Voice XML and Related Issues in XLIFF

Summary of proposal

Allow certain XSLT elements to be included as inline tags within source and target text elements in XLIFF

Elements can be included, either by including the XSLT namespace within the XLIFF schema, or including the required elements to XLIFF directly.

These elements can be used in any translatable resource that uses run time logic to determine how text elements are to be combined within the application.

Background

Consider the following code

/**

* show number of messages

* messageType may be, mail, voice or fax

* nCount can be zero or any positive integer

*/

public void showMessageCount(String messageType, int nCount){

System.out.print("You have "+ nCount + " new " + messageType);

if(nCount == 1){

System.out.println(" message.");

}

else{

System.out.println(" messages.");

}

}

This is trivial to localize.

All we have to do is convert the literals to resources and translate the resource file

Except that the code contains an implicit linguistic assumption, that the required output text is shown one way if nCount is 1, and another way for any other value.

But this only applies in English

For example, in Irish, the logic is

if(nCount == 0){ // pluralisatios rule is 0 for Irish

System.out.println(" message.");

}

else{

System.out.println(" messages.");

}
The problem is worse for languages such as Polish, which have at least 5 different rules for the value of nCount

And it gets worse for languages that have gender specific linguistic rules

For example, the translation of message/messages may be influenced by the gender of the value of messageType

So how do we resolve this?

To localize our example code could rewrite it in a locale neutral format, such as:

public void showMessageCount(String messageType, int nCount){

System.out.print("New messages of type " + messageType " : " + nCount);

}

Which is simple to write and localize, but incredibly ugly on the screen.

Alternatively we could encapsulate all localizable logic within the application

public void showMessageCount(String messageType,

String mesageGender,

int nCount,

String lang){

if(lang.equals("Polish")){

if(mesageGender.equals("Masculine"){

if(nCount == 1){

etc.

etc.

etc

This would be completely localizable, nice on the screen, but slightly difficult to write.

Especially, as part of the localization process requires the original developer to be aware of all possible linguistic rules that may be applied to the localized application.

The paradigm shift in resolving this problem, is to realize that localization does not involve merely changing the text, size, color, font as we are all so used to doing, but also involves changing the logic of the application

Only a localization engineer can create the logical flow of the sample code. And to do that we need to encapsulate the program logic within a localizable resource

This is the approach being adopted for VoiceXML

What is VoiceXML?

Oracle produces an application called Collaboration Suite; essentially a large scale integrated messaging system

It even handles conference calls.

If you want to hear it in action, simply dial in to the next XLIFF Conference call!

The above example is a hypothetical implementation of how our voice mail system (version 1) works. Localizing this system is extremely complex.

For version 2, the developers have produced a new format, VoiceXML, which I need to represent in XLIFF

VoiceXML is a text based xml structure. After translating VoiceXML, each localized resource file is sent to a Voice Actor who records wav files for each translatable segment.

The text fragment is replaced by the name of the wav file containing that text.

A speech application then plays wav files in a sequence determined by the application

The VoiceXML designers have created text fragment elements, each of which has pluralisation and gender attributes.

To determine the required sequence of fragments to play, VoiceXML uses the XSLT CHOOSE structures

The message type and count values are passed as inputs to the choose structure

The choose logic finds which version of message/messages, based on the gender attribute of the message type, and the value of nCount

In US English

<prompt id="YOU_HAVE_MESSAGE">
 <var name="numVM" type="integer"/>
 <choose>
 <when test="numVM==0">
 You have no new messages.
 </when>
 <when test="numVM==1"/>
 You have one new message.
 </when>
 <otherwise>
 You have <varref name="numVM"/> new messages.
 </otherwise>
 </choose>
 </prompt>

And again In Polish

<prompt id="YOU_HAVE_MESSAGE">
 <var name="numVM" type="integer"/>
 <choose>
 <when test="numVM=0">
 Nie masz nowych wiadomości
 </when>
 <when test="numVM=1"/>
 Masz jedną nową wiadomość
 </when>
 <when test="numVM<5"/>
 Masz <varref name="numVM" variant="feminine_accusative"/> nowe wiadomości
 </when>
 <when test="numVM<21"/>
 Masz <varref name="numVM" variant="feminine_accusative"/> nowych wiadomości
 </when>
 <when test="in(numVM % 10, [2,3,4])"/>
 Masz <varref name="numVM" variant="feminine_accusative"/> nowe wiadomości
 </when>
 <otherwise>
 Masz <varref name="numVM" variant="feminine_accusative"/> nowych wiadomości
 </otherwise>
 </choose>
</prompt>

XLIFF?

So how can we do this in XLIFF?

Specifically, what VoiceXML element maps to a trans unit

My first idea was to map the <prompt> element to a group, and each <when> element becomes a trans unit, with the where condition forming the ID

But this only works if all languages have the same number of when elements.

Otherwise we would require a group containing 3 trans units to be translated into a group containing five polish translations.

This would cause difficulties, as there is no longer a one to one correspondence between source and target elements

For example if we use a Translation memory, and we can reuse two of the three US text elements, how do we know which of the five elements can be reused, and which need to be retranslated

Also, I do not know of any XLIFF editor that can handle this one to many mapping

My proposed solution is to include the entire prompt structure within each trans unit.

The translator is then required to maintain and validate the XSLT elements within the source and target as required by the linguistic rules of the target language

To permit this, we need to permit the XSLT elements how in the examples to be legal in line tags within the source and target elements

There are three ways we can do this, depending on another open XLIFF issue: Do we allow XLIFF to be extended with other XML namespaces

1. If we allowed XLIFF to use any other XML namespace, this would also solve this issue.

2. If we only allow specific namespaces, we just need to add XSLT to the list

3. Otherwise, we need to identify the tags required to support XSLT choose structures, and include them within the XLIFF Schema.

As with any other inline tags to be included, we would have to carefully document how these new elements are to be handled within XLIFF, either as XLIFF native tags, or included from the XSLT namespace

Other work to do

If we adopt this approach, we will need to generate examples of how to use these elements, suggesting best usages etc

This is a technology that has only been partially considered within localization.

We may want to propose using XSLT within any localizable resource file that has these quality requirements

