Thoughts on ref processing.

One of the things that originally attracted me to XRI was the fact that it supported directed hierarchies of identity. I thought that this quality had been locked in years ago and am surprised to learn that this is no longer the case. Drummond indicates in this thread that the ref semantics has been stable for months, I guess that I was unaware that the ref semantics had changed in the last 2 years.

A primary use case that I have always seen as a driving my interest in identity is the compose-able identity that looks like this…

[image: image1]
I believe that persona management is not a matter of splitting up a unary entity into smaller parts but rather ability to gather the fragments into meaningful and purposeful aggregations. Today I have many identity fragments, as those fragments become XRI enabled (and I am doing as much as anyone to see that happen) I want to be able to aggregate them in useful but privacy protecting ways. While there are other ways this could be achieved, the most elegant pattern I have seen for doing this is the ref pattern, as I understood it and as represented above.

By asserting that I am =mfkd both my wow player and my yahoo high scores can be discovered. However if I assert I am @ootao*andy there is no path back to my aggregate gaming persona nor any of my gaming services. Only those few people who get to see =andy get to see a complete set of services. At yahoo I can log in with @yahoo*mfkd with no privacy leakage.
I have found that this pattern also proves very useful in other types of aggregations. For example I can give each component in a server an xri with services that detail that component’s service history. I can then give the server an xri with resource usage services. I can then build a server cluster by simply giving the cluster an xri; and so on.

The simplicity of dynamically building these systems by adding a ref to the xrds I find very compelling; there is no sep duplication, no reverse traversal and lots of flexibility.
I do not find the argument that traversing a tree is ‘complex’ or ‘nondeterministic’ to be true… this is a simple recursion that is the bread and butter of most of our virtual world (look at windows explorer, mac finder, etc…)

I agree that there needs to be limits placed on the traversals in order to avoid denial of service attacks (or stupid mistakes) but those rules need not be very complex. I think all we need is an agreed limit on the ‘standard’ traversal depth (but with the flexibility to support deeper traversal if you are building more complex systems) and a slight change to appendix E that lets me choose to ‘stop at first hit’ for a service type (the default behavior) OR get all seps of the type in the tree.
I will also be at DIDW this week so will have a chance to chat with whoever is there and will join the Tuesday call if I can.

=andy.dale

=andy

@ooTao*andy

=mfkd

@wow*mfkd

@yahoo*mfkd

XRDS

 authN svc

 wow player svc

XRDS

 authN svc

 yahoo high score svc

(world or warcraft)

XRDS

 authN svc

 reputation svc

 contact

 fwd

XRDS

 authN svc

 contact svc

 fwd svc

XRDS

 authN svc

 freetime svc

