
Page 1
1/31/2003

Model and Motivations for XRI

Author: Gabe Wachob (gwachob@visa.com)

DRAFT 01/31/03

XRI Applications

XRIs will support a wide range of applications, but the primary space in which they exists is to support directory-based applications across enterprise or organizational borders. To this end, the XRI effort will create a naming/addressing system (URI scheme), and a layer of services for exchanging data between directories about resources identified by XRIs. 

The XRI TC acknowledges a large number of other efforts which are related to the goals of the TC. In particular, the XRI effort will leverage work being done in web services and digital identity spaces. Data exchange services will be based on web services technologies such as WSDL, WS-Security, SOAP, and WSIL. Much of the architecture is informed, if not inspired, by concepts embodied in by the Extensible Naming Service (XNS) specification, which the TC has formally accepted as a submission. 

XRIs are primarily for identifying resources that do not correspond directly to network-addressable endpoints (i.e.. that do not have “transport-level” URIs such as HTTP URLs or mailto: URIs). The XRI specifications will include:

· a URI-conformant syntax (and possibly a URN namespace) for identifiers,

· an unambiguous definition of what an XRI “identifies” (corresponds to),

· a resolution mechanism for resolving an XRI to a transport-level URI for the purpose of identifying a service endpoint with which to interact with data representations of the identified resource

· basic service definitions for interacting with the data corresponding to a resource. These services will resemble (or may even be defined with bindings to) the REST architecture, which emphasizes a location-centric service architecture with few action types. Services which go beyond these data features will be outside the scope of the TC. The basic data services will form a layer upon which further services may also be built, including negotiation of privacy controls for personal data. 

What is a Directory

A Directory is a system that maintains a group of unique identifiers and data (attributes) associated with those identifiers. Directories typically provide , provisioning (creation and management of the directory entries), lookup, and data services (to access and manage attributes associated with the identifiers stored in the directory). For the purposes of this document, the term directory is defined broadly. It includes systems such as NIS/YP, DNS, and LDAP, which are sometimes implemented and sold as standalone directory products (or part of operating systems). However, “directory” also includes any technology that provides lookup of identifiers in a totally distributed manner. An example of such a technology is a Distributed Hash Tables-based system such as Chord. 

Another core assumption is that directory identifiers correspond and represent “Resources” as defined in RFC2396 (URIs):

“A resource can be anything that has identity.  Familiar examples include an electronic document, an image, a service (e.g., "today's weather report for Los Angeles"), and a collection of other resources.  Not all resources are network ‘retrievable’; e.g., human beings, corporations, and bound books in a library can also be considered resources.

The resource is the conceptual mapping to an entity or set of entities, not necessarily the entity which corresponds to that mapping at any particular instance in time.  Thus, a resource can remain constant even when its content---the entities to which it currently corresponds---changes over time, provided that the conceptual mapping is not changed in the process.”

Directory Architectures

For the purposes of determining the structure of identifiers, the prime architectural characteristic is the relationship between directory instances that contain and define identifiers. This axis can roughly be divided into four categories:

· Centralized directories: LDAP, UDDI, and other traditional behind-the-firewall directory systems which do not have a strong notion of inter-directory relationships.


[image: image1.wmf]
Figure 1: Centralized Directory

· Hierarchical directories: DNS, and other systems that are characterized by a strict tree structure allowing for delegation of namespaces to nodes “below” the root. Delegation allows for localized control, distribution of management costs and administration policies, and increased security and privacy. 


[image: image2.wmf]
Figure 2: Hierarchical Directories

· Federated directories: A new breed of architecture characterized by communities of directories (each of which may be organized centrally, hierarchically, or completely decentrally) that are linked by explicit relationships, thus making each community interoperable with other communities. This follows the concept of “cross-certification” in PKI deployments where communities are managing there own PKI hierarchies and “linking” them through bridges of trust at the community roots.


[image: image3.wmf]
Figure 3: Federated Directories

· Completely decentralized directories: A new breed of architectures where identifiers are managed in communities of interest without any centralized system. One interesting approach to this challenge are “distributed data structures” which allow for the storage and retrieval of identifiers on a pure peer to peer basis. System such as Chord and CAN architectures are examples of Distributed Hash Tables that can be used to implement completely decentralized lookup. SPKI specifies a naming scheme that is also appropriate for a completely decentralized lookup system. 


[image: image4.wmf]
Figure 4: Decentralized Directories

Federated Directories as the Assumed Model for XRI

While there are circumstances for where each of the directory deployment models makes most sense, the XRI design is based on the federated directory model. There are several reasons for this:

Federated directories correspond to a model of relationships that mirrors how real organizations are structured. Most organizations (businesses, clubs, etc) maintain their own lists of resources (assets, customers, members, bodies within the organization, etc), and have policies regarding how those resources relate to the outside world. For example, an airline may have certain policies about sharing information on its airplanes with the airplane manufacturer, but this policy is very specific to the resource (the airplane), and organizations involved. 

Furthermore, because these directory systems are designed to support inter-enterprise applications, it is important to be able to identify resources relative to the organization to which they are associated. To continue the airline/airplane manufacturer example, not only must a plane be identified, but it must be identified relative to the airline which owns and operates it. The airplane manufacturer deals with multiple airlines and needs to have an easy way of understand the organizational context in which the resource (the airplane) exists. 

Federated directories allow for deployment of the identifiers in contained or private communities of interest, and then allow for the “joining” of the previously disconnected communities. It is difficult for a centralized system or a pure hierarchical system to accommodate this linking of communities because each community has no means of recognizing or connecting those who are not registered under a common root. 

Federating of directories can be done in a variety of ways – the relationships should be made flexible so as to mirror the different sorts of relationships in the real world. For example, one community may recognize the identifiers of another community with or without the second community recognizing those in the first.

Federated directories allow each community of interest to deploy the directory architecture that makes most sense for the community. This may include different policies surrounding authentication, trust, and security. Naturally this means federations introduce new cross-community trust issues, but with solutions to these issues comes powerful new cross-domain application functionality.

Finally, it is important to note that syntax of identifiers typically reflects the structure of the way they are managed, stored, and used. This can be seen in DNS names, which are structured to allow easy hierarchical delegation, or email addresses, which allow for easy parsing of domain and “local” name parts. A federated directory structure will thus imply a syntax for identifiers that includes a well-defined way of identifying the community of interest in which an identifier is defined. Furthermore, identifiers must be composed of hierarchical parts reflecting the possibility of a hierarchical structure of directories within the community in which the identifier is defined.

Overlapping Communities 

In a very dynamic environment like the Internet, a strict structure of communities may limit the realization of value from interconnecting on the Internet. Communities of interest can be defined in many ways: by ownership, by business relationships, by common interests, by participation in common applications, etc. Resources may be available only within particular communities. Therefore, the concept of multiple, overlapping communities is important to address when designing an identity system with data exchange services. 

Probably to give examples of such “communities” 


[image: image5.wmf]Directory-defined

community

Data-defined

community


Figure 5: Overlapping Communities

The identifiers in the XRI architecture must exist in an environment where communities may be defined not only by the linking of directories (through federation or hierarchies) but also through higher level, explicit expressions of community membership. For example, a resource corresponding to an application may have data associated with it (in a directory) that states that the resource is part of a “airline ticket reservations” application community. Or a business itself may have a “link” (some form of expression that two identifiers are related – perhaps an XML element) between its identifier and the identifier of a business association. The collection of all these links to the business association may thus form a new community. Because these communities are expected to be highly dynamic and take on various forms, XRIs must exist support a wide variety of relationships between identified resources.

These types of dynamic community relationships assume that there will be a data model and defined data schema for expressing these relationships. Because the types of communities that will be formed are dynamic and cannot be predicted, any such data model schema will need to be extensible and flexible enough to capture the wide variety of real world relationships that exist between organizations and individuals.
Message Contexts and Web Services

The XRI effort exists in part to provide an identifier framework for web services. This framework will be used both for routing messages (to/from) and for referring to resources in the content of messages. Web services allow applications to exchange messages across enterprise borders. A general-purpose communications framework should minimize, as much as is possible, the number of identifier schemes it defines or requires. At a minimum, this makes both management and use of the infrastructure simpler and more efficient. To build this sort of consistency into the web services infrastructure, it is important to understand the need for a unified identifier scheme for multiple message “contexts” in which these identifiers are used. 

Examples of message contexts include (but are not limited to): 

· Who the message is sent from

· Who the message is targeted to

· What the message refers to or is “about” 

· What application(s) the message is implementing

· Other context such as related transactions, entities involved in authentication or authorization, etc. 

Insert generic example here showing how a single application message can have multiple contexts.

These message contexts may be used in a variety of ways. The contexts may be important in the routing and processing of the message both between enterprises and “behind the firewall” in the enterprise application infrastructure. 

Ambiguity of Using Other Schemes

In many cases, web services specifications specify that identifiers must be URIs, without specifying the type of URI. The interpretation of the URI is thus implicit from the context in which the URI is being used. There are many cases where it is not possible to rely on context to disambiguate a URI, especially one that is intended to refer to an abstract concept or non-network-visible resource.  

For example, use of HTTP URLs has been suggested as the general solution for identifying all resources. But in the case of WS-Routing, it is easy to see how the use of an HTTP identifier would be ambiguous in a “To” header: does the HTTP URL identify the abstract resource to which this message is being targeted, or does it identify the actual network endpoint to which this message must be delivered? In other words, HTTP URIs already comes with semantics that bind it to a particular use (the identification of endpoints and resources in the HTTP protocol)– in the case of targeting messages to organizations or persons, its clear that they cannot be permanently and uniquely identified by a network endpoint. There are few abstract URI schemes widely deployed today, and none of them so far meets the requirements of the federated directory architecture mentioned above.

Why A Unified Identifier Scheme for All Contexts

The XRI effort intends to create a URI scheme that is “context-free”.  That is, an XRI should unambiguously identify the same resource no matter what context or application it is used in.  The unification should be both syntactic (the identifiers follow the same syntax rules) and semantic (a single identifier referring to the same thing should be used in multiple types of contexts). URI schemes generally are characterized by the valid syntax of the URI, the specification of what a compliant URI identifies, and how and what the URI “resolves” to. 

XRIs identify anything that doesn’t have a network-addressable endpoint. There are already URI schemes for network-addressable endpoints, so there is no need to reinvent the wheel there. Conversely, these network-addressable endpoint URI schemes, such as HTTP, arguably introduce some ambiguity into the interpretation of what they identify. Does the HTTP URI identify a concept, or does it identify a document retrievable through the HTTP protocol? Many people believe, for example, that HTTP URIs can be used to identify “abstract” (ie non network-addressable) things, but only can do so unambiguously with some other “context” information. 

XRIs resolve to network endpoints at which services exist to interact with data about the thing identified by the XRI. This explicit differentiation between what an XRI identifies and what it resolves to avoids many of the issues surrounding reuse of transport-level/network-address URI schemes for identification of non-network-addressable resources.

There is a value in identifiers being used for multiple purposes, as long as the meaning of the identifier is never confused. This is one of the essential points of those who advocate a minimal approach to identifiers – by using fewer identifier schemes, you require fewer resolution mechanisms, fewer syntax specifications, and in general, a more cohesive, understandable and resilient system. Developers and architects understand the nuances and limitations of identifier schemes and inventing new ones brings new challenges for implementation and management. 

Most importantly, reusing identifiers in multiple contexts can bring “semantic unification” which may make applications simpler. Semantic unification is the concept that the identifier can be used in way by any application needing to interact with or talk about the resource. This leads to a more intuitive and easy-to-use architecture, where the same identifier can, for example, be used to get attribute data or be used for targeting messages at the resource specified by the identifier. 

Beyond common uses of identifiers, there are also common operations that are likely to be performed on identifiers. First and foremost is management of the identifiers. For large organizations, managing separate types of identifiers from different schemes may impose large integration or other costs related to tools and policies specific to each identifier scheme. This is demonstrated by the difficult of integrating CRM applications across large enterprises, where different organizations within the enterprise may have their own customer lists, access controls, and data about those customers. 

It is also quite advantageous to be able to be able to associate frequently required communications control data with every identifier – data such as public key information, communication endpoints, contact information such as responsible party phone number and email address, information describing relationships to other resources (e.g. organizations, persons, concepts). This data is not specific to a particular application, and in fact makes the resources more useable in applications not necessarily previously planned for. 

Extensible Data Model

Data items associated with identifiers (and thus with resources) will be varied in use and type. The XRI effort assumes a data-centric model where data types are not necessarily defined by the services or applications acting upon the data. Rather, the data is extensible and typed and exists independently of the services that act upon it. There are several reasons why this approach is assumed:

· Applications are created, specified, and deployed more often than data types are defined. Creating data types which multiple applications can use makes building new applications using XRI identifiers much easier since presumably the processing and semantics of the data will be well known. In particular, common communications control data such as address or contact information should not need to be defined with multiple data schema. 

· Data about resources exists naturally outside of any application or service. A data architecture that promotes existence of data independently of services promotes new uses of the data in new applications.

· Data usage directives are common, and require the identification of data so that the data can be the subject of explicit agreements and processing rules. Having a generic data model which supports data identity along with resource identity (in fact, data may be a type of resource) enables consistent data usage control across a wide variety of applications. This need is especially true in countries where data privacy laws in place and in businesses associations where data sharing is strictly governed. 

Basic Data Services

This section is least-well baked and furthest out in terms of the delivery schedule. 

The XRI TC will specify the most basic level of interaction service and semantics. This barebones approach is modeled after the WWW and specifically the REST architecture which is showing some promise as a generic application infrastructure architecture. The exact data model is not yet specified, but it will likely have two types of data objects – objects representing “resources” and objects representing “attributes”. It is likely that attributes can also serve resources in their own right, but this is an area needing clarification and further analysis. 

The basic service will contain four primitives which roughly correspond to the REST primitives of GET, PUT, DELETE, and POST:

· Create: Create a new resource or attribute at the given XRI address

· Read: Retrieve the data associated with the resource or attribute at the given XRI address

· Update: Change the data associated with the resource or attribute at the given XRI address

· Delete: Remove the data associated with the resource or attribute at the given XRI address

· Post?: Process data relative to the resource or attribute at the given XRI address (fuzzy). It possible that this could be used as the generic extension mechanism, though this obviously has the potential to engulf the entire CRUD model. Perhaps such an extension model should be “orthogonal” to the CRUD semantics? 
Conclusion

This document has laid out the background and some of the assumptions upon which the XRI effort is grounded. In a complex, dynamic environment where identifiers can be used for multiple purposes, in multiple applications, in multiple business environments, it is important that XRI try to define the minimum core architecture required of abstract identifiers that can be used across all these systems.

More conclusory remarks

References

Chord:

http://www.pdos.lcs.mit.edu/chord/ 

Other DHT efforts:
http://kademlia.scs.cs.nyu.edu/kpos.pdf 

http://research.microsoft.com/~antr/pastry/ 

http://www.cs.berkeley.edu/~ravenben/tapestry/ 

http://ovmj.org/GNUnet/papers/can.pdf 

DNS:
Handle:

http://www.handle.net/ 

HTTP:

LDAP:

PKI:

SPKI/SDSI:

http://world.std.com/~cme/html/spki.html 

http://www.syntelos.org/spki/ 
UDDI:

http://www.uddi.org/ 

URI:

RFC 2396, “Uniform Resource Identifiers (URI): Generic Syntax”: http://www.ietf.org/rfc/rfc2396.txt 

Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright  © OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

_1104139139.vsd

_1104148723.vsd

_1104158915.vsd

_1104139193.vsd

_1104139109.vsd

