
11 Canonical ID Verification

[# Drummond, I have turned on “track changes” for this version. I’ve left the original changes (adding the “highest priority” to this page) in blue. #]
Canonical IDs play a special role because they are the identifier it is recommended that applications persist. Thus it is important from a security standpoint that applications be able to verify the binding between a Canonical ID and any other XRI synonym used to obtain the XRDS document describing a resource.
11.1 Protocol
Although applications may perform Canonical ID verification independently, they can request an XRI resolver to perform this function using the Resolution Media Type boolean parameter cid. The following verification tests MUST be applied by an XRI resolver if cid=true, and MUST NOT be applied if cid=false or the parameter is absent or empty.
1. The value of the xrd:XRD/xrd:ProviderID element in an XRD from the community root authority MUST match the value expected from the configuration of the resolver for that community root authority.

2. The value of the xrd:XRD/xrd:ProviderID element in any subsequent XRD MUST match the value of the xrd:XRD/xrd:ProviderID element in the authority resolution service endpoint of its parent XRD.

3. ALL highest priority values of the xrd:XRD/xrd:CanonicalID element asserted in an XRD from the community root authority MUST represent identifiers for which the community root authority, as identified by value of the xrd:XRD/xrd:ProviderID element, is authoritative.

4. ALL highest priority values of the xrd:XRD/xrd:CanonicalID element asserted in any subsequent XRD MUST represent identifiers for which the parent authority, as identified by value of the xrd:XRD/xrd:ProviderID element, is authoritative.
5. If authority reference processing as defined in section Error! Reference source not found. is necessary, the preceding rules MUST be applied to each nested XRDS document.

6. If service reference processing as defined in section Error! Reference source not found. is necessary, the highest priority values of the xrd:XRD/xrd:CanonicalID element in the XRD returned MUST be a subset of the values of the xrd:XRD/xrd:CanonicalID element containing the service reference.
A resolver MUST NOT return <Status code="100">SUCCESS</Status> unless all tests above are successful. If any verification test fails, resolution MAY continue, but if successful the resolver MUST return <Status code="102">CID_NOT_VERIFIED</Status> in the final XRD.
IMPORTANT: The verified Canonical ID returned for a target resource MAY differ depending on the resolution input parameters. See section 11.2.6.
11.2 Canonical ID Verification Graph Model

The Canonical ID Verification Graph Model establishes the foundation of identity required for the Canonical ID verification of XRI synonyms.
11.2.1 Synonyms and absolute identity
XRI synonymity is one of the most important features of XRI Resolution. Identifier synonymity cannot exist outside of an abstract model that formalizes the absolute identity of the object for which two identifiers purport to be synonyms. In the Canonical ID Verification Graph Model, this object is the authority node within the graph. Its absolute identity is defined by its canonical identifier path, which is represented using the xrd:CanonicalID element of its XRD. (Definitions of italicized terms such as canonical identifier path are given in section 11.2.7.)
Applications that support XRI synonyms may require a mechanism to safely verify that a given XRI is truly synonymous with the object (the authority node) to which it purports synonymity. Otherwise, the XRD returned for the purported synonym may contain illegitimate XRD metadata, such as a spoofed endpoint for an authentication service. Canonical ID verification provides this mechanism for safely binding the XRI synonym to the authority node’s canonical identifier path.
XRI Resolution does not preclude alternative models of XRI synonymity and/or object identity, however the XRI Resolution Specification provides no mechanism for synonym verification under such alternative models.

IMPORTANT: The graph model presented in this section describes relationships that validate under Canonical ID verification. The model and its terminology are not intended for use outside of this constraint.
11.2.2 Graph Notation and Conventions
When an XRI is resolved, the authority segment of the XRI represents a path through the Canonical ID Verification Graph. Each XRI subsegment traverses an edge to the next child authority node within the graph as shown in Figure 11‑1.

[image: image1.emf]

[@]

[@example]

*jane {!1 } *john {!1 }

[@example* west * john] [{@!1!1!1 }]

*example {!1}

*west {!1 }

*east {!2 }

[@example*east]

[@example* east*jane] [{ @!1!2!1 }]

[@example*west]

Figure 11‑1. Canonical ID Verification Graph diagram.
11.2.3 Edges and local synonyms
The solid-line edges of the graph represent hierarchical parent-child relationships. (Under a hierarchy, a given child node has at most a single parent.) Polyarchical parent-child relationships (where a child node can have multiple parents) are denoted by dashed lines and are covered in section 11.2.5.

The hierarchical edges are labeled with one or more local synonyms. Local synonyms establish the naming relationship between a parent authority node (in its context as an Authority Resolution Service) and the child authority nodes within its namespace. Under XRI Resolution, each local synonym is addressed by the names of the subsegments in the authority segment of the XRI providing the path through the graph. For example, resolving the XRI @example*east*jane will result in traversing the edges containing the local synonyms *example, *east, and *jane, and will produce the XRD for the node in the lower right corner of Figure 11‑1.

In the graph diagram, the labeled local synonyms include one or more local canonical identifiers. These are surrounded in the diagram with curly braces, as in {!1}, and they may be represented using xrd:LocalID element(s) of the child node’s XRD.
The Resolver “queries” an Authority Resolution Service with the name of the local synonym in order to obtain an XRD describing the given child. The local synonym may be returned in the xrd:Query element of the resulting XRD.
11.2.4 Nodes

Nodes in the graph represent the “absolute identity” of the XRI authority, which, as stated above, is a required property for verifying the synonymity of two XRIs. Under the constraints of the Canonical ID Verification Graph Model, the local synonyms of each hierarchical edge must contain at least one local canonical identifier. Thus authority nodes can be absolutely identified by a canonical identifier path containing one local identifier subsegment for each edge up to the root. The identifier {@!1!2!1} in Figure 11‑1 is an example of such a canonical identifier path.

Note that nodes in the diagram may be labeled with square brackets containing XRI synonyms that resolve to the given node.
11.2.5 Polyarchical parent-child relationships
Figure 11-2 shows both hierarchical and polyarchical parent-child relationships. Polyarchical relationships are represented in the diagram with dashed-line edges.

[image: image2.emf]

[@]

[@example]

[@example * john] [{@!1!1 }]

*example

* john {!1}

*jane

[=]

[=jane.doe] [@example*jane] [{ = !1 }]

* jane.doe {!1}

Figure 11‑2: Polyarchical parent-child relationship.

This diagram indicates that @example*jane and =jane.doe are both verifiable synonyms for the authority node with canonical identifier path {=!1}.
Because the Canonical ID Verification Graph Model is constrained to those relationships that validate under Canonical ID verification, any mechanism for establishing a polyarchical relationship must be subject to this verification. The only mechanism for defining such verifiable polyarchical parent-child relationships is the xrd:Ref element.
An xrd:Ref element forms a relationship from one authority node to another, however it is not a parent-child relationship—its semantics are different. In essence, a Ref tells the Resolver, “if you cannot find the service you’re looking for in my XRD, then replace my XRD by following this Ref, and look there.” Whereas these “replacement” semantics are clearly not “parent-child semantics” they effectively create a parent-child relationship between the parent of the node containing the Ref and the Ref’s target. Figure 11‑3 uses the dotted line to represent the Ref for the polyarchical parent-child relationship “created” by the Ref in Figure 11-2.
Note that the relationship denoted by the dotted line (the Ref relationship) does not exist within the Canonical ID Verification Graph. The Ref is shown in Figure 11‑3 only to illustrate how the polyarchical edge of Figure 11-2 was created. Instead, only parent-child relationships exist within the graph model. (Recall that edges in the graph represent subsegment traversal, as explained in section 11.2.3.)

[image: image3.emf]

[@]

[@example]

[@example * john] [{@!1!1 }]

*example

* john

[@example*jane] [{@!1 !2}]

[=]

[=jane.doe] [@example*jane] [{ = !1 }]

* jane.doe

*jane

(R ef)

Figure 11‑3. Showing the Ref that creates the polyarchical edge of Figure 11-2.
Under CanonicalID verification, a canonical identifier path is not valid unless it satisfies the rules presented in section 11.1. During Ref processing, the Resolver applies these verification rules to any XRI constituting the target of a Ref. Therefore, XRI synonyms that contain polyarchical edges as created by Refs are verifiable within the model.

11.2.6 Resolver input parameters

Under XRI resolution, the synonymity of two XRIs is defined only with respect to Resolver input parameters. That is, two XRIs can be synonymous with respect to one set of input parameters whereas they are not synonymous with respect to another set of input parameters. This is because an xrd:Ref may be followed under one set of parameters—establishing a given polyarchical parent-child relationship—whereas a different Ref (or no Ref at all) may be followed under a different set of parameters (establishing a different relationship.) Section [# refer to the section containing the “dereferencing rules” table #] describes these Ref “dereferencing” rules under Canonical ID verification.
For example, under one set of Resolver input parameters, the XRI @example*jane may resolve to the authority node with canonical identifier path {=!1} shown in Figure 11-2, whereas under another set of input parameters it may resolve to the authority node with path {@!1!2} shown in Figure 11‑3. The difference in input parameters may be something as simple as a difference in the requested service type (xrd_t).
11.2.7 Terminology and Constraints
11.2.8 This section describes terms used within the Canonical ID Verification Graph model. The terminology is not intended for usage outside of this constrained model.
11.2.8.1 Local synonym
Local synonyms establish the naming relationship between a parent authority node (in its context as an Authority Resolution Service) and the child authority nodes within its namespace. There must be at least one local synonym for each parent-child relationship, and all local synonyms must be unique across the given authority node’s children. When the Resolver queries an Authority Resolution Service with a local synonym, the local synonym may be returned within the xrd:Query element of the XRD. Local synonyms must be a single XRI subsegment. Local canonical identifiers (section 11.2.7.2) are local synonyms.

11.2.8.2 Local canonical identifier
Local canonical identifiers are types of local synonyms that establish the canonical identity relationship between a parent authority node (in its context as an Authority Resolution Service) and the child authority nodes within its namespace. In the Canonical ID Verification Graph model, there must be at least one local canonical identifier for each parent-child relationship, and all local canonical identifiers must be unique across the given authority node’s children. When the Resolver queries an Authority Resolution Service with any local synonym, the local canonical identifiers may be returned using the xrd:LocalID elements.
11.2.8.3 Canonical identifier path

An authority node’s absolute identity is established by one or more canonical identifier paths. When the Resolver queries an Authority Resolution Service with any local synonym, the canonical identifier paths must be returned within the XRD’s highest priority xrd:CanonicalID elements. A canonical identifier path is valid only under the rules defined in section 11.1.
An authority node may have multiple canonical identifier paths (multiple highest priority xrd:CanonicalID elements) but, because the authority node has only one absolute identify, each canonical identifier path must be a proper synonymous path, as described in section 11.2.7.5. Lower priority xrd:CanonicalID elements represent legacy canonical identifier paths resulting from the merging of two XRI authorities. These are not validated under Canonical ID verification and are thus not represented in the graph.
11.2.8.4 Synonymous paths

Paths that lead to the same to the same node. These paths may include hierarchical and/or polyarchical edges.

11.2.8.5 Proper synonymous paths

Hierarchical paths with the same number of edges that traverse the same nodes in the same order. These include hierarchical edges only.

[TODO: Provide example of XRDS documents with Canonical ID verification.]

�This entire section is new.

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 7
 MACROBUTTON NoMacro [Document Identifier]

 MACROBUTTON NoMacro [DD Month YYYY]
Copyright © OASIS® 1993–2007. All Rights Reserved. OASIS trademark, IPR and other policies apply.
Page 5 of 7

_1242296305.doc

*jane.doe

{!1}

[=jane.doe]

[@example*jane]

[{=!1}]

�

[=]

*jane

*john

{!1}

*example

[@example*john]

[{@!1!1}]

[@example]�

[@]

_1242296556.doc

(Ref)

*jane

*jane.doe

[=jane.doe]

[@example*jane]

[{=!1}]

�

[=]

[@example*jane]

[{@!1!2}]

*john

*example

[@example*john]

[{@!1!1}]

[@example]�

[@]

_1242290392.doc

[@example*west]

[@example*east*jane]

[{@!1!2!1}]

[@example*east]

*east

{!2}

*west

{!1}

*example

{!1}

[@example*west*john]

[{@!1!1!1}]

*john

{!1}

*jane

{!1}

[@example]�

[@]

