Advanced Message Queuing Protocol (AMQP) WebSocket Binding (WSB) Version 1.0
Working Draft 01
10 May 2013
Technical Committee:

Advanced Message Queuing Protocol (AMQP) Bindings and Mappings (AMQP-BINDMAP) TC

Chair:

Steve Huston (Riveraceshuston@riverace.com

 HYPERLINK "mailto:robert.godfrey@jpmorgan.com"
),
Editors:

TODO: Add editors
Related work:

This specification is related to:
· OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview. 29 October 2012. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.
Abstract:

AMQP WebSocket Binding is layered below the AMQP protocol as a mechanism for sending and receiving AMQP frames as binary payloads of WebSocket messages.
This specification describes how to map from AMQP concepts to WebSocket concepts, how to open a connection, how to send data, how to close a connection, and how to handle errors. The specification also describes two authentication and security sub-protocols: Raw AMQP over WebSocket and AMQP over SASL.

Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
Initial URI pattern:

http://docs.oasis-open.org/amqp/amqp-wsb/v1.0/csd01/amqp-wsb-v1.0-csd01.doc
(Managed by OASIS TC Administration; please don’t modify.)
Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
41
Introduction

41.1 Terminology

41.2 Normative References

41.3 Non-Normative References

52
Opening a Connection

52.1 WebSocket Opening

52.2 AMQP Opening

62.3 Example

83
Sending Data

83.1 AMQP as WebSocket Binary

93.1.1 Masking

93.2 AMQP Frame Mapping to WebSocket Message

93.2.1 Payload Data Size

103.3 Connection Keep-Alive

104
Authentication and Security

104.1 Raw AMQP over WebSocket

104.2 AMQP with SASL over WebSocket

105
Normal Closing of a Connection

105.1 AMQP-Triggered Closing

105.2 WebSocket Closing

115.3 Example

126
Broken Connections and Connection Recovery

137
IANA Considerations

148
Conformance

15Appendix A.
Acknowledgments

16Appendix B.
Non-Normative Text

16B.1 Subsidiary section

16B.1.1 Sub-subsidiary section

17Appendix C.
Revision History

1 Introduction
This specification describes how to transfer AMQP messages as the binary payload of WebSocket messages.

Each AMQP message consists of one or more AMQP frames. Each AMQP frame maps to a WebSocket message which in-turn maps to one or more WebSocket frames. Thus, there is a one-to-many mapping between an AMQP frame and WebSocket frames. This allows for intermediaries along the communication path to split a WebSocket message into potentially multiple WebSocket frames.
The WebSocket Protocol is particularly useful in that:

· Its initial handshake appears as HTTP traffic and it uses the same ports (80 and 443) as HTTP traffic so it is often able to pass-through network security devices without requiring special configuration or opening of additional ports.
· Many web browsers have built-in infrastructure for sending and receiving WebSocket protocol messages.

AMQP Message:

////////////////////

////////////////////

////////////////////

////////////////////

AMQP message as two AMQP frames:

/------------\ /------------\

//////////		//////////
//////////		//////////
//////////		//////////
//////////		//////////

\------------/ \------------/
Each AMQP frame maps to a Web Sockets message.

Each AMQP frame can be transmitted as one (left) or more (right) WebSocket frames:

+----------------+ +-----------+ +-----------+

| /------------\ | | /-------\ | | /-------\ |

	//////////				/////				/////	
	//////////				/////				/////	
	//////////				/////				/////	
	//////////				/////				/////	
\------------/		\-------/		\-------/						
+----------------+ +-----------+ +-----------+

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
1.2 Normative References

[AMQP]
Godfrey, Robert; Ingham, David; Schloming, Rafael, “Advanced Message Queueing Protocol (AMQP) Version 1.0”, October 2012. OASIS Standard. https://www.oasis-open.org/standards#amqpv1.0

[RFC2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
[RFC2616]
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., "Hypertext Transfer Protocol -- HTTP/1.1", RFC2616, June 1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[RFC4422]
Melnikov, A., and Zeilenga, K., “Simple Authentication and Security Layer (SASL)", RFC4422, June 2006. http://tools.ietf.org/html/rfc4422.
[RFC6455]
Fette, I., and Melinkov, A., “The WebSocket Protocol”, December 2011. RFC 6455, December 2011. http://tools.ietf.org/html/rfc6455.

1.3 Non-Normative References

TODO: Remove this section if there are no non-normative references.
 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]
NOTE: The proper format for citation of technical work produced by an OASIS TC (whether Standards Track or Non-Standards Track) is:
[Citation Label]
Work Product title (italicized). Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with filename component: somespec-v1.0-csd01.html).
For example:
[OpenDoc-1.2]
Open Document Format for Office Applications (OpenDocument) Version 1.2. 19 January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html.
[CAP-1.2]
Common Alerting Protocol Version 1.2. 01 July 2010. OASIS Standard. http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html.
Opening a Connection

To establish a connection, first the WebSocket Protocol connection MUST be opened, followed by the AMQP connection.
1.4 WebSocket Opening

The WebSocket Protocol connection MUST be opened as described in [RFC6455] section 4. The initiating AMQP endpoint (WebSocket Client) sends a HTTP GET request to the receiving AMQP endpoint (WebSocket Server.) The WebSocket Server provides a HTTP 101 (“Switching Protocols”) response including the HTTP header: “Upgrade: websocket”.
The Client MUST include the value "amqp" in the Sec-WebSocket-Protocol header in its handshake request.
If the Server agrees to communicate using the requested protocol, the 101 reply from the Server MUST include "amqp" in its Sec-WebSocket-Protocol header.

If the Server does not agree to the sub-protocol requested by the Client, the Server MUST NOT return a Sec-WebSocket-Protocol header. The Client MUST then close the connection.

If the Client receives a HTTP 401 (Unauthroized) response from the Server, the Client MAY perform authentication.

If the Client receives a HTTP 3XX redirect response from the Server, the Client MAY follow the redirect.
See [RFC6455] sections 4.1 and 4.2 for additional details on the WebSocket Opening Handshake.
1.5 AMQP Opening

Once the WebSocket connection has been established, the AMQP Connection, Session, and Links MUST be negotiated. This is done using AMQP frames with the Open, Begin, and Attach performatives as described in [AMQP] section 2.7.
A single WebSocket connection maps to a single AMQP connection. As is normal for AMQP, there MAY be potentially many AMQP sessions over a single WebSocket connection / AMQP connection.

1.6 Example

The below example section is non-normative.

WS Client

 WS Service

/ AMQP Endpoint / AMQP Endpoint
 | |

 | HTTP GET (WS handshake) F1 |

 |------------------------------->|

 | 101 Switching Protocols F2 |

 |<-------------------------------|

 | |

 | OPEN (AMQP Connection) F3 |

 |------------------------------->|

 | OPEN |

 |<-------------------------------|

 | |

 | BEGIN (AMQP Session) |

 |------------------------------->|

 | BEGIN |

 |<-------------------------------|

 | |

 | ATTACH (AMQP Link from C to S) |

 |------------------------------->|

 | ATTACH |

 |<-------------------------------|

 | |

 | ATTACH (AMQP Link from S to C) |

 |<-------------------------------|

 | ATTACH |

 |------------------------------->|

 | |

Note: The AMQP frames with Open, Begin, and Attach performatives sent from one AMQP endpoint do not necessarily need to wait for the other AMQP endpoint. The could be sent in the order: Open, Begin, Attach, Attach; then Open, Begin, Attach, Attach.

Figure 1: Example request:

GET /examplepath HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: ...

Sec-WebSocket-Protocol: amqp

Sec-WebSocket-Version: 13

...
Figure 2: Example response:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: ...

Sec-WebSocket-Protocol: amqp

...
TODO: Figures 3-10 showing AMQP messages and relevant values.

Sending Data

1.7 AMQP as WebSocket Binary

AMQP content MUST be sent as binary data payloads of WebSocket messages.
WebSocket messages are framed as illustrated below from [RFC6455] section 5.2:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-------+-+-------------+-------------------------------+

|F|R|R|R| opcode|M| Payload len | Extended payload length |

|I|S|S|S| (4) |A| (7) | (16/64) |

|N|V|V|V| |S| | (if payload len==126/127) |

| |1|2|3| |K| | |

+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +

| Extended payload length continued, if payload len == 127 |

+ - - - - - - - - - - - - - - - +-------------------------------+

| |Masking-key, if MASK set to 1 |

+-------------------------------+-------------------------------+

| Masking-key (continued) | Payload Data |

+-------------------------------- - - - - - - - - - - - - - - - +

: Payload Data continued ... :

+ - +

| Payload Data continued ... |

+---+

	FIN
	Indicates that this is the final WebSocket fragment in a message.
The first fragment MAY also be the final fragment.

	RSV1, RSV2, RSV3
	Not used for AMQP; these MUST be 0 (zero) unless defined elsewhere.

	Opcode
	%x2 indicating binary if this is the first WebSocket frame for an AMQP frame

%x0 indicating continuation if this is a WebSocket frame containing a continuation of data for an AMQP frame

	Mask
	1 indicating masked if the sender is the WebSocket Client

0 indicating masked if the sender is the WebSocket Server

	Payload length
	The length of the Payload Data in bytes and using 7 bits, 7+16 bits, or 7+64 bits as described in [RFC6455] section 5.2

	Masking-key
	If Mask==1, this field MUST contain a 32-bit mask applied to the payload data

If Mask==0, this field MUST NOT be present

	Payload data
	The AMQP frame payload

1.7.1 Masking
As mentioned in section 2.1 of this specification, the AMQP endpoint initiating the initial WebSocket connection MUST behave as the WebSocket Client and thus MUST mask its payload data. The AMQP endpoint receiving the initial WebSocket connection MUST behave as the WebSocket Server and thus MUST NOT mask its payload. WebSocket Protocol Payload Data Masking is done by applying the 32-bit Masking-key to the Payload data. WebSockets masking is further described in [RFC6455] section 5.2 and 10.3.

TODO: Can we not do masking; or always use a mask of 00..00?

1.8 AMQP Frame Mapping to WebSocket Message
Each AMQP message consists of one or more AMQP frames. Each AMQP frame maps to a WebSocket message which in-turn maps to one or more WebSocket frames.
In the example below, there is an AMQP message consisting of two AMQP frames. AMQP frame 1 maps to WebSockets frame 1. AMQP frame 2 maps to WebSockets frame 2 and WebSockets frame 3:
[AMQP frame 1 of 2] [AMQP frame 2 of 2]

| / / \ _____
| | / \ ____
| / / \
[WS frame 1 of 3] [WS frame 2 of 3] [WS frame 3 of 3]
A single AMQP frame MAY be split into one or more WebSocket frames, but a single WebSocket frame MUST NOT carry more than one AMQP frame.

The below table illustrates how the WebSocket FIN bit (indicating the final frame) and the WebSocket Opcode should be set depending on how many WebSocket frames are used for a single AMQP frame:

	Number of WebSocket frames

per single AMQP frame
	First frame FIN bit
	First frame Opcode
	Middle frame(s) FIN bit
	Middle frame(s) Opcode
	Last frame FIN bit
	Last frame Opcode

	1 WebSocket frame = 1 AMQP frame
	1
	%x2
	
	
	
	

	2 WebSocket frames = 1 AMQP frame
	0
	%x2
	
	
	1
	%x0

	>2 Websocket frames = 1 AMQP frame
	0
	%x2
	0
	%x0
	1
	%x0

Nodes receiving AMQP messages over the WebSocket protocol MUST combine one or more WebSocket frames into a single WebSocket message if indicated to do so by the WebSocket FIN and Opcode.
AMQP transfer frames that include additional AMQP data in a subsequent AMQP frame MUST indicate so by having their more field value set to true as described in [AMQP] section 2.7.5. AMQP nodes receiving a frame with a more field value of true should combine these AMQP frames into a single AMQP message.
1.8.1 Payload Data Size

AMQP frames have the possibility of being arbitrarily large up to the limit imposed by the AMQP max-frame-size negotiated during the AMQP Open phase of establishing the AMQP connection.

AMQP nodes MUST negotiate a max-frame-size that they are willing and able to cache in-memory.
TODO: Add description of how endpoints can drop if payloads are too big.
1.9 Connection Keep-Alive

WebSocket Clients and Servers MAY keep their WebSocket connections open by sending periodic WebSocket “Ping” and “Pong” frames as described in [RFC6455] section 5.5.2.
AMQP messages (as binary payloads of WebSocket messages) MAY also be used for connection keep-alive.
Authentication and Security

TODO: More detail needed for this section.

1.10 Raw AMQP over WebSocket

Raw AMQP messages MUST be sent over port 80. These MUST also have an AMQP type code of 0x00 as described in [AMQP] section 2.3.1.
1.11 AMQP with SASL over WebSocket

Raw AMQP messages MUST be sent over port 80. These MUST also have an AMQP type code of 0x01 as described in [AMQP] section 2.3.1.
1.12 Raw AMQP over Secure WebSocket

AMQP over Secure WebSocket MUST be sent over port 443. These MUST also have an AMQP type code of 0x00 as described in [AMQP] section 2.3.1.
1.13 AMQP with SASL over Secure WebSocket

AMQP over Secure WebSocket MUST be sent over port 443. These MUST also have an AMQP type code of 0x01 as described in [AMQP] section 2.3.1.
Normal Closing of a Connection

In the ideal case, the AMQP connection SHOULD be closed first, followed by the WebSocket connection.
1.14 AMQP-Triggered Closing

First, AMQP frames for the performatives Detach, End, and Close MUST be sent.
TODO: More detail need for this section.
1.15 WebSocket Closing

Once the AMQP closing handshake has completed, the WebSocket closing handshake should be initiated. As described in [RFC6455] section 5.5.1, the peer node desiring to close the connection sends a WebSocket Close frame (with Opcode 0x8. Once the other peer node receives this, it MAY finish transmitting any majority finished transmissions, and then MUST send a WebSocket Close frame (with Opcode 0x8) in return.
1.16 Example

The below example section is non-normative.

Node A

Node B

 | |

 | DETACH (AMQP Link from A to B) |

 |------------------------------->|

 | DETACH |

 |<-------------------------------|

 | |

 | DETACH (AMQP Link from B to A) |

 |<-------------------------------|

 | DETACH |

 |------------------------------->|

 | |

 |------------------------------->|

 | END (AMQP Session) |

 |------------------------------->|

 | END |

 |<-------------------------------|

 | |

 | CLOSE (AMQP Connection) |

 |------------------------------->|

 | CLOSE |

 |<-------------------------------|

 | |

 | WebSocket Close Frame |

 |------------------------------->|

 | WebSocket Close Frame |

 |<-------------------------------|

 | |

Note: The AMQP frames with Open, Begin, and Attach performatives sent from one AMQP endpoint do not necessarily need to wait for the other AMQP endpoint. The could be sent in the order: Open, Begin, Attach, Attach; then Open, Begin, Attach, Attach.

TODO: Add figures for AMQP DETACH, END, and CLOSE

Figure X: Example WebSocket Close Frame without masking

0x88 0x02 0x03 0xE8
(0x03 0xE8 = 1000, the WebSocket value for normal closure)
Figure Y: Example WebSocket Close Frame with unrealistic mask of 0x00 0x00

0x88 0x82 0x00 0x00 0x03 0xE8
Broken Connections and Connection Recovery

1st: Check that the AMQP links are working

2nd: Check that the AMQP channel(s) / session(s) are working

3rd: Check that the AMQP connection is working

4th: Check that the WebSockets connection is working

TODO Add more info on abrupt close
2 IANA Considerations

This specification requests IANA to register the WebSocket AMQP sub-protocol under the “WebSocket Subprotocol Name” registry with the following data:
	Subprotocol Identifier
	amqp

	Subprotocol Common Name
	WebSocket Transport for Advanced Message Queueing Protocol (AMQP)

	Subprotocol Definition
	TBD: URL of this document (when available)

TODO: Register with IANA:
· Reference: http://tools.ietf.org/html/rfc6455#section-11.5
· Registry: http://www.iana.org/assignments/websocket/websocket.xml

· Registration Form: http://www.iana.org/protocols/apply

3 # Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here. [Remove # marker]
Appendix A. Acknowledgments

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Raphael Cohn, StormMQ
Rob Dolin, Microsoft

Robert Godfrey, JP Morgan

Steve Huston, Riverace

David Ingham, Microsoft
Alex Kritikos, Software AG

Rafael Schloming, RedHat
TODO: Add additional people from AMQP BindMap TC
Appendix B. Non-Normative Text
text

B.1 Subsidiary section

text

B.1.1 Sub-subsidiary section

text
Appendix C. Revision History

	Revision
	Date
	Editor
	Changes Made

	[Rev number]
	[Rev Date]
	[Modified By]
	[Summary of Changes]

amqp-man-v1.0-wd01
Working Draft 01
27 February 2013
Standards Track Draft
Copyright © OASIS Open 2013. All Rights Reserved.
Page 10 of 18

