, so that records can be ordered for any purpose needed. This includes ordering records by likelihood of matching, by vendor format, type of biometric, data quality, or record age.

The BioAPI specification defines a single format, a BIR, composed of three fields: a record Header, an opaque BiometricData field, and an optional Signature. Ignoring the Signature field, the BIR format corresponds closely to the single unprotected biometric value defined in this standard as the BiometricSyntax choice alternative biometricObjects when it is constrained to contain a single BiometricObject. There is no definition for representing sets of biometric records in BioAPI.

The other BiometricSyntax choice alternatives are not supported in the BioAPI specification. These alternatives are cryptographic messages used to provide integrity, authentication and privacy services. When a BIR value is represented in biometricObjects format, XCBF security services can be used to protect BioAPI biometric information.

A value of type BiometricSyntaxSets can be represented in XML markup as

<BiometricSyntaxSets>

 ...

</BiometricSyntaxSets>

Here an ellipsis is used as a placeholder for the elements of the choice alternative of type BiometricSyntax which are not shown.

5.1.1 BiometricObjects

The biometricObjects choice alternative of type BiometricSyntax is a value of type BiometricObjects., a series of one or more values of type BiometricObject. These types are defined as

BiometricObjects ::= SEQUENCE SIZE(1..MAX) OF BiometricObject

BiometricObject ::= SEQUENCE {

 biometricHeader BiometricHeader,

 biometricData BiometricData

}

All of the cryptographic processing in this standard is performed on a value of type EncodedBiometricObjects. This is a value of type BiometricObjects in its encoded form.

EncodedBiometricObjects ::= BIOMETRIC.&Type(BiometricObjects)

The ASN.1 definition above, in the context of this standard, implies that a value of type BiometricObjects is encoded prior to its inclusion in the complete encoding of the enclosing message. This allows the simultaneous use of two different sets of ASN.1 encoding rules for different parts of the same message, namely Canonical XER (CXER) for the BiometricObjects value and basic XER (XER) or Variant XER (VXER) for the enclosing message. The rationale for using two different sets of encoding rules is that cryptographic processing requires that BiometricObjects be encoded in a canonical manner, while there is no such requirement for the message as a whole. Therefore other, more-flexible encoding rules (either XER or VXER in this standard) can be used to encode the message as a whole.

Type BiometricObject is composed of two components, biometricHeader and biometricData, which correspond to the BIR Header and BiometricData fields defined in the BioAPI bioapi_bir structure as

typedef struct bioapi_bir {

 BioAPI_BIR_HEADER Header;

 BioAPI_BIR_BIOMETRIC_DATA_PTR BiometricData;

 BioAPI_DATA_PTR Signature;

} BioAPI_BIR, *BioAPI_BIR_PTR ;

The bioapi_bir.Signature field is optional and opaque. Since this field does not provide any standard formats, no means of identifying cryptographic algorithms and associated parameters, and no facilities for key management, it is simply ignored for the purposes of XCBF.

A value of the biometricObjects choice alternative of type BiometricSyntax can be represented in XML markup as

<biometricObjects>

 <BiometricObjects>

 <BiometricObject>

 <biometricHeader>

 ...

 </biometricHeader>

 <biometricData>

 ...

 </biometricData>

 </BiometricObject>

 </BiometricObjects>

</biometricObjects>

Here an ellipsis is used as a placeholder for the biometric header elements and data which are not shown.

5.1.1.1 BiometricHeader

The biometricHeader component of type BiometricObject is a value of type BiometricHeader defined as

BiometricHeader ::= SEQUENCE {

 version BiometricVersion DEFAULT hv1,

 recordType RecordType OPTIONAL,

 dataType DataType OPTIONAL,

 purpose Purpose OPTIONAL,

 quality Quality OPTIONAL,

 validityPeriod ValidityPeriod OPTIONAL,

 format Format OPTIONAL

}

A value of type BiometricHeader corresponds closely to the BIR Header field in the BioAPI bioapi_bir structure, which is defined as

typedef struct bioapi_bir_header {

 uint32 Length;

 BioAPI_BIR_VERSION HeaderVersion;

 BioAPI_BIR_DATA_TYPE Type;

 BioAPI_BIR_BIOMETRIC_DATA_FORMAT Format;

 BioAPI_QUALITY Quality;

 BioAPI_BIR_PURPOSE Purpose;

 BioAPI_BIR_AUTH_FACTORS FactorsMask;

} BioAPI_BIR_HEADER, *BioAPI_BIR_HEADER_PTR ;

The BiometricHeader definition describes abstract values that are independent of an implementations choice of programming language, operating system, hardware or transfer representation. This approach provides applications with maximum flexibility and more than one concrete representation of the same abstract values, making it possible to encode these values in compact binary formats or as XML markup.

The BiometricHeader definition does not need a prefix with a length component as required by the BIR C programming language format. Some ASN.1 encoding rules will provide length fields and others will not. The BiometricHeader definition contains optional fields that need not be included in a record. This can reduce the record size of encoded ASN.1 values when making them more compact than the same values represented in the BioAPI BIR format.

A value of the biometricHeader component of type BiometricObject can be represented in XML markup as

<biometricHeader>

 <version> 0 </version>

 <recordType> <id> 6 </id> </recordType>

 <dataType> <processed/> </dataType>

 <purpose> <audit/> </purpose>

 <quality> 100 </quality>

 <validityPeriod>

 <notBefore> 1980.10.4 </notBefore>

 <notAfter> 2015.10.3.23.59.59 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2.0 </oid>

 </formatOwner>

 <formatType>

 <BlindedPrimaryAccountNumber>

 A23D552FB4490281C1F6683163D9CCB2

 </BlindedPrimaryAccountNumber>

 </formatType>

 </format>

</biometricHeader>

This markup specifies a high quality reference template used for audit purposes. A vendor specific payload is carried in the header.

5.1.1.1.1 BiometricVersion

The version component of type BiometricHeader is a value of type BiometricVersion defined as

BiometricVersion ::= INTEGER { hv1(0) } (0..MAX)

Type BiometricVersion specifies the integer version number of the BiometricHeader and has no relationship to the BIR HeaderVersion field in the BioAPI bioapi_bir_header structure.

This definition includes a constraint on the valid values of the version component. Values of type BiometricVersion are constrained to be integers greater than or equal to zero. The version number shall be zero in this standard. The biometric header version number zero is identified by the constant hv1.

A value of the version component of type BiometricHeader can be represented in XML markup as

<version> 0 </version>

This markup specifies the zero header version number used in this standard.

5.1.1.1.2 RecordType

The recordType component of type BiometricHeader is a value of type RecordType defined as

RecordType ::= BIOMETRIC.&name({BiometricTypes})

Valid values of RecordType are constrained by the list of objects in the BiometricTypes information object set. This set is defined as

BiometricTypes BIOMETRIC ::= {

 { BIOMETRIC id : unknown-Type } |

 { BIOMETRIC id : body-Odor } |

 { BIOMETRIC id : dna } |

 { BIOMETRIC id : ear-Shape } |

 { BIOMETRIC id : facial-Features } |

 { BIOMETRIC id : finger-Image } |

 { BIOMETRIC id : finger-Geometry } |

 { BIOMETRIC id : hand-Geometry } |

 { BIOMETRIC id : iris-Features } |

 { BIOMETRIC id : keystroke-Dynamics } |

 { BIOMETRIC id : palm } |

 { BIOMETRIC id : retina } |

 { BIOMETRIC id : signature } |

 { BIOMETRIC id : speech-Pattern } |

 { BIOMETRIC id : thermal-Image } |

 { BIOMETRIC id : vein-Pattern } |

 { BIOMETRIC id : thermal-Face-Image } |

 { BIOMETRIC id : thermal-Hand-Image } |

 { BIOMETRIC id : lip-Movement } |

 { BIOMETRIC id : gait },

 ... -- expect additional biometric types --

}

The BiometricTypes information object set contains an extension marker (“…”) indicating that message recipients should expect additional values of biometric types not currently in the set. This allows the set to change as new biometric technology types are developed and used.

A value of this type corresponds closely to the BIR FactorsMask field in the BioAPI bioapi_bir_header structure, which is defined as

typedef sint8 BioAPI_BIR_AUTH_FACTORS;

#define BioAPI_FACTOR_MULTIPLE (0x00000001)

#define BioAPI_FACTOR_FACIAL_FEATURES (0x00000002)

#define BioAPI_FACTOR_VOICE (0x00000004)

#define BioAPI_FACTOR_FINGERPRINT (0x00000008)

#define BioAPI_FACTOR_IRIS (0x00000010)

#define BioAPI_FACTOR_RETINA (0x00000020)

#define BioAPI_FACTOR_HAND_GEOMETRY (0x00000040)

#define BioAPI_FACTOR_SIGNATURE_DYNAMICS (0x00000080)

#define BioAPI_FACTOR_KEYSTOKE_DYNAMICS (0x00000100)

#define BioAPI_FACTOR_LIP_MOVEMENT (0x00000200)

#define BioAPI_FACTOR_THERMAL_FACE_IMAGE (0x00000400)

#define BioAPI_FACTOR_THERMAL_HAND_IMAGE (0x00000800)

#define BioAPI_FACTOR_GAIT (0x00001000)

#define BioAPI_FACTOR_PASSWORD (0x80000000)

Any other unrecognized value or settings in this BIR field can be represented by an XCBF application by the unknownType without changes to the XCBF schema. Values that are defined in XCBF but not supported in the BioAPI specification cannot be represented in a BIR field in a standard way. These include the values defined for body-Odor, dna, ear-Shape, finger-Geometry, palm, and thermal-Image.

	RecordType
	Value
	BioAPI FactorsMask
	Value

	unknownType
	0
	BioAPI_FACTOR_MULTIPLE
	0x00000001

	body-Odor
	1
	
	

	dna
	2
	
	

	ear-Shape
	3
	
	

	facial-Features
	4
	BioAPI_FACTOR_FACIAL_FEATURES
	0x00000002

	finger-Image
	5
	BioAPI_FACTOR_FINGERPRINT
	0x00000008

	finger-Geometry
	6
	
	

	hand-Geometry
	7
	BioAPI_FACTOR_HAND_GEOMETRY
	0x00000040

	iris-Features
	8
	BioAPI_FACTOR_IRIS
	0x00000010

	keystroke-Dynamics
	9
	BioAPI_FACTOR_KEYSTOKE_DYNAMICS
	0x00000100

	palm
	10
	
	

	retina
	11
	BioAPI_FACTOR_RETINA
	0x00000020

	signature
	12
	BioAPI_FACTOR_SIGNATURE_DYNAMICS
	0x00000080

	speech-Pattern
	13
	BioAPI_FACTOR_VOICE
	0x00000004

	thermal-Image
	14
	
	

	vein-Pattern
	15
	
	

	thermal-Face-Image
	16
	BioAPI_FACTOR_THERMAL_FACE_IMAGE
	0x00000400

	thermal-Hand-Image
	17
	BioAPI_FACTOR_THERMAL_HAND_IMAGE
	0x00000800

	lip-Movement
	18
	BioAPI_FACTOR_LIP_MOVEMENT
	0x00000200

	gait
	19
	BioAPI_FACTOR_GAIT
	0x00001000

	
	
	BioAPI_FACTOR_PASSWORD
	0x80000000

The recordType component of type BiometricHeader allows the specification of a single type of biometric record. The BioAPI specification uses a bit mask and allows multiple biometric record types to be specified in the opaque biometric data. In BioAPI, the BioAPI_FACTOR_MULTIPLE bit must be set when multiple record types are specified.

BioAPI does not define a standard way to identify how each type in a multiple type BIR value is delineated, leaving these details to the biometric vendor. When these details are known to an XCBF application, multiple biometric record types may be represented as a value of type BiometricObjects, a series of biometric objects.

A value of the recordType component of type BiometricHeader can be represented in XML markup as

<recordType> <id> 9 </id> </recordType>

This markup specifies a keystroke dynamics record type using the relative object identifier choice alternative value.

5.1.1.1.3 DataType

The dataType component of type BiometricHeader is a value of type DataType defined as

DataType ::= ENUMERATED {

 raw (0),

 intermediate (1),

 processed (2)

}

A value of this type corresponds closely to the BIR Type field in the BioAPI bioapi_bir_header structure, which is defined as

typedef uint8 BioAPI_BIR_DATA_TYPE;

#define BioAPI_BIR_DATA_TYPE_RAW (0x01)

#define BioAPI_BIR_DATA_TYPE_INTERMEDIATE (0x02)

#define BioAPI_BIR_DATA_TYPE_PROCESSED (0x04)

The following two flags are defined in the BIR Type field in the BioAPI bioapi_bir_header structure. These are related to the bioapi_bir.Signature field and are ignored for the purposes of constructing a value of type BiometricHeader, though this information may be used by XCBF applications for determining security requirements where the details of the key management techniques allied to the opaque biometric data can be determined.

#define BioAPI_BIR_DATA_TYPE_ENCRYPTED (0x10)

#define BioAPI_BIR_DATA_TYPE_SIGNED (0x20)

	X9.84 DataType
	Value
	BioAPI Type
	Value

	raw
	0
	BioAPI_BIR_DATA_TYPE_RAW
	0x01

	intermediate
	1
	BioAPI_BIR_DATA_TYPE_INTERMEDIATE
	0x02

	processed
	2
	BioAPI_BIR_DATA_TYPE_PROCESSED
	0x04

	
	
	BioAPI_BIR_DATA_TYPE_ENCRYPTED
	0x10

	
	
	BioAPI_BIR_DATA_TYPE_SIGNED
	0x20

A value of the dataType component of type BiometricHeader can be represented in XML markup as

<dataType> <intermediate/> </dataType>

This markup specifies processed biometric data using an enumerated value.

5.1.1.1.4 Purpose

The purpose component of type BiometricHeader is a value of type Purpose defined as

Purpose ::= ENUMERATED {

 verify (1),

 identify (2),

 enroll (3),

 enrollVerify (4),

 enrollIdentify (5),

 audit (6),

 ... -- expect others --

}

A value of this type corresponds closely to the BIR Purpose field in the BioAPI bioapi_bir_header structure, which is defined as

typedef uint8 BioAPI_BIR_PURPOSE;

#define BioAPI_PURPOSE_VERIFY (1)

#define BioAPI_PURPOSE_IDENTIFY (2)

#define BioAPI_PURPOSE_ENROLL (3)

#define BioAPI_PURPOSE_ENROLL_FOR_VERIFICATION_ONLY (4)

#define BioAPI_PURPOSE_ENROLL_FOR_IDENTIFICATION_ONLY (5)

#define BioAPI_PURPOSE_AUDIT (6)

	9.84 Purpose
	Value
	BioAPI Purpose
	Value

	verify
	1
	BioAPI_PURPOSE_VERIFY
	1

	identify
	2
	BioAPI_PURPOSE_IDENTIFY
	2

	enroll
	3
	BioAPI_PURPOSE_ENROLL
	3

	enrollVerify
	4
	BioAPI_PURPOSE_ENROLL_VERIFICATION_ONLY
	4

	enrollIdentify
	5
	BioAPI_PURPOSE_ENROLL_IDENTIFICATION_ONLY
	5

	audit
	6
	BioAPI_PURPOSE_AUDIT
	6

A value of the purpose component of type BiometricHeader can be represented in XML markup as

<purpose> <audit/> </purpose>

This markup specifies that the purpose of the biometric data is auditing.

5.1.1.1.5 Quality

The quality component of type BiometricHeader is a value of type Quality defined as

Quality ::= INTEGER {

 lowest (0),

 highest (100),

 notSet (-1),

 notSupported (-2)

}

 (-2..100,...)

A value of this type corresponds closely to the BIR Quality field in the BioAPI bioapi_bir_header structure, which is defined as

typedef sint8 BioAPI_QUALITY;

XCBF, X9.84 and BioAPI all define biometric quality as an integer in the range of negative two to one hundred. X9.84 specifies named integer constants for the lowest quality, highest quality, quality not set, and quality not supported. These values are presented in the following table:

	Value
	 Value Range
	 Meaning of Value

	-2
	
	 Not supported by Biometric Service Provider

	-1
	
	 Not set by Biometric Service Provider

	
	 0 - 25
	 Unacceptable

	
	 26 - 50
	 Marginal

	
	 51 - 75
	 Adequate

	
	 76 - 100
	 Excellent

A value of the quality component of type BiometricHeader can be represented in XML markup as

<quality> 100 </quality>

This markup specifies that the quality of the biometric data is excellent.

5.1.1.1.6 ValidityPeriod

The validityPeriod component of type BiometricHeader is a value of type ValidityPeriod defined as

ValidityPeriod ::= SEQUENCE {

 notBefore DateTime OPTIONAL,

 notAfter DateTime OPTIONAL

}

 (ALL EXCEPT({ -- none; at least one component is present -- }))

The notBefore and notAfter components of type ValidityPeriod are values of type DateTime defined as

DateTime ::= RELATIVE-OID -- { yyyy mm dd hh mm ss z }

These date and time values are a variable length series of integers delimited by the full stop character. No more than seven fields are allowed, and each trailing zero valued field can be omitted. Values of type DateTime represent a Universal Coordinated Time (UTC) value and the Zulu indicator is represented by the integer zero.

 A value of the validityPeriod component of type BiometricHeader can be represented in XML markup as

<validityPeriod>

 <notBefore> 1980.10.4 </notBefore>

 <notAfter> 2003.10.3.23.59.59 </notAfter>

</validityPeriod>

This markup specifies that the biometric data is valid on or after October 4, 1980 and is not valid at midnight October 3, 2003 or thereafter.

When the optional validityPeriod component is present in a value of type BiometricHeader, either of the <notBefore> or <notAfter> elements of <validityPeriod> may be omitted in a valid value of type ValidityPeriod, but not both.

5.1.1.1.7 Format

The format component of type BiometricHeader is a value of type Format defined as

Format ::= SEQUENCE {

 formatOwner BIOMETRIC.&name({Owner}),

 formatType BIOMETRIC.&Type({Owner}{@formatOwner}) OPTIONAL

}

A value of this type corresponds closely to the BIR Format field in the BioAPI bioapi_bir_biometric_data_format structure, which defined as

BioAPI bioapi_bir_biometric_data_format

typedef struct bioapi_bir_biometric_data_format {

 uint16 FormatOwner;

 uint16 FormatID;

} BioAPI_BIR_BIOMETRIC_DATA_FORMAT, *BioAPI_BIR_BIOMETRIC_DATA_FORMAT_PTR;

Type Format is composed of two components, formatOwner and formatType, which are defined in terms of the &name and &Type fields of the BIOMETRIC information object class. This class is defined as

BIOMETRIC ::= CLASS {

 &name BIOMETRIC-IDENTIFIER UNIQUE,

 &Type OPTIONAL

}

 WITH SYNTAX { BIOMETRIC &name [DATA &Type] }

The type of the formatOwner component is defined in terms of the &name field. This field is defined as a value of type BIOMETRIC-IDENTIFIER, a choice type with two alternatives, oid and id. These alternatives allow a vendor specific format to be identified using a complete object identifier or an object identifier fragment:

BIOMETRIC-IDENTIFIER ::= CHOICE {

 oid OBJECT IDENTIFIER, -- complete object identifier

 id RELATIVE-OID -- object identifier fragment

}

The type of the optional formatType component is an open type, which can carry the value of any type that can be defined using ASN.1.

A value of the format component of type BiometricHeader can be represented in XML markup as

<format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2 </oid>

 </formatOwner>

 <formatType>

 <URL> http://asn-1.com/biolojava.htm </URL>

 </formatType>

</format>

This markup associates the biometric data with a specific vendor product using a complete object identifier value. The optional formatType component is present and contains a value of a user defined type named URL. Type URL is a Uniform Resource Locator, character string type, but given only the <URL> tag and the element contents, it is not possible to determine the actual ASN.1 schema definition of this type.

While it is easy for human readers to see that the content of the formatType open type is a hypertext link, application tools are likely to treat this content as an opaque string. A recipient of this information, without access to the complete ASN.1 Schema and an understanding of the intended semantics, may be able to parse this XML markup, but will not be able to understand or act on the information it provides.

Adopters of this standard can obtain an object identifier and register an associated type for use in their systems and applications. These object identifiers are globally unique and can be used to identify the version of vendor hardware and software needed to process a given biometric object.

5.1.1.1.7.1 Biometric Format Registration

There are three registration authorities for vendor specific formats recognized in this standard, NIST, IBIA and X9. Each organization controls a unique arc under which it may assign vendor specific format identifiers and associated information.

These identifiers and associated types are used to constrain the valid values that may be used in the components of type Format. This constraint is specified by objects defined in the Owner information object set defined as

Owner BIOMETRIC ::= {

 CBEFF-Formats | -- http://www.nist.gov/ --

 IBIA-Formats | -- http://www.ibia.org/ --

 X9-Formats, -- http://www.x9.org/ --

 ... -- expect additional vendor specific formats --

}

5.1.1.1.7.2 CBEFF-Formats

All CBEFF registered vendor specific format types are identified by the object identifier

id-x984BioInfo or the object identifier fragment x984BioInfo defined as:

id-x984BioInfo OID ::= { cbeff-Owner x984BioInfo(0) }

x984BioInfo RelOID ::= { x984BioInfo(0) } -- CBEFF owner

These identifier values are used in the information object sets, CBEFFoidFormats and CBEFFidFormats, to identify a value of type BiometricInformationSets. This type biometric serves as a placeholder for possible future standardization, which will identify commonly accepted processing algorithms and matching methods.

CBEFF-Formats BIOMETRIC ::= {

 CBEFFoidFormats | -- Complete object identifiers

 CBEFFidFormats, -- Object identifier fragments

 ... -- Expect additional CBEFF vendor specific formats --

}

CBEFFoidFormats BIOMETRIC ::= {

 { BIOMETRIC oid : id-x984BioInfo DATA BiometricInformationSets },

 ... -- Expect other objects --

}

CBEFFidFormats BIOMETRIC ::= {

 { BIOMETRIC id : x984BioInfo DATA BiometricInformationSets },

 ... -- Expect other objects --

}

Type BiometricInformationSets is defined as one or more instances of BiometricInformation:

BiometricInformationSets ::=

 SEQUENCE SIZE(1..MAX) OF BiometricInformation

BiometricInformation ::= SEQUENCE {

 processingAlgorithms ProcessingAlgorithms OPTIONAL,

 matchingMethods MatchingMethods OPTIONAL

}

 (ALL EXCEPT({ -- none; at least one component is present -- }))

Type ProcessingAlgorithms specifies one or more biometric processing algorithms that are to be used to process biometric sample data or which have been used to create a biometric reference template. This type is defined as one or more instances of ProcessingInformation:

ProcessingAlgorithms ::= SEQUENCE SIZE(1..MAX) OF ProcessingInformation

ProcessingInformation ::= SEQUENCE {

 id BIOMETRIC.&name({ProcessingAIDs}),

 parms BIOMETRIC.&Type({ProcessingAIDs}{@id}) OPTIONAL

}

Type ProcessingInformation is composed of two components, id and parms, which are defined in terms of the fields &name and &Type of the BIOMETRIC information object class. The valid values of these two components are constrained by the objects specified in the information object set ProcessingAIDs.

The ProcessingAIDs information object set contains no objects, as no biometric processing algorithms have been assigned by NIST under their CBEFF program.

ProcessingAIDs BIOMETRIC ::= {

 ... -- Expect CBEFF assignments in BiometricInformationSets --

}

Type MatchingMethods specifies one or more biometric matching methods that can be used to associate a biometric sample to a stored reference template. This type is defined as one or more instances of MatchingInformation:

MatchingMethods ::= SEQUENCE SIZE(1..MAX) OF MatchingInformation

MatchingInformation ::= SEQUENCE {

 id BIOMETRIC.&name({MatchingAIDs}),

 parms BIOMETRIC.&Type({MatchingAIDs}{@id}) OPTIONAL

}

Type MatchingInformation is composed of two components, id and parms, which are defined in terms of the fields &name and &Type of the BIOMETRIC information object class. The valid values of these two components are constrained by the objects specified in the information object set MatchingAIDs.

The MatchingAIDs information object set contains no objects, as no biometric matching methods have been assigned by NIST under their CBEFF program.

MatchingAIDs BIOMETRIC ::= {

 ... -- Expect CBEFF assignments in BiometricInformationSets --

}

5.1.1.1.7.3 IBIA-Formats

All IBIA registered vendor specific format types are identified by the object identifier

ibia-Owner OID ::= { format-Owner ibia(1) }

This base object identifier is not used in practice in BioAPI based applications, as all of the vendor specific formats registered under this arc are restricted to small, sixteen bit integers for compatibility with the fixed format requirements of the BioAPI specification. These are values of type BirInt16 defined as

BirInt16 ::= INTEGER (0..65535)

In XCBF, the BIR format owner is modeled as a relative object identifier restricted to a single node and must comply with the fixed format requirements of the BioAPI specification.

ibia-SAFLINK RelOID ::= { 1 }

ibia-Bioscrypt RelOID ::= { 2 }

ibia-Visionics RelOID ::= { 3 }

ibia-InfineonTechnologiesAG RelOID ::= { 4 }

ibia-IridianTechnologies RelOID ::= { 5 }

ibia-Veridicom RelOID ::= { 6 }

ibia-CyberSIGN RelOID ::= { 7 }

ibia-eCryp RelOID ::= { 8 }

ibia-FingerprintCardsAB RelOID ::= { 9 }

ibia-SecuGen RelOID ::= { 10 }

ibia-PreciseBiometric RelOID ::= { 11 }

ibia-Identix RelOID ::= { 12 }

ibia-DERMALOG RelOID ::= { 13 }

ibia-LOGICO RelOID ::= { 14 }

ibia-NIST RelOID ::= { 15 }

ibia-A4Vision RelOID ::= { 16 }

ibia-NEC RelOID ::= { 17 }

ibia-STMicroelectronics RelOID ::= { 18 }

ibia-Ultra-Scan RelOID ::= { 19 }
ibia-Aurora-Wireless RelOID ::= { 20 }
ibia-Thales RelOID ::= { 21 }
ibia-IBG RelOID ::= { 22 }
ibia-Cogent-Systems RelOID ::= { 23 }
ibia-Cross-Match RelOID ::= { 24 }
ibia-Recognition-Systems RelOID ::= { 25 }
ibia-DIN RelOID ::= { 26 }
ibia-INCITS-M1 RelOID ::= { 27 }
These identifiers are associated with a restriced sixteen bit integer value.

IBIAidFormats BIOMETRIC ::= {

 { BIOMETRIC id : ibia-SAFLINK DATA BirInt16 } |

 { BIOMETRIC id : ibia-Bioscrypt DATA BirInt16 } |

 { BIOMETRIC id : ibia-Visionics DATA BirInt16 } |

 { BIOMETRIC id : ibia-InfineonTechnologiesAG DATA BirInt16 } |

 { BIOMETRIC id : ibia-IridianTechnologies DATA BirInt16 } |

 { BIOMETRIC id : ibia-Veridicom DATA BirInt16 } |

 { BIOMETRIC id : ibia-CyberSIGN DATA BirInt16 } |

 { BIOMETRIC id : ibia-eCryp DATA BirInt16 } |

 { BIOMETRIC id : ibia-FingerprintCardsAB DATA BirInt16 } |

 { BIOMETRIC id : ibia-SecuGen DATA BirInt16 } |

 { BIOMETRIC id : ibia-PreciseBiometric DATA BirInt16 } |

 { BIOMETRIC id : ibia-Identix DATA BirInt16 } |

 { BIOMETRIC id : ibia-DERMALOG DATA BirInt16 } |

 { BIOMETRIC id : ibia-LOGICO DATA BirInt16 } |

 { BIOMETRIC id : ibia-NIST DATA BirInt16 } |

 { BIOMETRIC id : ibia-A4Vision DATA BirInt16 } |

 { BIOMETRIC id : ibia-NEC DATA BirInt16 } |

 { BIOMETRIC id : ibia-STMicroelectronics DATA BirInt16 } |
 { BIOMETRIC id : ibia-Ultra-Scan DATA BirInt16 } |
 { BIOMETRIC id : ibia-Aurora-Wireless DATA BirInt16 } |
 { BIOMETRIC id : ibia-Thales DATA BirInt16 } |
 { BIOMETRIC id : ibia-IBG DATA BirInt16 } |
 { BIOMETRIC id : ibia-Cogent-Systems DATA BirInt16 } |
 { BIOMETRIC id : ibia-Cross-Match DATA BirInt16 } |
 { BIOMETRIC id : ibia-Recognition-Systems DATA BirInt16 } |
 { BIOMETRIC id : ibia-DIN DATA BirInt16 } |
 { BIOMETRIC id : ibia-INCITS-M1 DATA BirInt16 },
 ... -- Expect others --

}

Note that additional registry entries are expected and that the associated type is optional in XCBF and need not be present.

When these vendor specific format values are expressed as complete object identifiers as allowed in XCBF messages, they can be associated with any ASN.1 type needed by an implementation.

IBIAoidFormats BIOMETRIC ::= {

 { BIOMETRIC oid : id-ibia-SAFLINK DATA Any } |

 { BIOMETRIC oid : id-ibia-Bioscrypt DATA Any } |

 { BIOMETRIC oid : id-ibia-Visionics DATA Any } |

 { BIOMETRIC oid : id-ibia-InfineonTechnologiesAG DATA Any } |

 { BIOMETRIC oid : id-ibia-IridianTechnologies DATA Any } |

 { BIOMETRIC oid : id-ibia-Veridicom DATA Any } |

 { BIOMETRIC oid : id-ibia-CyberSIGN DATA Any } |

 { BIOMETRIC oid : id-ibia-eCryp DATA Any } |

 { BIOMETRIC oid : id-ibia-FingerprintCardsAB DATA Any } |

 { BIOMETRIC oid : id-ibia-SecuGen DATA Any } |

 { BIOMETRIC oid : id-ibia-PreciseBiometric DATA Any } |

 { BIOMETRIC oid : id-ibia-Identix DATA Any } |

 { BIOMETRIC oid : id-ibia-DERMALOG DATA Any } |

 { BIOMETRIC oid : id-ibia-LOGICO DATA Any } |

 { BIOMETRIC oid : id-ibia-NIST DATA Any } |

 { BIOMETRIC oid : id-ibia-A4Vision DATA Any } |

 { BIOMETRIC oid : id-ibia-NEC DATA Any } |

 { BIOMETRIC oid : id-ibia-STMicroelectronics DATA Any } |
 { BIOMETRIC oid : id-ibia-Ultra-Scan DATA Any } |
 { BIOMETRIC oid : id-ibia-Aurora-Wireless DATA Any } |
 { BIOMETRIC oid : id-ibia-Thales DATA Any } |
 { BIOMETRIC oid : id-ibia-IBG DATA Any } |
 { BIOMETRIC oid : id-ibia-Cogent-Systems DATA Any } |
 { BIOMETRIC oid : id-ibia-Cross-Match DATA Any } |
 { BIOMETRIC oid : id-ibia-Recognition-Systems DATA Any } |
 { BIOMETRIC oid : id-ibia-DIN DATA Any } |
 { BIOMETRIC oid : id-ibia-INCITS-M1 DATA Any },
 ... -- Expect additional vendor specific formats --

}

Any ::= TYPE-IDENTIFIER.&Type -- Application constrained

5.1.1.1.7.4 X9-Formats

All X9 registered vendor specific format types are identified by the object identifier

x9-Owner OID ::= { format-Owner x9(2) }

Under this X9 arc, both complete and relative object identifier values can be registered for use by biometric application vendors. This base object identifier may be used to form complete object identifiers in practice. Use of this arc can occur at the application level above the BioAPI layer. For applicatons that require compatibility with BioAPI formats, the details of the fields in the BIR can be ignored and the entire BIR can be carried in a BiometricObject as the value of the biometricData component.

None of the vendor specific formats registered under the x9-Owner arc are restricted to the small, sixteen bit integers required for field level compatibility with the fixed format requirements of the BioAPI specification. Any type needed by the application can be registered under this arc. This capability gives biometric vendors complete control over the content that can be bound to the biometric information in a BiometricObject. and the flexibility needed to create biometric applications complete control and flexibility.

X9-Formats BIOMETRIC ::= {

 X9oidFormats |

 X9idFormats,

 ... -- Expect additional X9 vendor specific formats --

}

X9oidFormats BIOMETRIC ::= {

 ... -- Expect X9 assigned objects --

}

X9idFormats BIOMETRIC ::= {

 ... -- Expect X9 assigned objects of the form { 2 x } --

}

5.1.1.2 BiometricData

The biometricData component of type BiometricObject is a value of type BiometricData defined as

BiometricData ::= OCTET STRING (SIZE(1..MAX))

A value of this type corresponds to the BIR BiometricData field in the BioAPI bioapi_bir structure and is defined as

typedef uint8 BioAPI_BIR_BIOMETRIC_DATA;

Both of these data types are opaque strings that for the purpose of transfer have no internal structure. They contain unprotected binary biometric samples aligned in 8-bit words.

5.1.2 IntegrityObjects

The integrityObjects choice alternative of type BiometricSyntax is a value of type IntegrityObjects. Type IntegrityObjects is a sequence of two components, biometricObjects and integrityBlock, and is defined as

IntegrityObjects ::= SEQUENCE {

 biometricObjects EncodedBiometricObjects,

 integrityBlock IntegrityBlock

}

The biometricObjects component is a value of type EncodedBiometricObjects, a series of one or more values of type BiometricObject in their encoded form. This is the form needed for input to digital signing and signature verification processes. Type BiometricObject is a sequence composed of two components, a biometric header and biometric data.

The integrityBlock component is a value of type IntegrityBlock, a choice type with four alternatives, digitalSignature, messageAuthenticationCode, signedData and authenticatedData. This type is defined as:

IntegrityBlock ::= CHOICE {

 digitalSignature DigitalSignature,

 messageAuthenticationCode MessageAuthenticationCode,

 signedData SignedData,

 authenticatedData AuthenticatedData

}

The choice alternatives of type IntegrityBlock have the following meanings:

	DigitalSignature
	A simple digital signature using a fixed key pair

	messageAuthenticationCode
	A simple MAC or HMAC [12]

	SignedData
	A simple digital signature using a fixed key pair with origin authentication information

	AuthenticatedData
	A simple MAC or HMAC with origin authentication information

5.1.2.1 DigitalSignature

The digitalSignature choice alternative of the integrityBlock component of type IntegrityObjects is a value of type DigitalSignature. This type is a sequence of two components, an algorithm identifier and a digital signature. Type DigitalSignature is defined as

DigitalSignature ::= SEQUENCE {

 algorithmID SignatureAlgorithmIdentifier,

 signature OCTET STRING

 (CONSTRAINED BY { -- signature on a value of --

 EncodedBiometricObjects })

}

Here EncodedBiometricObjects is a value of type BiometricObjects in its encoded form. Type BiometricObjects is a series of one or more values of type BiometricObject. It is a value of type EncodedBiometricObjects that is digitally signed.

A value of the digitalSignature choice alternative of the integrityBlock component of type IntegrityObjects can be represented in XML markup as

<integrityBlock>

 <digitalSignature>

 <algorithmID>

 <algorithm>1.2.840.10040.4.3</algorithm>

 <parameters><NullParms/></parameters>

 </algorithmID>

 <signature>
 DE340 ... B0123DF
 </signature>

 </digitalSignature>

</integrityBlock>

This markup uses the digitalSignature choice alternative of the integrity block, a value of type DigitalSignature. This type provides a simple digital signature on a value of type EncodedBiometricObjects. The Digital Signature Algorithm (DSA) [8] with Secure Hash Algorithm (SHA1) [9] and its associated parameters, <NullParms/> is used for signing a value of EncodedBiometricObjects. An ellipsis is used as a placeholder where part of the signature is not shown.

5.1.2.1.1 Digital Signature Process

A message digest is used to create the digital signature carried in the signature component of DigitalSignature. The message digest and signature are calculated using the algorithm and parameters specified in the algorithmID component of DigitalSignature. The digest is performed on the complete canonical XER encoding of a value of type BiometricObjects.

When a value of type DigitalSignature is represented as XML markup, the starting and ending EncodedBiometricObjects tags are excluded from the message digest process. Only the "value" portion of the complete canonical XER encoding of EncodedBiometricObjects is digested. The <EncodedBiometricObject> and </EncodedBiometricObject> tags are excluded from the message digest process, and the digest is calculated starting with the <BiometricObjects> tag and ending with the </BiometricObjects> tag.

The result of the message digest process is then digitally signed using the signer’s private key and the signature algorithm and parameters specified in the algorithmID component of DigitalSignature. The result of the signature process is an octet string, which becomes the value of the signature component of DigitalSignature.

5.1.2.1.2 Digital Signature Verification

To verify the signature in a digital signature choice alternative of the integrityBlock component of type IntegrityObjects, a message digest is computed over the complete canonical XER encoding of the value of the biometricObjects component of type IntegrityObjects using the algorithm and any associated parameters indicated in the algorithmID component of DigitalSignature. The resulting message digest value is compared to the value of the hash obtained from applying the signature verification key to the signature component of type DigitalSignature to determine if this signature is valid.

5.1.2.2 MessageAuthenticationCode

The messageAuthenticationCode choice alternative of the integrityBlock component of type IntegrityObjects is a value of type MessageAuthenticationCode. This type is a sequence of two components, an algorithm identifier and a message authentication code (or hashed message authentication code). Type MessageAuthenticationCode is defined as

MessageAuthenticationCode ::= SEQUENCE {

 keyName OCTET STRING OPTIONAL,

 algorithmID MACAlgorithmIdentifier,

 mac OCTET STRING

 (CONSTRAINED BY { -- MAC or HMAC on a value of --

 EncodedBiometricObjects })

}

A MessageAuthenticationCode provides a way to verify the integrity of biometric information using a secret authentication key. This secret key is shared between a sender and recipient. An HMAC is a message authentication method based on a cryptographic hash function, a keyed-hash method. The cryptographic strength of an HMAC depends on the strength of the underlying hash function. For this reason, the Secure Hash Algorithm (SHA1) is widely used.

For both MAC and HMAC, cryptographic keys shall be chosen at random when created, and shall be protected and kept secret, and exchanged securely. The minimum length of the key used with HMAC depends on the choice of underlying hash function. Good security practices demand that keys be refreshed periodically to guard against weaknesses in keys and to minimize exposure from an attack.

A value of the messageAuthenticationCode choice alternative of the integrityBlock component of type IntegrityObjects can be represented in XML markup as

<integrityBlock>

 <messageAuthenticationCode>

 <keyName> 9FCD...AB45 </keyName>

 <algorithmID>

 <algorithm>1.3.6.1.5.5.8.1.2</algorithm>

 </algorithmID>

 <mac>
 DEA7B ... 59ABD3
 </mac>

 </messageAuthenticationCode>

</integrityBlock>

This markup uses the message authentication code choice alternative. The hashed MAC with SHA1 algorithm and a shared secret key are used to compute an HMAC on a value of EncodedBiometricObjects. An ellipsis is used as a placeholder for part of the HMAC results.

5.1.2.2.1 Message Authentication Process

A sender prepares a value of type EncodedBiometricObjects, a named cryptographic key previously created at random and known by the recipient, and uses these as input to a MAC or HMAC process. This results in a message authentication code over the specified biometric information. The biometric information and processing results are sent to a recipient who shares the secret key used in the message authentication code process.

To verify the message authentication code, the user computes a MAC or HMAC on the biometric information using the same shared secret key identified by its key name, and compares this result to the message authentication value received to determine the integrity of the biometric information.

5.1.2.3 SignedData

The signedData choice alternative of the integrityBlock component of type IntegrityObjects is a value of type SignedData. This sequence type is defined as

SignedData ::= SEQUENCE {

 version CMSVersion,

 digestAlgorithms DigestAlgorithmIdentifiers,

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] CertificateSet OPTIONAL,

 crls [1] CertificateRevocationLists OPTIONAL,

 signerInfos SignerInfos

}

The components of type SignedData have the following meanings:

	version

	An integer version number of the syntax definition. The version shall be 84 in this standard.

	digestAlgorithms
	The set of message digest algorithms used by the signers. This set contains only one element since there is only one signer of the content in this standard.

	encapContentInfo
	An identifier of the type of content signed and optionally, the signed content. In this standard the signed content is not present. The type of content is always ordinary data as the nesting of cryptographic types is neither required nor supported.

	certificates
	An optional set of one or more X.509 [1] or X9.68 [11] certificates. When present, this set may contain more certificates or less than needed to verify the signature on the signed data.

	crls
	An optional set of one or more X.509 certificate revocation lists (CRLs). When present, there may be more CRLs or less than needed to determine whether or not the certificate of the signer is valid.

	signerInfos
	A set of information for each signer of the content. This set contains only one element since there is only one signer of the content in this standard.

SignerInfos ::= SET SIZE(1) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm DigestAlgorithmIdentifier,

 signatureAlgorithm SignatureAlgorithmIdentifier,

 signature SignatureValue

}

The SignerIdentifier type is used to identify the public key certificate associated with the private key used to create the signature component of SignerInfo. This type is defined in XCBF as a choice type having only one alternative:

SignerIdentifier ::= CHOICE {

 certHash [1] EXPLICIT Hash

}

The certHash choice alternative of SignerIdentifier provides a single, simple mechanism that allows any type of digital certificate to be identified. The hash is computed over the complete encoding of the certificate. This allows any type of certificate, regardless of its format or encoding, to be identified.

When X.509 certificates or attribute certificates are used, the hash will be computed over the complete DER [6] encoding of the certificate, as X.509 only supports these encoding rules. When X9.68 domain certificates are used, the hash may be computed over the DER or XER encoding of the certificate, as either encoding format is supported by that standard. In any case, such details are hidden from an application if the certificates is properly treated as an opaque series of octets.

Hash ::= CHOICE {
 ietf CertHash, -- SHA-1 hash of entire certificate
 withAlgID DigestInfo
}

CertHash ::= OCTET STRING (ENCODED BY sha-1)

DigestInfo ::= SEQUENCE {
 hashAlgorithm DigestAlgorithmIdentifier,
 digest OCTET STRING
}

5.1.2.3.1 Message digest and signature process

A message digest is used to create the digital signature carried in the SignerInfo component of SignedData. The message digest is calculated using the algorithm and parameters specified in the digestAlgorithm component of SignerInfo, and the value of the eContent component of EncapsulatedContentInfo. The eContentType component of EncapsulatedContentInfo identifies the type of value being signed. This is always the object identifier value id-data in XCBF.

When a value of type SignedData is represented as XML markup, the starting and ending eContent tags are excluded from the message digest process. Only the "value" portion of the complete canonical XER encoding of eContent is digested. The <eContent> and </eContent> tags are excluded from the message digest process, and the digest is calculated starting with the <BiometricObjects> tag and ending with the </BiometricObjects> tag.

The result of the message digest process is then digitally signed using the signer’s private key and the signature algorithm and parameters specified in the signatureAlgorithm component of SignerInfo. The result of the signature process becomes the value of the signature component of the SignerInfo component of SignedData.

5.1.2.3.2 Signature Verification

To verify the signature in a signed data choice alternative of the integrityBlock component of type IntegrityObjects, a message digest is computed over the complete canonical XER encoding of the value of the biometricObjects component of type IntegrityObjects. This digest is computed using the digestAlgorithm component of type SignerInfo.

The public key of the signer is the signature verification key. This key is used to verify the digital signature on the signed data created with the signer’s private key. The signature is carried in the SignerInfo component of type SignedData. The value of the sid component of SignerInfo identifies the public key certificate associated with the private key used to create the digital signature on the signed data.

The message digest value computed by the signature verifier is compared to the value of the hash obtained from applying the signer’s public key to the signature component of type SignerInfo to determine if this signature is valid. There is only one signer of the content in this standard.

Complete trust in the validity of the signature on the signed data by the signer must be determined by validation of the chain of certificates associated with the signer’s public key certificate. The optional certificates and crls components of type SignedData may be used by the signer to provide information needed to validate the signer’s certificate.

5.1.2.4 AuthenticatedData

The messageAuthenticationCode choice alternative of the integrityBlock component of type IntegrityObjects is a value of type AuthenticatedData. This sequence type provides a MAC with key establishment and is defined as

AuthenticatedData ::= SEQUENCE {

 version CMSVersion,

 recipientInfos RecipientInfos,

 macAlgorithm MACAlgorithmIdentifier,

 encapContentInfo EncapsulatedContentInfo,

 mac MessageAuthenticationCode

}

Type AuthenticatedData uses a key transport mechanism to convey a one-time MAC key along with biometric information. Since a key agreement mechanism is not supported, only data integrity is provided by use of this type and not origin authentication. There is only a single recipient of this encrypted MAC key present in the recipientInfos component of type AuthenticatedData, and the optional content is not present in the encapContentInfo component.

A message authentication code is calculated on biometric information. This biometric information is a value of type EncodedBiometricObjects, which is a value of type BiometricObjects in its encoded form. The calculation is performed using the MAC algorithm and any associated algorithm parameters indicated in the macAlgorithm component of type AuthenticatedData, the biometric information, and an authentication key that is conveyed in the recipientInfos component. The result of this calculation is a message authentication code, which becomes the value of the mac component.

A value of the privacyObjects choice alternative of type BiometricSyntax can be represented in XML markup as

<privacyObjects>

 <privacyBlock>

 ...

 </privacyBlock>

</privacyObjects>

This markup illustrates the wrapper for a typical privacy object. The optional privacy object biometric headers are not present. An ellipsis is used as a placeholder and the details of the privacy block choice alternative are not shown.

5.1.2.5 Biometric Certificate Extensions

Digital signature data integrity protection and origin authenticaion can be achieved by including biometric information in digital certificates. A set of one or more biometric reference templates can be cryptographically bound to the public key associated with the private key of an entity, by including a value of type EncodedBiometricObjects in a certificate extension. In the XCBF standard, biometric certificate extension values can be encoded in either binary or XML markup formats.

XCBF supports the version three certificates and version two attribute certificates defined in the X.509 standard and the compact domain certificate format defined in X9.68. One extension is defined for use in each standard, and these are defined as

biometricTemplates EXTENSION ::= {

 SYNTAX EncodedBiometricObjects -- DER or cXER --

 IDENTIFIED BY x509-biometricTemplates

}

domainBiometricTemplates PRIVATE-X ::= {

 NAME oid : x968-biometricTemplates

 TYPE EncodedBiometricObjects -- DER or cXER --

}

When biometric information is included in a certificate extension stored in a certificate repository, the repository becomes a biometric storage subsystem, and the biometric information may need to be protected by encryption or other means. Measures should be taken to prevent an attacker from using a certificate repository as a large, searchable public database of biometric reference templates that could be used to find templates that match a given biometric sample. Finding such a match would allow an attacker to focus its efforts on that user.

5.1.3 PrivacyObjects

The privacyObjects choice alternative of type BiometricSyntax is a value of type PrivacyObjects. This type is defined as a sequence of two components, biometricHeaders and privacyBlock.

PrivacyObjects ::= SEQUENCE {

 biometricHeaders BiometricHeaders OPTIONAL,

 privacyBlock PrivacyBlock

}

The biometricHeaders component is a series of one or more values of type BiometricHeader.

BiometricHeaders ::= SEQUENCE SIZE(1..MAX) OF BiometricHeader

This optional biometricHeaders component is not protected by encryption and should be present only when a privacy object is used in a secure environment, or when the information contained in the biometricHeaders component does not compromise security or assist an attacker. In a secure setting these biometric headers may be used as a convenience, to assist in searches of biometric information and in database management operations.

The encrypted content in the privacy block contains a series of one or more values of type BiometricObject, including their biometric headers. To be useful, the biometricHeaders component need only provide an indication of the information contained in the encrypted privacy block. But this component need not contain exactly the same information as the headers in the encrypted privacy block, and may contain only a single BiometricHeader value when present. The biometricHeaders component is not protected in any way.

The privacyBlock component of type PrivacyObjects offers three choice alternatives, fixedKey, namedKey and establishedKey.

PrivacyBlock ::= CHOICE {

 fixedKey EncryptedData,

 namedKey NamedKeyEncryptedData,

 establishedKey EnvelopedData

}

The fixedKey and namedKey choice alternatives are based on the EncryptedData type. The establishedKey alternative is based on type EnvelopedData. Each of these alternatives has different characteristics, and the alternative chosen will depend upon application requirements and the key management scheme being used.

A value of the privacyObjects choice alternative of type BiometricSyntax can be represented in XML markup as

<privacyObjects>

 <privacyBlock>

 ...

 </privacyBlock>

</privacyObjects>

This markup illustrates the wrapper for a typical privacy object. The optional privacy object biometric headers are not present. An ellipsis is used as a placeholder and the details of the privacy block choice alternative are not shown.

5.1.3.1 Encrypted Content Information

All three of the privacy block choice alternatives contain a value of type EncryptedContentInfo defined as

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm ContentEncryptAlgorithmIdentifier,

 encryptedContent [0] EncryptedContent

}

The contentType component identifies the type of encrypted content. In XCBF, the type of encrypted content is always a value of EncodedBiometricObjects, a series of one or more values of type BiometricObject encoded using the XML Encoding Rules. The type of encrypted content is identified as ordinary data by the information object identifier value id-data, defined in the PKCS #7 Cryptographic Message Syntax Standard [19]. The encoding of this component is

<contentType> 1.2.840.113549.1.7.1 </contentType>

The contentEncryptionAlgorithm component identifies the content encryption algorithm and any associated parameters used to encrypt and decrypt the EncodedBiometricObjects. This content encryption algorithm is a value of type ContentEncryptionAlgorithmIdentifier defined as

ContentEncryptAlgorithmIdentifier ::=

 AlgorithmIdentifier {{ContentEncryptionAlgorithms}}

The definition of type ContentEncryptionAlgorithmIdentifier is based on the parameterized type AlgorithmIdentifier {} and the information object set ContentEncryptionAlgorithms, defined as

ContentEncryptionAlgorithms ALGORITHM ::= {

 { OID des-ede3-cbc PARMS IV },

 ... -- Expect other content encryption algorithms --

}

IV ::= OCTET STRING (SIZE(8))

ContentEncryptionAlgorithms specifies an extensible set of ALGORITHM information objects. The fields of these information objects are used to constrain the valid values of the components of type ContentEncryptionAlgorithmIdentifier. Though only one content encryption algorithm object is defined explicitly in this set, implementations should expect additional algorithms.

The ContentEncryptionAlgorithms information object set contains a single object that identifies the encryption algorithm described in ANSI X9.52 [10] as Triple DES (TDES) in CBC (cipher block chaining) mode. Only the two key and three key variants of TDES are supported in XCBF. The single key variant of TDES is simply the DES algorithm and is generally used only for backwards compatibility with existing DES based applications and is considered vulnerable to attack.

The Triple DES algorithm consists of three sequential DES operations, encrypt, decrypt, and encrypt. For three key TDES a different key is used for each DES operation. For two key TDES one key is used for both DES encrypt operations, and the second key is used for the DES decrypt operation.

The encryptedContent component contains a value of type EncodedBiometricObjects encrypted using the content encryption algorithm given in the contentEncryptionAlgorithm component. A value of encryptedContent is an opaque string of octets treated as having no discernable structure. This string is a value of type EncryptedContent defined as

EncryptedContent ::= OCTET STRING

A value of the encryptedContentInfo component of any of the privacy block choice alternative types can be represented in XML markup as

<encryptedContentInfo>

 <contentType>1.2.840.113549.1.7.6</contentType>

 <contentEncryptionAlgorithm>

 <algorithm>1.2.840.113549.3.7</algorithm>

 <parameters>

 <IV>7EA13D6E143CB5C9</IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>

 D8F6 ... F766

 </encryptedContent>

</encryptedContentInfo>

This markup illustrates a typical value. The encrypted content type is identified as ordinary data. The Triple DES content encryption algorithm is identified along with its associated parameters, an initialization vector, <IV>. An ellipsis is used as a placeholder for part of the encrypted content.

5.1.3.2 Fixed Key EncryptedData

The fixedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type EncryptedData. This type is a sequence of two components, an integer version number and a value of type EncryptedContentInfo. Type EncryptedData is defined as

EncryptedData ::= SEQUENCE {

 version CMSVersion,

 encryptedContentInfo EncryptedContentInfo

}

The fixedKey alternative assumes that the recipient of the EncryptedData value knows the key used to encrypt the biometric information, perhaps by prior agreement or as the result of a key exchange. The version component of type EncryptedData is always the integer value eighty-four. The components of type EncryptedContentInfo are described in section 4.1.3.1 Encrypted Content Information.

A value of the fixedKey choice alternative of the privacyBlock component of type PrivacyObjects can be represented in XML markup as

<fixedKey>

 <version>84</version>

 <encryptedContentInfo>

 <contentType>1.2.840.113549.1.7.6</contentType>

 <contentEncryptionAlgorithm>

 <algorithm>1.2.840.113549.3.7</algorithm>

 <parameters>

 <IV>7EA13D6E143CB5C9</IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>

 ...

 </encryptedContent>

 </encryptedContentInfo>

</fixedKey>

This markup uses the fixed key choice alternative of the privacy block, a value of version number eighty-four of the cryptographic message type EncryptedData. The encrypted content type is identified as ordinary data. The Triple DES content encryption algorithm is identified along with its associated parameters, an initialization vector, <IV>. An ellipsis is used as a placeholder and the encrypted content is not shown.

5.1.3.2.1 Encryption Process

A value of type EncryptedData is created by encrypting a series of one or more values of type BiometricObject in their encoded form using a content encryption algorithm and a fixed content encryption key known to the sender and recipient. The content to be encrypted is a value of type EncodedBiometricObjects. This value is always encoded using the XML Encoding Rules. The content encryption algorithm used to encrypt the biometric objects is one of the algorithms specified in the information object set ContentEncryptionAlgorithms.

The contentType component of type EncryptedContentInfo is set to indicate ordinary data. The associated contentEncryptionAlgorithm value is set to identify the algorithm used to encrypt the content, and the encryptedContent value is set to the results of encrypting the content using this content encryption algorithm.

5.1.3.2.2 Decryption Process

To decrypt a value of type EncryptedData, the content encryption algorithm specified in the contentEncryptionAlgorithm component of type EncryptedContentInfo is applied to the associated encryptedContent component using a known fixed key to recover a value of type EncodedBiometricObjects. This recovered value will contain one or more values of type BiometricObject encoded using the XML Encoding Rules.

5.1.3.3 Named Key EncryptedData

The namedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type NamedKeyEncryptedData. This type is sequence with two components, keyName and encryptedData. Type NamedKeyEncryptedData is defined as

NamedKeyEncryptedData ::= SEQUENCE {

 keyName OCTET STRING (SIZE(1..MAX)),

 encryptedData EncryptedData

}

The keyName component explicitly identifies the key used to encrypt and decrypt the content by name. The encryptedData component is a value of type EncryptedData. This type contains two components, an integer version number that is always eighty-four in this standard, and an encryptedContentInfo that is a value of type EncryptedContentInfo as described in section 4.1.3.1 Encrypted Content Information.

A value of the namedKey choice alternative of the privacyBlock component of type PrivacyObjects can be represented in XML markup as

<namedKey>

 <keyName>6AE173BF5A973D1E</keyName>

 <encryptedData>

 <version>84</version>

 <encryptedContentInfo>

 <contentType>1.2.840.113549.1.7.6</contentType>

 <contentEncryptionAlgorithm>

 <algorithm>1.2.840.113549.3.7</algorithm>

 <parameters>

 <IV>7EA13D6E143CB5C9</IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>

 ...

 </encryptedContent>

 </encryptedContentInfo>

 </encryptedData>

</namedKey>

This markup uses the named key choice alternative of the privacy block, a sequence of a key name and a value of version number eighty-four of the cryptographic message type EncryptedData. The encrypted content type is identified as ordinary data. The Triple DES content encryption algorithm is identified along with its associated parameters, an initialization vector, <IV>. An ellipsis is used as a placeholder and the encrypted content is not shown.

5.1.3.3.1 Encryption Process

A value of type EncryptedData is created by encrypting a series of one or more values of type BiometricObject in their encoded form using a content encryption algorithm and a named key that is known to the recipient of the encrypted biometric information. The content to be encrypted is a value of type EncodedBiometricObjects. This value is always encoded using the XML Encoding Rules. The content encryption algorithm used to encrypt the biometric objects is one of the algorithms specified in the information object set ContentEncryptionAlgorithms.

The keyName component of type NamedKeyEncryptedData is set to the name of the content encryption key. The contentType component of type EncryptedContentInfo is set to indicate ordinary data. The associated contentEncryptionAlgorithm value is set to identify the algorithm used to encrypt the content, and the encryptedContent value is set to the results of encrypting the content using this content encryption algorithm.

5.1.3.3.2 Decryption Process

To decrypt a value of type NamedKeyEncryptedData, the content encryption algorithm specified in the contentEncryptionAlgorithm component of type EncryptedContentInfo is applied to the associated encryptedContent component using the key identified by the keyName component of type NamedKeyEncryptedData to recover a value of type EncodedBiometricObjects. This recovered value will contain one or more values of type BiometricObject encoded using the XML Encoding Rules.

5.1.3.4 Established Key EnvelopedData

The establishedKey choice alternative of the privacyBlock component of type PrivacyObjects is a value of type EnvelopedData. Using this type, a message sender can encrypt content that only the intended message recipient can decrypt.

EnvelopedData is defined as a sequence of four components, an integer version number, message sender information, message recipient information, and a value of type EncryptedContentInfo which is described in section 4.1.3.1 Encrypted Content Information. Type EnvelopedData is defined as

EnvelopedData ::= SEQUENCE {

 version CMSVersion,

 originatorInfo [0] OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo

}

The combination of encrypted content and an encrypted content encryption key forms a “digital envelope”. The establishedKey alternative uses a randomly generated content encryption key to encrypt digital content. The same key is used to decrypt the content. The content encryption key shall be protected during transport, so the recipient’s public and private key pair is used to encrypt and decrypt the content encryption key.

The encrypted content is value of type EncodedBiometricObjects. This type is a series of one or more values of type BiometricObject in their encoded form. In XCBF these values are encoded using the XML Encoding Rules.

The version component of type EnvelopedData is the integer value eighty-four. The optional originatorInfo component facilitates distribution of digital certificates and certificate revocation lists. The recipientInfos component contains information needed to recover the encrypted content encryption key used to encrypt the biometric information. The encryptedContentInfo component is a value of type EncryptedContentInfo. This type is described in section 4.1.3.1 Encrypted Content Information.

A value of the establishedKey choice alternative of the privacyBlock component of type PrivacyObjects can be represented in XML markup as

<establishedKey>

 <version>84</version>

 <recipientInfos>

 <RecipientInfo>

 <ktri>

 <version>84</version>

 <rid>

 <certHash>

 <ietf>6E143CF31A562FA9492681D27A22013D2AAD435D</ietf>

 </certHash>

 </rid>

 <keyEncryptionAlgorithm>

 <algorithm>

 1.2.840.113549.1.1.1

 </algorithm>

 <parameters><NullParms/></parameters>

 </keyEncryptionAlgorithm>

 <encryptedKey>

 ...

 </encryptedKey>

 </ktri>

 </RecipientInfo>

 </recipientInfos>

 <encryptedContentInfo>

 <contentType>1.2.840.113549.1.7.6</contentType>

 <contentEncryptionAlgorithm>

 <algorithm>1.2.840.113549.3.7</algorithm>

 <parameters>

 <IV>7EA13D6E143CB5C9</IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>

 ...

 </encryptedContent>

 </encryptedContentInfo>

</establishedKey>

This markup uses the established key choice alternative of the privacy block, a value of version number eighty-four of the cryptographic message type EnvelopedData. The optional originator information is not present. The recipient information uses the key transport choice alternative. The recipient public and private key pair is indicated by a SHA1 hash of a public key certificate. The content encryption key is encrypted using the rsaEncryption algorithm, which has no associated parameters indicating that no initialization vector is required. The encrypted content type is identified as ordinary data. The Triple DES content encryption algorithm is identified along with its associated parameters, an initialization vector, <IV>. An ellipsis is used as a placeholder and the encrypted content encryption key and the encrypted content are not shown.

5.1.3.4.1 Certificates and CRLs

Type OriginatorInfo is a sequence of two components that may contain sets of digital certificates and certificate revocation lists (CRLs). This type is defined as

OriginatorInfo ::= SEQUENCE {

 certs [0] CertificateSet OPTIONAL,

 crls [1] CertificateRevocationLists OPTIONAL

}

(ALL EXCEPT({ -- none; at least one component is present -- }))

Any combination of X9.68 domain certificates, X.509 certificates and attribute certificates may be included in the CertificateSet type in any order. There may be more or fewer certificates needed for any purpose. Certificates are provided as needed to support content key encryption in the key transport key management technique used in XCBF. Use of the CertificateSet type to distribute certificates is not required. They may be obtained by other means, or an online certificate validation service may be used instead. Only version one X9.68 domain certificates, version three X.509 certificates and version two attribute certificates are supported in this standard.

Any number of CRLs may be included in the CertificateRevocationLists type in any order. There may be more or fewer CRLs needed for any purpose. CRLs are provided as needed to support certificate validation. Use of the CertificateRevocationLists type to distribute CRLs is not required. CRLs may be obtained by other means, or an online certificate validation service may be used instead. Only version two certificate revocation lists are supported in this standard.

The certificates and certificate revocation lists used in XCBF are signed binary objects, whose digital signatures have been calculated on values encoded using the Distinguished Encoding Rules (DER) of ASN.1. In order to verify the signatures on these objects, their original encodings must be maintained. But these values must also be represented in XML encodings in a useful textual format. So the values in the certs and crls components of type OriginatorInfo have been Base64 [20] armored to minimize their size when represented using XML markup while preserving their original encodings.

5.1.3.4.2 Recipient Information

Type RecipientInfos is a series of values of type RecipientInfo, one value for each recipient of a digital envelope in EnvelopedData. In XCBF there is always a single digital envelope recipient, and type RecipientInfos is constrained to a series of one RecipientInfo and defined as

RecipientInfos ::= SET SIZE(1) OF RecipientInfo

Several key management techniques can be used in EnvelopedData. In XCBF, only key transport is supported. Other techniques such as constructive key management may be employed by an application, but such use in not defined in this standard. Type RecipientInfo is restricted to a single choice alternative and defined as

RecipientInfo ::= CHOICE {

 ktri KeyTransRecipientInfo

}

Key transport information is provided to the recipient of a digital envelope so that the envelope can be opened and the protected content encryption key recovered. The content encryption key may then be used to decrypt the content.

The information needed by the recipient to recover the content encryption key is contained in a value of type KeyTransRecipientInfo defined as

KeyTransRecipientInfo ::= SEQUENCE {

 version CMSVersion,

 rid RecipientIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey

}

This type is a sequence of four components. The integer version number is always set to eighty-four in XCBF. The rid component is used to identify the public key used to encrypt the content encryption key. This public key is bound to a key encryption algorithm in a public key certificate. It is associated with the recipient private key needed to decrypt the content encryption key used by the sender to encrypt the content.

A hash of the public key certificate uniquely identifies the recipient certificate.

RecipientIdentifier ::= CHOICE {

 certHash [73] EXPLICIT Hash

}

The keyEncryptionAlgorithm component identifies the key encryption algorithm and any associated parameters used to encrypt the content encryption key.

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier {{KeyEncryptionAlgorithms}}

KeyEncryptionAlgorithms ALGORITHM ::= {

 { OID rsaEncryption PARMS NullParms },

 ... -- expect other key encryption algorithms --

}

The encrypted content encryption key is an opaque string, a value of type EncryptedKey defined as

EncryptedKey ::= OCTET STRING

5.1.3.4.3 Digital Envelope Processing

To create a digital envelope, a content encryption algorithm is selected. The content encryption algorithm identifier and any associated parameters form the contentEncryptionAlgorithm value of the encryptedContentInfo component of type EnvelopedData. The recipient uses this value to recover the encrypted content.

The content encryption key is encrypted using the key encryption algorithm and key transport public key from the recipient’s public key certificate. This certificate must contain a key usage extension which asserts the keyEncipherment bit. The key encryption algorithm identifier and any associated parameters used to encrypt the content encryption key with the key transport public key form the keyEncryptionAlgorithm component of type KeyTransRecipientInfo.

The result of encrypting the content encryption key forms the encryptedKey component of type KeyTransRecipientInfo. A hash of the complete DER encoding of the recipient’s public key certificate is used to populate the rid component, and the version component is set to the integer eighty-four. This certificate hash mechanism provides a single way to uniquely identify any type of certificate. This is the only form of certificate identification supported in XCBF.

The content encryption key is used to encrypt a value of type EncodedBiometricObjects. This type is a series of one or more values of type BiometricObject in their encoded form. These values are encoded using the XML Encoding Rules.

To retrieve the encrypted content, the recipient first decrypts the value of the encryptedKey component of type KeyTransRecipientInfo to recover the content encryption key using the private key associated with the public key used to encrypt the content encryption key. This private key is indicated by the hash of the associated public key certificate in the rid component of type KeyTransRecipientInfo. The recovered content encryption key is then used to decrypt the content to recover a value of type EncodedBiometricObjects.

5.1.4 PrivacyAndIntegrityObjects

The privacyAndIntegrityObjects choice alternative of type BiometricSyntax is a value of type PrivacyAndIntegrityObjects. This type is defined as a sequence of three components, optional biometricHeaders, a privacyBlock, and an integrityBlock.

PrivacyAndIntegrityObjects ::= SEQUENCE {

 biometricHeaders BiometricHeaders OPTIONAL,

 privacyBlock PrivacyBlock,

 integrityBlock IntegrityBlock

}

The biometricHeaders component is optional and is composed of a series of one or more values of type BiometricHeader. The privacyBlock component is a value of type PrivacyBlock. The BiometricHeader and PrivacyBlock types are described in section 4.1.3. PrivacyObjects. The integrityBlock component is a value of type IntegrityBlock. This type is described in section 4.1.2. IntegrityObjects.

The input to all cryptographic process is a value of type EncodedBiometricObjects, a series of one or more values of type BiometricObject in their encoded form based on the XML Encoding Rules. The order of the components in type PrivacyAndIntegrityObjects facilitates one pass processing for both sender and recipient.

For the sender, a value of type EncodedBiometricObjects is created and then used as input to the cryptographic processing of both the privacyBlock and integrityBlock components. For the recipient, the privacyBlock component is first processed to recover the encrypted content, a value of type EncodedBiometricObjects. This recovered value is then used to validate the signature in the integrityBlock component.

A value of the privacyAndIntegrityObjects choice alternative of type BiometricSyntax can be represented in XML markup as

<privacyAndIntegrityObjects>

 <privacyBlock>

 <namedKey>

 <keyName>6AE173BF5A973D1E</keyName>

 <encryptedData>

 <version>84</version>

 <encryptedContentInfo>

 <contentType>1.2.840.113549.1.7.6</contentType>

 <contentEncryptionAlgorithm>

 <algorithm>1.2.840.113549.3.7</algorithm>

 <parameters>

 <IV>7EA13D6E143CB5C9</IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>

 ...

 </encryptedContent>

 </encryptedContentInfo>

 </encryptedData>

 </namedKey>

 </privacyBlock>

 <integrityBlock>

 <digitalSignature>

 <algorithmID>

 <algorithm>1.2.840.10040.4.3</algorithm>

 <parameters><NullParms/></parameters>

 </algorithmID>

 <signature>

 ...

 </signature>

 </digitalSignature>

 </integrityBlock>

</privacyAndIntegrityObjects>

This markup combines a privacy block and integrity block. The named key choice alternative of the privacy block and the digital signature choice alternative of the integrity block are used. The optional biometric headers are not present.

The named key alternative is a sequence containing a key name and a value of version number eighty-four of the cryptographic message type EncryptedData. The encrypted content type is identified as ordinary data, and is computed on a value of type EncodedBiometricObjects. The Triple DES content encryption algorithm is identified along with its associated parameters, an initialization vector, <IV>. An ellipsis is used as a placeholder and the encrypted content is not shown.

The digital signature choice alternative is a simple digital signature on a value of type EncodedBiometricObjects. The Digital Signature Algorithm (DSA) with Secure Hash Algorithm (SHA1) and its associated parameters, <NullParms/> are used for signing a value of EncodedBiometricObjects. An ellipsis is used as a placeholder and the signature is not shown.

6 References

6.1 Normative

These references or an understanding of the materials within them are required to implement this XCBF standard. They are intended to include any amendments and technical corrigenda issued after their publication. Users of this standard are encouraged to seek the latest versions of these referenced materials before initiating any serious work.

 1
ISO/IEC 9594-8: Information technology | ITU-T Recommendation X.509, Open Systems Interconnection -- The Directory: Authentication framework.

 2
ISO/IEC 8824-1:2002 | ITU-T Recommendation X.680 (2002), Information Technology - Abstract Syntax Notation One (ASN.1): Specification of Basic Notation, http://www.itu.int/ITU-T/studygroups/com17/languages/X680_0702.pdf.

 3
ISO/IEC 8824-2:2002 | ITU-T Recommendation X.681 (2002), Information Technology - Abstract Syntax Notation One (ASN.1): Information Object Specification, http://www.itu.int/ITU-T/studygroups/com17/languages/X681_0702.pdf.

 4
ISO/IEC 8824-3:2002| ITU-T Recommendation X.682 (2002), Information Technology - Abstract Syntax Notation One (ASN.1): Constraint Specification,
http://www.itu.int/ITU-T/studygroups/com17/languages/X682_0702.pdf .

 5
ISO/IEC 8824-4:2002| ITU-T Recommendation X.683 (2002), Information Technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 Specifications, http://www.itu.int/ITU-T/studygroups/com17/languages/X683_0702.pdf.

 6
ISO/IEC 8825-1:2002| ITU-T Recommendation X.690 (2002), Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), http://www.itu.int/ITU-T/studygroups/com17/languages/X690_0702.pdf.

 7
ISO/IEC 8825-4:2002 | X.693 ITU-T Recommendation X.693 (2002) |, Information Technology - ASN.1 Encoding Rules: XML Encoding Rules (XER), http://www.itu.int/ITU-T/studygroups/com17/languages/X693_0702.pdf.

ISO/IEC 8825-4:2002/Amd.1:2003 | ITU-T Rec. X.693 (2002) / Amd.1 (2003), Information technology – ASN.1 encoding rules: XML Encoding Rules (XER) – Amendment 1: XER Control Notation (XCN) and Variable XER (VXER)

 8
ANSI X9.30-1997 Public Key Cryptography for the Financial Services Industry - Part 1: The Digital Signature Algorithm (DSA), http://webstore.ansi.org/.

 9
ANSI X9.30-1997 Public Key Cryptography for the Financial Services Industry - Part 2: The Secure Hash Algorithm (SHA-1), http://webstore.ansi.org/.

 10
ANSI X9.52-1998 Triple Data Encryption Algorithm Modes of Operation, http://webstore.ansi.org/.

 11
ANSI X9.68:2001 Digital Certificates for Mobile/Wireless and High Transaction Volume Financial Systems: Part 2: Domain Certificate Syntax, http://webstore.ansi.org/.
 12
ANSI X9.71-1999 Keyed Hash Message Authentication Code (HMAC), http://webstore.ansi.org/.

 13
ANSI X9.73:2002 Cryptographic Message Syntax (CMS), http://webstore.ansi.org/.

 14
ANSI X9.84:2003 Biometric Information Management and Security For The Financial Services Industry, http://webstore.ansi.org/.

 15
ANSI X9.96:2003 (draft) XML Cryptographic Message Syntax (XCMS).
 16
ANSI INCITS 358-2002 - Information technology - BioAPI Specification, http://webstore.ansi.org/.

 17
CBEFF Common Biometric Exchange File Format, NISTIR-6529, http://oasis‑open.org/committees/xcbf/docs/NISTR6529-CBEFF.pdf, January 3, 2001.

 18
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

 19
PKCS #7 – Cryptographic Message Syntax Standard, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/, 1 November 1993.

 20
N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME)
Part 1: Format of Internet Message Bodies, http://www.ietf.org/rfc/rfc2045.txt,
IETF RFC 2045, November 1996.

7 XCBF Schema

The following ASN.1 modules provide the schema for all of the XML markup defined in this standard.

7.1 X9-84-Biometrics Module

X9-84-Biometrics {

 iso(1) identified-organization(3) tc68(133) country(16) x9(840)

 x9Standards(9) x9-84(84) module(0) biometrics(1) rev(1) }

 DEFINITIONS AUTOMATIC TAGS ::= BEGIN

-- EXPORTS All;

IMPORTS

 -- X9.84 Biometrics Information Management and Security IDs --

 BiometricTypes, CBEFF-Formats, IBIA-Formats, MatchingAIDs,

 ProcessingAIDs, x509-biometricTemplates,

 x968—biometricTemplates, X9-Formats

 FROM X9-84-Identifiers {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84) module(0)

 ids(3) rev(1) }

 -- X9.84 Biometrics Information Management and Security CMS --

 AuthenticatedData, EncryptedData, EnvelopedData,

 MACAlgorithmIdentifier, SignatureAlgorithmIdentifier,

 SignedData

 FROM X9-84-CMS {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84) module(0)

 cms(2) rev(1) } ;

BiometricSyntaxSets ::= SEQUENCE SIZE(1..MAX) OF BiometricSyntax

BiometricSyntax ::= CHOICE {

 biometricObjects BiometricObjects,

 integrityObjects IntegrityObjects,

 privacyObjects PrivacyObjects,

 privacyAndIntegrityObjects PrivacyAndIntegrityObjects

}

BiometricObjects ::= SEQUENCE SIZE(1..MAX) OF BiometricObject

BiometricObject ::= SEQUENCE {

 biometricHeader BiometricHeader,

 biometricData BiometricData

}

--

-- All of the cryptographic processing in this standard is performed

-- on a value of type EncodedBiometricObjects. This is a sequence of

-- one or more values of type BiometricObject in its encoded form.

--

EncodedBiometricObjects ::= BIOMETRIC.&Type(BiometricObjects)

BiometricHeader ::= SEQUENCE {

 version BiometricVersion DEFAULT hv1,

 recordType RecordType OPTIONAL,

 dataType DataType OPTIONAL,

 purpose Purpose OPTIONAL,

 quality Quality OPTIONAL,

 validityPeriod ValidityPeriod OPTIONAL,

 format Format OPTIONAL

}

BiometricVersion ::= INTEGER { hv1(0) } (0..MAX)

RecordType ::= BIOMETRIC.&name({BiometricTypes})

DataType ::= ENUMERATED {

 raw (0),

 intermediate (1),

 processed (2)

}

Purpose ::= ENUMERATED {

 verify (1),

 identify (2),

 enroll (3),

 enrollVerify (4),

 enrollIdentity (5),

 audit (6),

 ... -- Expect other values --

}

Quality ::= INTEGER {

 lowest (0),

 highest (100),

 notSet (-1),

 notSupported (-2)

} (-2..100,...)

ValidityPeriod ::= SEQUENCE {

 notBefore DateTime OPTIONAL,

 notAfter DateTime OPTIONAL

}

 (ALL EXCEPT({ -- none; at least one component is present -- }))

DateTime ::= RELATIVE-OID -- { yyyy mm dd hh mm ss z } --

Format ::= SEQUENCE {

 formatOwner BIOMETRIC.&name({Owner}),

 formatType BIOMETRIC.&Type({Owner}{@formatOwner}) OPTIONAL

}

Owner BIOMETRIC ::= {

 CBEFF-Formats | -- http://www.nist.gov --

 IBIA-Formats | -- http://www.ibia.org --

 X9-Formats, -- http://www.x9.org --

 ... -- expect additional vendor specific formats --

}

-- Integrity --

IntegrityObjects ::= SEQUENCE {

 biometricObjects EncodedBiometricObjects,

 integrityBlock IntegrityBlock

}

IntegrityBlock ::= CHOICE {

 digitalSignature DigitalSignature,

 messageAuthenticationCode MessageAuthenticationCode,

 signedData SignedData,

 authenticatedData AuthenticatedData

}

DigitalSignature ::= SEQUENCE {

 algorithmID SignatureAlgorithmIdentifier,

 signature OCTET STRING(CONSTRAINED BY {

 -- signature on -- EncodedBiometricObjects })

}

MessageAuthenticationCode ::= SEQUENCE {

 keyName OCTET STRING OPTIONAL,

 algorithmID MACAlgorithmIdentifier,

 mac OCTET STRING (CONSTRAINED BY {

 -- MAC or HMAC on -- EncodedBiometricObjects })

}

-- Privacy --

PrivacyObjects ::= SEQUENCE {

 biometricHeaders BiometricHeaders OPTIONAL,

 privacyBlock PrivacyBlock

}

BiometricHeaders ::= SEQUENCE SIZE(1..MAX) OF BiometricHeader

PrivacyBlock ::= CHOICE {

 fixedKey EncryptedData,

 namedKey NamedKeyEncryptedData,

 establishedKey EnvelopedData

}

NamedKeyEncryptedData ::= SEQUENCE {

 keyName OCTET STRING (SIZE(1..MAX)),

 encryptedData EncryptedData

}

-- Privacy and integrity --

PrivacyAndIntegrityObjects ::= SEQUENCE {

 biometricHeaders BiometricHeaders OPTIONAL,

 privacyBlock PrivacyBlock,

 integrityBlock IntegrityBlock

}

-- Authentication Information (AI) --

BiometricInformationSets ::=

 SEQUENCE SIZE(1..MAX) OF BiometricInformation

BiometricInformation ::= SEQUENCE {

 processingAlgorithms ProcessingAlgorithms OPTIONAL,

 matchingMethods MatchingMethods OPTIONAL

}

 (ALL EXCEPT({ -- none; at least one component is present -- }))

-- Biometric processing algorithms --

ProcessingAlgorithms ::= SEQUENCE SIZE(1..MAX) OF ProcessingInformation

ProcessingInformation ::= SEQUENCE {

 id BIOMETRIC.&name({ProcessingAIDs}),

 parms BIOMETRIC.&Type({ProcessingAIDs}{@id}) OPTIONAL

}

-- Biometric matching methods --

MatchingMethods ::= SEQUENCE SIZE(1..MAX) OF MatchingInformation

MatchingInformation ::= SEQUENCE {

 id BIOMETRIC.&name({MatchingAIDs}),

 parms BIOMETRIC.&Type({MatchingAIDs}{@id}) OPTIONAL

}

BiometricData ::= OCTET STRING(SIZE(1..MAX))

-- Biometrics information object class --

BIOMETRIC ::= CLASS {

 &name BIOMETRIC-IDENTIFIER UNIQUE,

 &Type OPTIONAL

}

 WITH SYNTAX { BIOMETRIC &name [DATA &Type] }

BIOMETRIC-IDENTIFIER ::= CHOICE {

 oid OBJECT IDENTIFIER, -- complete object identifier

 id RELATIVE-OID -- object identifier fragment

}

-- Biometric certificate extension --

--

-- A biometricTemplates information object can be used to extend the

-- information bound to a public key in an value of types Certificate

-- or AttributeCertificate as defined in The Directory series of

-- standards, to include biometric identity information.

--

biometricTemplates EXTENSION ::= {

 SYNTAX EncodedBiometricObjects -- DER or cXER --

 IDENTIFIED BY x509-biometricTemplates

}

EXTENSION ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &ExtnType

}

 WITH SYNTAX { SYNTAX &ExtnType IDENTIFIED BY &id }

--

-- A domainBiometricTemplates information object can be used to extend

-- the information bound to a public key in an value of ASN.1 type

-- DomainCertificate as defined in the X9.68 Domain Certificate Syntax

-- standard, to include biometric identity information.

--

domainBiometricTemplates PRIVATE-X ::= {

 NAME oid : x968-biometricTemplates

 TYPE EncodedBiometricObjects -- DER or cXER --

}

PRIVATE-X ::= CLASS {

 &name Identifier UNIQUE,

 &Type OPTIONAL

}

 WITH SYNTAX { NAME &name [TYPE &Type] }

Identifier ::= CHOICE {

 oid OBJECT IDENTIFIER, -- complete object identifier

 id RELATIVE-OID -- object identifier fragment

}

END -- X9-84-Biometrics --

7.2 X9-84-CMS Module

X9-84-CMS {

 iso(1) identified-organization(3) tc68(133) country(16) x9(840)

 x9Standards(9) x9-84(84) module(0) cms(2) rev(1) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

-- EXPORTS All;

IMPORTS

 -- ANSI X9.84 Biometric Information Management & Security IDs --

 des-ede3-cbc, dsa-with-sha1, ecdsa-with-SHA1, hmac-with-SHA1,

 id-data, NullParms, rsaEncryption, SHA-Algorithms,
 sha1WithRSAEncryption, sha-1
 FROM X9-84-Identifiers {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84) module(0)

 ids(3) rev(1) };

SignedData ::= SEQUENCE {

 version CMSVersion,

 digestAlgorithms DigestAlgorithmIdentifiers,

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] CertificateSet OPTIONAL,

 crls [1] CertificateRevocationLists OPTIONAL,

 signerInfos SignerInfos

}

CMSVersion ::= INTEGER { v84(84) } (v84,...)

DigestAlgorithmIdentifiers ::=

 SET SIZE(1) OF DigestAlgorithmIdentifier

DigestAlgorithmIdentifier ::= AlgorithmIdentifier {{DigestAlgorithms}}

DigestAlgorithms ALGORITHM ::= {

 SHA-Algorithms,

 ... -- Expect other digest algorithms --

}

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType ContentType,

 eContent [0] EXPLICIT OCTET STRING OPTIONAL

}

ContentType ::= CONTENTS.&id({Contents})

CONTENTS ::= TYPE-IDENTIFIER -- ISO/IEC 8824-2:1998, Annex A

Contents CONTENTS ::= {

 { Data IDENTIFIED BY id-data }

}

Data ::= OCTET STRING

CertificateSet ::= OCTET STRING

CertificateRevocationLists ::= OCTET STRING

SignerInfos ::= SET SIZE(1) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm DigestAlgorithmIdentifier,

 signatureAlgorithm SignatureAlgorithmIdentifier,

 signature SignatureValue

}

SignerIdentifier ::= CHOICE {

 certHash [1] EXPLICIT Hash

}

Hash ::= CHOICE {

 ietf CertHash, -- SHA-1 hash of entire certificate

 withAlgID DigestInfo

}

CertHash ::= OCTET STRING (ENCODED BY sha-1)

DigestInfo ::= SEQUENCE {

 hashAlgorithm DigestAlgorithmIdentifier,

 digest OCTET STRING

}

SignatureAlgorithmIdentifier ::=

 AlgorithmIdentifier {{SignatureAlgorithms}}

SignatureAlgorithms ALGORITHM ::= {

 { OID dsa-with-sha1 PARMS NullParms } |

 { OID ecdsa-with-SHA1 PARMS NullParms } |

 { OID sha1WithRSAEncryption PARMS NullParms },

 ... -- Expect other signature algorithms --

}

SignatureValue ::= OCTET STRING

EncryptedData ::= SEQUENCE {

 version CMSVersion,

 encryptedContentInfo EncryptedContentInfo

}

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm ContentEncryptAlgorithmIdentifier,

 encryptedContent [0] EncryptedContent

}

ContentEncryptAlgorithmIdentifier ::=

 AlgorithmIdentifier {{ContentEncryptionAlgorithms}}

ContentEncryptionAlgorithms ALGORITHM ::= {

 { OID des-ede3-cbc PARMS IV },

 ... -- Expect other content encryption algorithms --

}

IV ::= OCTET STRING (SIZE(8))

EncryptedContent ::= OCTET STRING

EnvelopedData ::= SEQUENCE {

 version CMSVersion,

 originatorInfo [0] OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo

}

OriginatorInfo ::= SEQUENCE {

 certs [0] CertificateSet OPTIONAL,

 crls [1] CertificateRevocationLists OPTIONAL

}

(ALL EXCEPT({ -- none; at least one component is present -- }))

RecipientInfos ::= SET SIZE(1) OF RecipientInfo

RecipientInfo ::= CHOICE {

 ktri KeyTransRecipientInfo

}

KeyTransRecipientInfo ::= SEQUENCE {

 version CMSVersion,

 rid RecipientIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey

}

RecipientIdentifier ::= CHOICE {

 certHash [73] EXPLICIT Hash

}

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier {{KeyEncryptionAlgorithms}}

KeyEncryptionAlgorithms ALGORITHM ::= {

 { OID rsaEncryption PARMS NullParms },

 ... -- expect other key encryption algorithms --

}

EncryptedKey ::= OCTET STRING

AuthenticatedData ::= SEQUENCE {

 version CMSVersion,

 recipientInfos RecipientInfos,

 macAlgorithm MACAlgorithmIdentifier,

 encapContentInfo EncapsulatedContentInfo,

 mac MessageAuthenticationCode

}

MACAlgorithmIdentifier ::= AlgorithmIdentifier {{MACAlgorithms}}

MACAlgorithms ALGORITHM ::= {

 { OID hmac-with-SHA1 },

 ... -- expect other MAC or HMAC algorithms --

}

MessageAuthenticationCode ::= OCTET STRING

-- Cryptographic algorithm identification --

ALGORITHM ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Type OPTIONAL

}

 WITH SYNTAX { OID &id [PARMS &Type] }

AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {

 algorithm ALGORITHM.&id({IOSet}),

 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL

}

END -- X9-84-CMS --

7.3 X9-84-Identifiers Module

X9-84-Identifiers {

 iso(1) identified-organization(3) tc68(133) country(16) x9(840)

 x9Standards(9) x9-84(84) module(0) ids(3) rev(1) }

 DEFINITIONS AUTOMATIC TAGS ::= BEGIN

-- EXPORTS All;

IMPORTS

 -- X9.84 Biometrics Information Management and Security --

 BIOMETRIC, BiometricInformationSets

 FROM X9-84-Biometrics {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84) module(0)

 biometrics(1) rev(1) }

 -- X9.84 Biometrics Information Management and Security CMS --

 ALGORITHM

 FROM X9-84-CMS {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84) module(0)

 cms(2) rev(1) };

OID ::= OBJECT IDENTIFIER -- Alias

RelOID ::= RELATIVE-OID -- Alias

-- x9-84 { 1 3 133 16 840 9 84 }

-- x9-84-Module { 1 3 133 16 840 9 84 0 }

-- x9-84-Biometrics { 1 3 133 16 840 9 84 0 1 }

-- x9-84-CMS { 1 3 133 16 840 9 84 0 2 }

-- x9-84-Identifiers { 1 3 133 16 840 9 84 0 3 }

-- biometric { 1 3 133 16 840 9 84 1 }

-- id-unknown-Type { 1 3 133 16 840 9 84 1 0 }

-- id-body-Odor { 1 3 133 16 840 9 84 1 1 }

-- id-dna { 1 3 133 16 840 9 84 1 2 }

-- id-ear-Shape { 1 3 133 16 840 9 84 1 3 }

-- id-facial-Features { 1 3 133 16 840 9 84 1 4 }

-- id-finger-Image { 1 3 133 16 840 9 84 1 5 }

-- id-finger-Geometry { 1 3 133 16 840 9 84 1 6 }

-- id-hand-Geometry { 1 3 133 16 840 9 84 1 7 }

-- id-iris-Features { 1 3 133 16 840 9 84 1 8 }

-- id-keystroke-Dynamics { 1 3 133 16 840 9 84 1 9 }

-- id-palm { 1 3 133 16 840 9 84 1 10 }

-- id-retina { 1 3 133 16 840 9 84 1 11 }

-- id-signature { 1 3 133 16 840 9 84 1 12 }

-- id-speech-Pattern { 1 3 133 16 840 9 84 1 13 }

-- id-thermal-Image { 1 3 133 16 840 9 84 1 14 }

-- id-vein-Pattern { 1 3 133 16 840 9 84 1 15 }

-- id-thermal-Face-Image { 1 3 133 16 840 9 84 1 16 }

-- id-thermal-Hand-Image { 1 3 133 16 840 9 84 1 17 }

-- id-lip-Movement { 1 3 133 16 840 9 84 1 18 }

-- id-gait { 1 3 133 16 840 9 84 1 19 }

-- processing-algorithm { 1 3 133 16 840 9 84 2 }

-- matching-method { 1 3 133 16 840 9 84 3 }

-- format-Owner { 1 3 133 16 840 9 84 4 }

-- cbeff-Owner { 1 3 133 16 840 9 84 4 0 }

-- ibia-Owner { 1 3 133 16 840 9 84 4 1 }

-- id-ibia-SAFLINK { 1 3 133 16 840 9 84 4 1 1 }

-- id-ibia-Bioscrypt { 1 3 133 16 840 9 84 4 1 2 }

-- id-ibia-Visionics { 1 3 133 16 840 9 84 4 1 3 }

-- id-ibia-InfineonTechnologiesAG { 1 3 133 16 840 9 84 4 1 4 }

-- id-ibia-IridianTechnologies { 1 3 133 16 840 9 84 4 1 5 }

-- id-ibia-Veridicom { 1 3 133 16 840 9 84 4 1 6 }

-- id-ibia-CyberSIGN { 1 3 133 16 840 9 84 4 1 7 }

-- id-ibia-eCryp { 1 3 133 16 840 9 84 4 1 8 }

-- id-ibia-FingerprintCardsAB { 1 3 133 16 840 9 84 4 1 9 }

-- id-ibia-SecuGen { 1 3 133 16 840 9 84 4 1 10 }

-- id-ibia-PreciseBiometric { 1 3 133 16 840 9 84 4 1 11 }

-- id-ibia-Identix { 1 3 133 16 840 9 84 4 1 12 }

-- id-ibia-DERMALOG { 1 3 133 16 840 9 84 4 1 13 }

-- id-ibia-LOGICO { 1 3 133 16 840 9 84 4 1 14 }

-- id-ibia-NIST { 1 3 133 16 840 9 84 4 1 15 }

-- id-ibia-A4Vision { 1 3 133 16 840 9 84 4 1 16 }

-- id-ibia-NEC { 1 3 133 16 840 9 84 4 1 17 }

-- id-ibia-STMicroelectronics { 1 3 133 16 840 9 84 4 1 18 }

-- id-ibia-Ultra-Scan { 1 3 133 16 840 9 84 4 1 19 }
-- id-ibia-Aurora-Wireless { 1 3 133 16 840 9 84 4 1 20 }
-- id-ibia-Thales { 1 3 133 16 840 9 84 4 1 21 }
-- id-ibia-IBG { 1 3 133 16 840 9 84 4 1 22 }
-- id-ibia-Cogent-Systems { 1 3 133 16 840 9 84 4 1 23 }
-- id-ibia-Cross-Match { 1 3 133 16 840 9 84 4 1 24 }
-- id-ibia-Recognition-Systems { 1 3 133 16 840 9 84 4 1 25 }
-- id-ibia-DIN { 1 3 133 16 840 9 84 4 1 26 }
-- id-ibia-INCITS-M1 { 1 3 133 16 840 9 84 4 1 27 }
-- x9-Owner { 1 3 133 16 840 9 84 4 2 }

-- certificate-Extensions { 1 3 133 16 840 9 84 5 }

-- x968-biometricTemplates { 1 3 133 16 840 9 84 5 0 }

-- x509-biometricTemplates { 1 3 133 16 840 9 84 5 1 }

-- X9.84 arc; base object identifier --

x9-84 OID ::= {

 iso(1) identified-organization(3) tc68(133) country(16)

 x9(840) x9Standards(9) x9-84(84)

}

-- X9.84 ASN.1 modules --

x9-84-Module OID ::= { x9-84 modules(0) }

x9-84-Biometrics OID ::= { x9-84-Module biometrics(1) rev(1) }

x9-84-CMS OID ::= { x9-84-Module cms(2) rev(1) }

x9-84-Identifiers OID ::= { x9-84-Module ids(3) rev(1) }

-- X9.84 biometric technologies --

biometric OID ::= { x9-84 biometrics(1) }

id-unknown-Type OID ::= { biometric unknownType(0) }

id-body-Odor OID ::= { biometric bodyOdor(1) }

id-dna OID ::= { biometric dna(2) }

id-ear-Shape OID ::= { biometric ear-Shape(3) }

id-facial-Features OID ::= { biometric facialFeatures(4) }

id-finger-Image OID ::= { biometric fingerImage(5) }

id-finger-Geometry OID ::= { biometric fingerGeometry(6) }

id-hand-Geometry OID ::= { biometric handGeometry(7) }

id-iris-Features OID ::= { biometric irisFeatures(8) }

id-keystroke-Dynamics OID ::= { biometric keystrokeDynamics(9) }

id-palm OID ::= { biometric palm(10) }

id-retina OID ::= { biometric retina(11) }

id-signature OID ::= { biometric signature(12) }

id-speech-Pattern OID ::= { biometric speech-Pattern(13) }

id-thermal-Image OID ::= { biometric thermalImage(14) }

id-vein-Pattern OID ::= { biometric veinPattern(15) }

id-thermal-Face-Image OID ::= { biometric thermalFaceImage(16) }

id-thermal-Hand-Image OID ::= { biometric thermalHandImage(17) }

id-lip-Movement OID ::= { biometric lipMovement(18) }

id-gait OID ::= { biometric gait(19) }

-- X9.84 biometric technology object identifier fragments --

unknown-Type RelOID ::= { unknownType(0) }

body-Odor RelOID ::= { bodyOdor(1) }

dna RelOID ::= { dna(2) }

ear-Shape RelOID ::= { earShape(3) }

facial-Features RelOID ::= { facialFeatures(4) }

finger-Image RelOID ::= { fingerImage(5) }

finger-Geometry RelOID ::= { fingerGeometry(6) }

hand-Geometry RelOID ::= { handGeometry(7) }

iris-Features RelOID ::= { irisFeatures(8) }

keystroke-Dynamics RelOID ::= { keystrokeDynamics(9) }

palm RelOID ::= { palm(10) }

retina RelOID ::= { retina(11) }

signature RelOID ::= { signature(12) }

speech-Pattern RelOID ::= { speechPattern(13) }

thermal-Image RelOID ::= { thermalImage(14) }

vein-Pattern RelOID ::= { veinPattern(15) }

thermal-Face-Image RelOID ::= { thermalFaceImage(16) }

thermal-Hand-Image RelOID ::= { thermalHandImage(17) }

lip-Movement RelOID ::= { lipMovement(18) }

gait RelOID ::= { gait(19) }

BiometricTypes BIOMETRIC ::= {

 { BIOMETRIC id : unknown-Type } |

 { BIOMETRIC id : body-Odor } |

 { BIOMETRIC id : dna } |

 { BIOMETRIC id : ear-Shape } |

 { BIOMETRIC id : facial-Features } |

 { BIOMETRIC id : finger-Image } |

 { BIOMETRIC id : finger-Geometry } |

 { BIOMETRIC id : hand-Geometry } |

 { BIOMETRIC id : iris-Features } |

 { BIOMETRIC id : keystroke-Dynamics } |

 { BIOMETRIC id : palm } |

 { BIOMETRIC id : retina } |

 { BIOMETRIC id : signature } |

 { BIOMETRIC id : speech-Pattern } |

 { BIOMETRIC id : thermal-Image } |

 { BIOMETRIC id : vein-Pattern } |

 { BIOMETRIC id : thermal-Face-Image } |

 { BIOMETRIC id : thermal-Hand-Image } |

 { BIOMETRIC id : lip-Movement } |

 { BIOMETRIC id : gait },

 ... -- expect additional biometric types --

}

-- X9.84 biometric processing algorithms --

processing-algorithm OID ::= { x9-84 processingAlgorithms(2) }

-- X9.84 biometric matching methods --

matching-method OID ::= { x9-84 matchingMethods(3) }

-- X9.84 vendor specific formats --

format-Owner OID ::= { x9-84 format-owners(4) }

cbeff-Owner OID ::= { format-Owner cbeff(0) }

ibia-Owner OID ::= { format-Owner ibia(1) }

x9-Owner OID ::= { format-Owner x9(2) }

-- IBIA vendor specific formats registered at http://www.ibia.org

id-ibia-SAFLINK OID ::= { ibia-Owner 1 }

id-ibia-Bioscrypt OID ::= { ibia-Owner 2 }

id-ibia-Visionics OID ::= { ibia-Owner 3 }

id-ibia-InfineonTechnologiesAG OID ::= { ibia-Owner 4 }

id-ibia-IridianTechnologies OID ::= { ibia-Owner 5 }

id-ibia-Veridicom OID ::= { ibia-Owner 6 }

id-ibia-CyberSIGN OID ::= { ibia-Owner 7 }

id-ibia-eCryp OID ::= { ibia-Owner 8 }

id-ibia-FingerprintCardsAB OID ::= { ibia-Owner 9 }

id-ibia-SecuGen OID ::= { ibia-Owner 10 }

id-ibia-PreciseBiometric OID ::= { ibia-Owner 11 }

id-ibia-Identix OID ::= { ibia-Owner 12 }

id-ibia-DERMALOG OID ::= { ibia-Owner 13 }

id-ibia-LOGICO OID ::= { ibia-Owner 14 }

id-ibia-NIST OID ::= { ibia-Owner 15 }

id-ibia-A4Vision OID ::= { ibia-Owner 16 }

id-ibia-NEC OID ::= { ibia-Owner 17 }

id-ibia-STMicroelectronics OID ::= { ibia-Owner 18 }

id-ibia-Ultra-Scan OID ::= { ibia-Owner 19 }
id-ibia-Aurora-Wireless OID ::= { ibia-Owner 20 }
id-ibia-Thales OID ::= { ibia-Owner 21 }
id-ibia-IBG OID ::= { ibia-Owner 22 }
id-ibia-Cogent-Systems OID ::= { ibia-Owner 23 }
id-ibia-Cross-Match OID ::= { ibia-Owner 24 }
id-ibia-Recognition-Systems OID ::= { ibia-Owner 25 }
id-ibia-DIN OID ::= { ibia-Owner 26 }
id-ibia-INCITS-M1 OID ::= { ibia-Owner 27 }
-- When represented as values of type OBJECT IDENTIFIER, these

-- IBIA vendor specific formats may be associated with any ASN.1

-- type.

IBIAoidFormats BIOMETRIC ::= {

 { BIOMETRIC oid : id-ibia-SAFLINK DATA Any } |

 { BIOMETRIC oid : id-ibia-Bioscrypt DATA Any } |

 { BIOMETRIC oid : id-ibia-Visionics DATA Any } |

 { BIOMETRIC oid : id-ibia-InfineonTechnologiesAG DATA Any } |

 { BIOMETRIC oid : id-ibia-IridianTechnologies DATA Any } |

 { BIOMETRIC oid : id-ibia-Veridicom DATA Any } |

 { BIOMETRIC oid : id-ibia-CyberSIGN DATA Any } |

 { BIOMETRIC oid : id-ibia-eCryp DATA Any } |

 { BIOMETRIC oid : id-ibia-FingerprintCardsAB DATA Any } |

 { BIOMETRIC oid : id-ibia-SecuGen DATA Any } |

 { BIOMETRIC oid : id-ibia-PreciseBiometric DATA Any } |

 { BIOMETRIC oid : id-ibia-Identix DATA Any } |

 { BIOMETRIC oid : id-ibia-DERMALOG DATA Any } |

 { BIOMETRIC oid : id-ibia-LOGICO DATA Any } |

 { BIOMETRIC oid : id-ibia-NIST DATA Any } |

 { BIOMETRIC oid : id-ibia-A4Vision DATA Any } |

 { BIOMETRIC oid : id-ibia-NEC DATA Any } |

 { BIOMETRIC oid : id-ibia-STMicroelectronics DATA Any } |
 { BIOMETRIC oid : id-ibia-Ultra-Scan DATA Any } |
 { BIOMETRIC oid : id-ibia-Aurora-Wireless DATA Any } |
 { BIOMETRIC oid : id-ibia-Thales DATA Any } |
 { BIOMETRIC oid : id-ibia-IBG DATA Any } |
 { BIOMETRIC oid : id-ibia-Cogent-Systems DATA Any } |
 { BIOMETRIC oid : id-ibia-Cross-Match DATA Any } |
 { BIOMETRIC oid : id-ibia-Recognition-Systems DATA Any } |
 { BIOMETRIC oid : id-ibia-DIN DATA Any } |
 { BIOMETRIC oid : id-ibia-INCITS-M1 DATA Any } |
 ... -- Expect additional vendor specific formats --

}

Any ::= TYPE-IDENTIFIER.&Type -- Application constrained

-- Relative object identifier representations of the identical

-- IBIA vendor specific formats defined as OBJECT IDENTIFIER

-- values above are used to identify these formats when they must

-- comply with the fixed format requirements of the BioAPI 1.1

-- specification and are associated with a two byte integer value.

ibia-SAFLINK RelOID ::= { 1 }

ibia-Bioscrypt RelOID ::= { 2 }

ibia-Visionics RelOID ::= { 3 }

ibia-InfineonTechnologiesAG RelOID ::= { 4 }

ibia-IridianTechnologies RelOID ::= { 5 }

ibia-Veridicom RelOID ::= { 6 }

ibia-CyberSIGN RelOID ::= { 7 }

ibia-eCryp RelOID ::= { 8 }

ibia-FingerprintCardsAB RelOID ::= { 9 }

ibia-SecuGen RelOID ::= { 10 }

ibia-PreciseBiometric RelOID ::= { 11 }

ibia-Identix RelOID ::= { 12 }

ibia-DERMALOG RelOID ::= { 13 }

ibia-LOGICO RelOID ::= { 14 }

ibia-NIST RelOID ::= { 15 }

ibia-A4Vision RelOID ::= { 16 }

ibia-NEC RelOID ::= { 17 }

ibia-STMicroelectronics RelOID ::= { 18 }

ibia-Ultra-Scan RelOID ::= { 19 }
ibia-Aurora-Wireless RelOID ::= { 20 }
ibia-Thales RelOID ::= { 21 }
ibia-IBG RelOID ::= { 22 }
ibia-Cogent-Systems RelOID ::= { 23 }
ibia-Cross-Match RelOID ::= { 24 }
ibia-Recognition-Systems RelOID ::= { 25 }
ibia-DIN RelOID ::= { 26 }
ibia-INCITS-M1 RelOID ::= { 27 }
IBIAidFormats BIOMETRIC ::= {

 { BIOMETRIC id : ibia-SAFLINK DATA BirInt16 } |

 { BIOMETRIC id : ibia-Bioscrypt DATA BirInt16 } |

 { BIOMETRIC id : ibia-Visionics DATA BirInt16 } |

 { BIOMETRIC id : ibia-InfineonTechnologiesAG DATA BirInt16 } |

 { BIOMETRIC id : ibia-IridianTechnologies DATA BirInt16 } |

 { BIOMETRIC id : ibia-Veridicom DATA BirInt16 } |

 { BIOMETRIC id : ibia-CyberSIGN DATA BirInt16 } |

 { BIOMETRIC id : ibia-eCryp DATA BirInt16 } |

 { BIOMETRIC id : ibia-FingerprintCardsAB DATA BirInt16 } |

 { BIOMETRIC id : ibia-SecuGen DATA BirInt16 } |

 { BIOMETRIC id : ibia-PreciseBiometric DATA BirInt16 } |

 { BIOMETRIC id : ibia-Identix DATA BirInt16 } |

 { BIOMETRIC id : ibia-DERMALOG DATA BirInt16 } |

 { BIOMETRIC id : ibia-LOGICO DATA BirInt16 } |

 { BIOMETRIC id : ibia-NIST DATA BirInt16 } |

 { BIOMETRIC id : ibia-A4Vision DATA BirInt16 } |

 { BIOMETRIC id : ibia-NEC DATA BirInt16 } |

 { BIOMETRIC id : ibia-STMicroelectronics DATA BirInt16 } |
 { BIOMETRIC id : ibia-Ultra-Scan DATA BirInt16 } |
 { BIOMETRIC id : ibia-Aurora-Wireless DATA BirInt16 } |
 { BIOMETRIC id : ibia-Thales DATA BirInt16 } |
 { BIOMETRIC id : ibia-IBG DATA BirInt16 } |
 { BIOMETRIC id : ibia-Cogent-Systems DATA BirInt16 } |
 { BIOMETRIC id : ibia-Cross-Match DATA BirInt16 } |
 { BIOMETRIC id : ibia-Recognition-Systems DATA BirInt16 } |
 { BIOMETRIC id : ibia-DIN DATA BirInt16 } |
 { BIOMETRIC id : ibia-INCITS-M1 DATA BirInt16 },
 ... -- Expect others --

}

BirInt16 ::= INTEGER (0..65535)

IBIA-Formats BIOMETRIC ::= {

 IBIAoidFormats | -- Complete object identifiers

 IBIAidFormats, -- Object identifier fragments

 ... -- Expect additional IBIA vendor specific formats --

}

id-x984BioInfo OID ::= { cbeff-Owner x984BioInfo(0) }

CBEFFoidFormats BIOMETRIC ::= {

 { BIOMETRIC oid : id-x984BioInfo DATA BiometricInformationSets },

 ... -- Expect other objects --

}

x984BioInfo RelOID ::= { x984BioInfo(0) } -- CBEFF owner

CBEFFidFormats BIOMETRIC ::= {

 { BIOMETRIC id : x984BioInfo DATA BiometricInformationSets },

 ... -- Expect other objects --

}

CBEFF-Formats BIOMETRIC ::= {

 CBEFFoidFormats | -- Complete object identifiers

 CBEFFidFormats, -- Object identifier fragments

 ... -- Expect additional CBEFF vendor specific formats --

}

MatchingAIDs BIOMETRIC ::= {

 ... -- Expect CBEFF assignments in BiometricInformationSets --

}

ProcessingAIDs BIOMETRIC ::= {

 ... -- Expect CBEFF assignments in BiometricInformationSets --

}

X9-Formats BIOMETRIC ::= {

 X9oidFormats |

 X9idFormats,

 ... -- Expect additional X9 vendor specific formats --

}

X9oidFormats BIOMETRIC ::= {

 ... -- Expect X9 assigned objects --

}

X9idFormats BIOMETRIC ::= {

 ... -- Expect X9 assigned objects of the form { 2 x } --

}

certificate-Extensions OID ::= { x9-84 certificate-Extensions(5) }

x968-biometricTemplates OID ::= { certificate-Extensions 0 }

x509-biometricTemplates OID ::= { certificate-Extensions 1 }

-- RSA PKCS #7 Content type

id-data OID ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs7(7) data(1)

}

-- Security object identifiers

-- FIPS 180-1 and FIPS 180-2 Secure Hash Algorithm --

sha-1 OID ::= {

 iso(1) identified-organization(3) oiw(14) secsig(3)

 algorithm(2) 26

}

sha2Algorithm OID ::= {

 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101)

 csor(3) nistAlgorithm(4) hashAlgs(2)

}

id-sha256 OID ::= { sha2Algorithm sha256(1) }

id-sha384 OID ::= { sha2Algorithm sha384(2) }

id-sha512 OID ::= { sha2Algorithm sha512(3) }

SHA-Algorithms ALGORITHM ::= {

 { OID sha-1 PARMS NullParms } |

 { OID id-sha256 PARMS NullParms } |

 { OID id-sha384 PARMS NullParms } |

 { OID id-sha512 PARMS NullParms},

 ... -- Expect others --

}

NullParms ::= NULL -- No initialization vector

-- X9.57 DSA signature generated with SHA-1 hash (DSA X9.30)

dsa-with-sha1 OID ::= {

 iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 3 }

-- X9.71 HMAC with SHA-1 algorithm

hmac-with-SHA1 OID ::= {

 iso(1) identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) 8 1 2 }

-- RSA PKCS #1 signature generated with SHA-1 hash & encryption scheme

sha1WithRSAEncryption OID ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 5 }

rsaEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 1 }

-- ANSI X9.52 Triple DES Modes of Operation --

des-ede3-cbc OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549)

 encryptionAlgorithm(3) 7

}

-- X9.62 ECDSA signature with SHA-1

ecdsa-with-SHA1 OID ::= {

 iso(1) member-body(2) us(840) ansi-x962(10045) signatures(4) 1 }

END -- X9-84-Identifiers --

8 Examples

Three examples are included in this section to assist readers and implementors of this standard, and with the goal of promoting secure, interoperable biometric applications and systems.

8.1 BiometricSyntaxSets (cXER, DER)

This example illustrates a value of type BiometricSyntaxSets encoded in XML markup using the basic XML Encoding Rules (XER), a canonical variant of the XML Encoding Rules (cXER) and a compact, canonical binary format using the ASN.1 Distinguished Encoding Rules (DER). The XER, cXER and DER representations use exactly the same abstract values, based on the same XCBF ASN.1 schema.

Two representations are well-formed XML markup. The third representation is a compact, binary DER encoding. Both cXER and DER are suitable for use in cryptographic applications involving digital signatures, since these encoding rules provide one and only one way to encode any given value.

The BiometricSyntaxSets value encoded in basic XER:

<BiometricSyntaxSets>

 <biometricObjects>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <processed/> </dataType>

 <purpose> <audit/> </purpose>

 <quality> -1 </quality>

 <validityPeriod>

 <notBefore> 1980.10.4 </notBefore>

 <notAfter> 2003.10.3.23.59.59 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2 </oid>

 </formatOwner>

 </format>

 </biometricHeader>

 <biometricData> 0A0B0C0D </biometricData>

 </BiometricObject>

 </biometricObjects>

</BiometricSyntaxSets>

The same abstract value encodes in 517 octets using canonical XER:

<BiometricSyntaxSets><biometricObjects><BiometricObject><biometricHeader><version>0</version><recordType><id>4</id></recordType><dataType><processed/></dataType><purpose><audit/></purpose><quality>1</quality><validityPeriod><notBefore>1980.10.4</notBefore><notAfter>2003.10.3. 23.59. 59</notAfter></validityPeriod><format><formatOwner>< oid>2.23.42.9.10.4
.2</oid></formatOwner></format></biometricHeader><biometricData>0A0B0C0
D</biometricData></BiometricObject></biometricObjects></BiometricSyntaxSets>

The same abstract value encodes in 57 octets using DER:

3037A0353033A02BA103810104820102830106

8401FFA50F80048F3C0A0481078F530A03173B

3BA60AA0088006672A090A040281040A0B0C0D

8.2 SignedData

This example illustrates how to encode one or more biometric samples or templates for cryptographic enhancement to provide authentication of origin and data integrity services for biometric samples or templates.

The SubjectPublicKeyInfo value from the signer's X.509 Public Key Certificate is shown here in the hexadecimal representation of a DER encoded sequence:

308201B73082012C06072A8648CE3804013082011F028181

00FD7F53811D75122952DF4A9C2EECE4E7F611B7523CEF44

00C31E3F80B6512669455D402251FB593D8D58FABFC5F5BA

30F6CB9B556CD7813B801D346FF26660B76B9950A5A49F9F

E8047B1022C24FBBA9D7FEB7C61BF83B57E7C6A8A6150F04

FB83F6D3C51EC3023554135A169132F675F3AE2B61D72AEF

F22203199DD14801C70215009760508F15230BCCB292B982

A2EB840BF0581CF502818100F7E1A085D69B3DDECBBCAB5C

36B857B97994AFBBFA3AEA82F9574C0B3D0782675159578E

BAD4594FE67107108180B449167123E84C281613B7CF0932

8CC8A6E13C167A8B547C8D28E0A3AE1E2BB3A675916EA37F

0BFA213562F1FB627A01243BCCA4F1BEA8519089A883DFE1

5AE59F06928B665E807B552564014C3BFECF492A03818400

028180476ACACB486186A153E25AE0E243FAAF0CD9105CF4

DCF63412F36ABF671F53637E5F9FA7C5ADC78288FDB9FA3C

FAFDEBFDD7A7C3FF2BD63D32F4773413EBD9EAB3CA03BA2D

ED583187763181CB376954FD13F1F8E046D4E3D40652CA8D

4645439A3ADB8D964F98F81E57147BDF4C009885CAD55D13

B38DBAA2F9CBF13DC525F6

The biometric objects to be signed with the signer's private key associated with the public key provided above shown in the canonical form used as input to the message digest process used to create the digital signature on the signed content:

<BiometricObjects><BiometricObject><biometricHeader><version>0</version ><recordType><id>4</id></recordType><dataType><processed/></dataType><purpose><audit/></purpose><quality>-1</quality><validityPeriod><notBefor e>1998.10.1</notBefore><notAfter>2008.10.1</notAfter></validityPeriod>< format><formatOwner><oid>2.23.42.9.10.4.2</oid></formatOwner></format></biometricHeader><biometricData>0102030405060708090A0B0C0D0E0F11</biometricData></BiometricObject><BiometricObject><biometricHeader><version>0</version><recordType><oid>4</oid></recordType><dataType><intermediate/></dataType><purpose><enroll/></purpose><quality>50</quality><validityPeriod><notBefore>1998.10.2</notBefore><notAfter>2008.10.2</notAfter></validityPeriod><format><formatOwner><oid>2.23.42.9.10.4.2</oid></formatOwner></format></biometricHeader><biometricData>0102030405060708090A0B0C0D0E0F110102030405060708090A0B0C0D0E0F11</biometricData></BiometricObject><BiometricObject><biometricHeader><version>0</version><recordType><id>4</id></recordType><dataType><raw/></dataType><purpose><enroll/></purpose><quality>100</quality><validityPeriod><notBefore>1998.10.3</notBefore><notAfter>2008.10.3</notAfter></validityPeriod><format><formatOwner><oid>2.23.42.9.10.4.2</oid></formatOwner></format></biometricHeader><biometricData>0102030405060708090A0B0C0D0E0F110102030405060708090A0B0C0D0E0F110102030405060708090A0B0C0D0E0F11</biometricData></BiometricObject></BiometricObjects>

The complete integrity object represented as an XML document:

<?xml version="1.0" encoding="UTF-8"?>

<BiometricSyntaxSets>

 <integrityObjects>

 <biometricObjects>

 <BiometricObjects>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <processed/> </dataType>

 <purpose> <audit/> </purpose>

 <quality> -1 </quality>

 <validityPeriod>

 <notBefore> 1998.10.1 </notBefore>

 <notAfter> 2008.10.1 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2 </oid>

 </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <intermediate/> </dataType>

 <purpose> <enroll/> </purpose>

 <quality> 50 </quality>

 <validityPeriod>

 <notBefore> 1998.10.2 </notBefore>

 <notAfter> 2008.10.2 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2 </oid>

 </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F11

 0102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <raw/> </dataType>

 <purpose> <enroll/> </purpose>

 <quality> 100 </quality>

 <validityPeriod>

 <notBefore> 1998.10.3 </notBefore>

 <notAfter> 2008.10.3 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner>

 <oid> 2.23.42.9.10.4.2 </oid>

 </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F110102030405060708

 090A0B0C0D0E0F110102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

 </BiometricObjects>

 </biometricObjects>

 <integrityBlock>

 <signedData>

 <version> 84 </version>

 <digestAlgorithms>

 <DigestAlgorithmIdentifier>

 <algorithm> 1.3.14.3.2.26 </algorithm>

 <parameters> <NullParms/> </parameters>

 </DigestAlgorithmIdentifier>

 </digestAlgorithms>

 <encapContentInfo>

 <eContentType> 1.2.840.113549.1.7.1 </eContentType>

 </encapContentInfo>

 <signerInfos>

 <SignerInfo>

 <version> 84 </version>

 <sid>

 <certHash>

 <withAlgID>

 <hashAlgorithm>

 <algorithm> 1.3.14.3.2.26 </algorithm>

 <parameters>
 <NullParms/>
 </parameters>

 </hashAlgorithm>

 <digest>

 DA9245BCD6E666749F43C1A1BD070BAF259B70AA

 </digest>

 </withAlgID>

 </certHash>

 </sid>

 <digestAlgorithm>

 <algorithm> 1.3.14.3.2.26 </algorithm>

 <parameters> <NullParms/> </parameters>

 </digestAlgorithm>

 <signatureAlgorithm>

 <algorithm> 1.2.840.10040.4.3 </algorithm>

 <parameters> <NullParms/> </parameters>

 </signatureAlgorithm>

 <signature>

 302C021411BC0D3A74CAD4FA14C263C1B0556C68D7DBF5

 E60214596C21B62E3715DE81D65F09C21B6CFA3998A5B0

 </signature>

 </SignerInfo>

 </signerInfos>

 </signedData>

 </integrityBlock>

 </integrityObjects>

</BiometricSyntaxSets>
8.3 EncryptedData (fixedKey)

This example illustrates how to encode a series of one or more biometric samples or templates for cryptographic enhancement. A group of three biometric objects is used here, though XCBF allows any number of objects to be included. The optional, cleartext biometric headers are not included in the example message. The group of three biometric objects is encrypted for privacy using a fixed Triple DES key.

As shown in this example, XCBF users can create and exchange arbitrary collections of biometric information to suit the needs of their security applications. This capability provides the application designer complete flexibility. The order of the biometric objects is determined in the application by the sender, allowing them to prioritize or order biometric information for purposes such as aging of data, or grouping records by quality or data type or entity.

Collections of useful biometric information include:

· pairs of iris image templates for an individual; one for each eye

· collections of paired iris image templates for a group of individuals

· collections of finger print image templates, one per digit for an individual

· sets of individual finger print image template collections for a group of persons

· a collection of mixed biometric templates for an individual; say, retina, hand geometry, and DNA

· collections of templates for groups of individuals, such as:

· all employees at work today, or

· all of the passengers on Flight 12, or

· all of the finger print samples collected on Tuesday

The hex encoding of a two key Triple DES key used to encrypt a series of three values of type BiometricObject is represented in hexadecimal notation as:

D02523B3E561313B 511516297C52A846 D02523B3E561313B
The biometric objects to be encrypted are shown here for ease of reading, and are not in the canonical form used as input to the encryption process in this example:

<BiometricObjects>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <processed/> </dataType>

 <purpose> <audit/> </purpose>

 <quality> -1 </quality>

 <validityPeriod>

 <notBefore> 1998.10.1 </notBefore>

 <notAfter> 2008.10.1 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner> <oid> 2.23.42.9.10.4.2 </oid> </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <oid> 4 </oid> </recordType>

 <dataType> <intermediate/> </dataType>

 <purpose> <enroll/> </purpose>

 <quality> 50 </quality>

 <validityPeriod>

 <notBefore> 1998.10.2 </notBefore>

 <notAfter> 2008.10.2 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner> <oid> 2.23.42.9.10.4.2 </oid> </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F11

 0102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

 <BiometricObject>

 <biometricHeader>

 <version> 0 </version>

 <recordType> <id> 4 </id> </recordType>

 <dataType> <raw/> </dataType>

 <purpose> <enroll/> </purpose>

 <quality> 100 </quality>

 <validityPeriod>

 <notBefore> 1998.10.3 </notBefore>

 <notAfter> 2008.10.3 </notAfter>

 </validityPeriod>

 <format>

 <formatOwner> <oid> 2.23.42.9.10.4.2 </oid> </formatOwner>

 </format>

 </biometricHeader>

 <biometricData>

 0102030405060708090A0B0C0D0E0F110102030405060708

 090A0B0C0D0E0F110102030405060708090A0B0C0D0E0F11

 </biometricData>

 </BiometricObject>

</BiometricObjects>

The complete XCBF privacy message formed after cryptographic processing of the series of three biometric objects:

<BiometricSyntaxSets>

 <privacyObjects>

 <privacyBlock>

 <fixedKey>

 <version> 84 </version>

 <encryptedContentInfo>

 <contentType> 1.2.840.113549.1.7.6 </contentType>

 <contentEncryptionAlgorithm>

 <algorithm> 1.2.840.113549.3.7 </algorithm>

 <parameters>

 <IV> 0102030405060708 </IV>

 </parameters>

 </contentEncryptionAlgorithm>

 <encryptedContent>
 2C75078EE885D7EE52321E80971A2B8E5C5A646B12CF2F90

 7BAFA6FA16BDB6FA949898183762A05AB2A488B24D9397B2

 E63D1885BAEFABD0A24E501EB612CE0118E435C4EEE70230

 A0D74D766A795C0A23B454A3E6E5DFE60C0F31B3BABCDF23

 5E1D4B2D7EDAD144BA38A63058ED211368A6887921973C7D

 BCD1A53CBA2CD36819B488CDEB5008B546F0A7E9EE631D14

 409A32EA7D784444EF2A8ABD0B54C99A5C0D5070A3A25D36

 7303C359D4387D12DB2449FB73FC40D850B01555BAF8F86D

 937A60256E0FDDAF52690CCF8D76770EBE7E359EFF6510A0

 E39B09E6A8EA0FB844522364E66696965B37382061152D54

 69332C7D1BF9C2A311D117583AE740DED8849777C3CE56DE

 EABA687B936693292858CA67CD5D7C2BCD918A736B044173

 1DDBBB077C348CA6524BEA30FADED63CE76BB47F43232A3C

 5FA6ABFFE5234C108C6B903DB724B478CD647F52E98A5A28

 071E881321CA7AAD4F7F1F911C4666F5746A1090FB076251

 24F4E521BCD78C61C6AB1AC0C142D9CB32E08B1B0C7E8F51

 07826C883D92963F547F62373CD6CACD791877293E2937EA

 E93D78FAD09479990BC8488D067C8203A43D9AC132A75712

 A1A86A4E527FBE941E7E7CAC8CCEADCA72C9853D5FDBFECF

 972450E13461DD688AB412FAABC912838ED5850A9FF85FC4

 2D311834670D11FBBB7BE732D7FC44D0326AFD17B92A8353

 747E3A04065E553901A8C5EA531AC644D204F9209EECD151

 FF7D623DE5671FC4C07325593D0D442E66C872CC7BB214D5

 88F01A90C8ECFC19BC9DEA06065C954B673B101EFEFC8FFC

 E97DBBDFABEE9AE20FFE0927E4F59928CD9E2A0F1D538527

 2A5C78CE1E6A669B18AAD2498731730FFBDFD72D13EB390E

 82C402F3033E0201089DFF7758F1C76E1578AE7CF6AC4742

 631B1743141CD0A29D32F6B7D50C37EC8BC55754FA6D7FF5

 5B0E1B0E075CF1F7EB0DB0468152BE079703BA71485CA891

 7EA7CF6ED69CD0AC88AB5E93824B337FDB748542D6A2D1B9

 96C4634CA52536A25C123D9791173F8668404AE30CA701F0

 5FF77B976369F7C1F48B834952082BA92E7772C717305E70

 8E51C89E445C88423E378262315E951A207C30B5E03E805C

 9C538E9856DBDCF84489BF58757E332BFA01625F76C04A23

 2271BF4FC985209B51A7CC0E747426007617649ABC75818C

 A68911E497266E717042EEE6747D9A874F9F174713F8751F

 2AE5B3D7991299A83F85E78F99C5B01B1FCD8A9EC072F763

 669854D74CC915611181440305AB483E4A2BE21C516561DC

 B6E25C5D1DCD5FF84B3740B3BB337BF78585A8395EAB3357

 132541794115D48BCC37B5B0405201C9CDA503C2641E0283

 3651CD5E55F442C6E7E8D1EA8D83F9FAE370DA6ADC653651

 4441C6831E4F1B42A056672EC5152B8BA0D31C6F3603801D

 C50028562D81055915088D6798E4900481B1C86D35888AC0

 6E9B61CEBA302BD1A0CB0AC002B640455B14072F9E654E87

 43AE15F7C46DE69BB2F11408CE22133B9C04D3F097300780

 DCF653414DA95BF7A1DE0B57E72616BC014108828CE7B027

 5C391516A9D9AD26A59F9D2D46BE59D93B7DD2525CFAC948

 9DDA026F4CF7BADF4552F47B64CC1C65D705697251DC92B9

 486A53159E9AD9D9C149EDAF78636F6F090763E6C826F9FE

 EBEE49D8FCCC526BDBB4B2513FB355DC05994DFD9D1B581D

 DD69C904584E5BDFF9593C9A4AFD9E1FD2FA7056755F9079

 4F1988F103C7F1EEE9A8BE719B401078E504F56E3B6931C3

 AC1A4392860367E46F008FFB919B8F1DF0B0D0CE41BF1786

 9313B14B0E556F94E5573106B7050862B4158BB1C87CEB29

 B939873D514474D72840B96E70D2661249B856DF2775AE7F

 1A3378AD9030FD10A1CB5E8EF150808DEC94101449DAADE6

 4D16EA79E4578FA996AEBFA1E3918A485EFB85364282CCA4

 073A565C64B8A8704CC95ADA4A9B8796679BD89DAA6A7B0E

 01E4903080875A3208769CE4B1BDD1B874F5B4E2607FBB72

 2411F0CAFCF14D7FA870EBE87903D5B583D5C231F95912D5

 </encryptedContent>

 </encryptedContentInfo>

 </fixedKey>

 </privacyBlock>

 </privacyObjects>

</BiometricSyntaxSets>

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Lieutenant John Aerts, LASD

· Tyky Aichelen, IBM

· Karl Best, OASIS

· Taylor Boon, BioNetrix Systems

· Jamie Clarke, OASIS

· Robin Cover, Isogen

· Ed Day, Objective Systems

· Dr. Paul Gérôme, AULM

· Phillip H. Griffin (chair), Griffin Consulting

· Todd Harbour, FGM

· William Koenig, Bank of America

· John Larmouth, Larmouth T&PDS Ltd

· Monica Martin, Sun

· Rob Philpott, RSA Security

· Stefan Ri, Microsoft

· Darran Rolls, Waveset

· Bancroft Scott, OSS Nokalva

· Clifford Thompson, TGI Solutions

· Paul Thorpe, OSS Nokalva

· Alessandro Triglia, OSS Nokalva

· Per Vorm, BEA

Appendix B. Revision History

	Rev
	Date
	By Whom
	What

	CS-1.0
	2003-01-20
	Phil Griffin
	Committee Specification

	CS-1.0r
	2003-03-11
	Phil Griffin
	Committee Specification + public comment resolutions

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights, which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © 2003 OASIS Open, Inc. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6

{Committee Specification}-{XML Common Biometric Format}-{XCBF}-{01}
XML Common Biometric Format (XCBF)

 1 March 2003

Copyright © OASIS Open 2003. All Rights Reserved.
 Page 4

