
A Comparison of AMQP and MQTT

Introduction

AMQP and MQTT are both open protocols for asynchronous message queuing which
have been developed and matured over several years. Recently, (4Q 2011) the
organisations who developed them have made announcements that their latest protocol
versions that are 'ready' for widespread adoption, and have submitted them for
standardisation. AMQP has selected the OASIS industry standards group1, with the
intention of moving to becoming an ISO/IEC standard. MQTT has chosen to use the
Eclipse foundation2.

Overview
Both provide basic messaging needs; beyond that, AMQP provides a very much richer set
of messaging scenarios. AMQP is almost a complete superset, lacking only explicit
protocol support for Last-Value-Queues and will messages. However, its deliberate design
for extensibility, using an IANA-like approach with a discursive approach, ensures that
such features can be added in a forward-compatible, widely agreed upon way.

Both protocols are being promoted for ʻwidespreadʼ use in the internet:-

• MQTT as a low-overhead, simple to implement way to send data, especially from
embedded devices;

• AMQP as the asynchronous complement to HTTP
As such, both are being promoted as being ideal for cloud computing and the ʻinternet of
thingsʼ. That essential thesis is correct; message queuing, with its asynchronous nature
and minimal need for configuration when done right, is perfect for interoperating many
different environments.

However, MQTT is constrained to providing basic messaging ʻtopicsʼ in a single
ʻnamespaceʼ, with no long-lived ʻstore-and-forwardʼ queuing pragmatic. This makes it
difficult, if not often impossible, to multi-tenant server resources, or to dynamically migrate
them or provide simple ʻdevelopment to productionʼ switch-over. Even worse, a woefully
naive security / user model makes proper resource sandboxing and analysis very limited.
AMQP provides for sand-boxed, multi-tenanted or multi-hosted infrastructure, ideal for the
modern cloud with multiple user security schemes appropriate to the modern internet.

Lastly, itʼs worth noting that MQTT, intended for telemetry transmission, is used in none of
the worldʼs biggest message queue based telemetry projects: Scripps Oceanographyʼs
monitoring of the Mid-Atlantic Ridge3, and Smith Electric Vehicleʼs global fleet
management4, both use versions of AMQP.

Messaging as a Service

1 http://www.oasis-open.org/news/pr/amqp-tc

2 http://mqtt.org/2011/11/eclipse-paho-open-source-and-other-news

3 https://confluence.oceanobservatories.org/display/CIDev/Messaging+Service

4 Green Car Congress: Smith Applies StormMQ Cloud-Based Message Queuing in EV Telematics System

http://www.amqp.org/
http://www.amqp.org/
http://www.mqtt.org/
http://www.mqtt.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
http://www.oasis-open.org/news/pr/amqp-tc
http://www.oasis-open.org/news/pr/amqp-tc
http://mqtt.org/2011/11/eclipse-paho-open-source-and-other-news
http://mqtt.org/2011/11/eclipse-paho-open-source-and-other-news
https://confluence.oceanobservatories.org/display/CIDev/Messaging+Service
https://confluence.oceanobservatories.org/display/CIDev/Messaging+Service
http://www.greencarcongress.com/2010/10/storm-20101014.html
http://www.greencarcongress.com/2010/10/storm-20101014.html

Methodology
This white paper intends to primarily compare features at a high-level, rather than provide
a blow-by-blow technical tick-list, with references to pages, sections and bullet points.
Such exercises are a bit dry for the high-level view this paper takes,

Origins
AMQP comes from the finance community, and is primarily customer-driven: its originators
wanted an open way to communicate the vastly increasing over-the-counter trace, risk and
clearing market data they transfer, and do so without needing the pain of a bespoke
protocol and its licensing headache. MQTT is vendor-driven; it comes from IBM and its
partners as a reaction to the high cost of implementation MQSeries inflicts on its
customers using small devices. These two approaches have strongly influenced the
design and features of the protocols.

Intended Use of Protocol
The intended use of a protocol often influences its design; that is certainly the case for
these. Both protocols ʻsitʼ above TCP/IP, and are intended to be used to allow programs to
send and receive messages asynchronously irrespective of their choice of hardware,
operating system or programming language. However, from that basis, the protocols
diverge; MQTT is designed to be of use for many small, relatively dumb devices sending
small messages on low-bandwidth networks. AMQP, on the other hand, is designed to
provide the full vibrancy of messaging scenarios that have been seen in the last 25 years.
MQTTʼs design goals are a subset of its intended uses.

In particular, MQTT very much sees the network between the involved parties as a
controlled, near private infrastructure; AMQP, on the other hand, is designed assuming it is
in use between parties under different controls and who use network and infrastructure
resources outside of those partiesʼ control.

Optimisation of Framing
Both protocols provide for highly optimised ʻon-the-wireʼ framing of data. MQTT uses a
more stream-orientated approach, making it easy for low-memory clients to write frames.
AMQP uses a buffer-orientated approach, making possible high-performance servers.
MQTT does not permit fragmentation of messages, making it difficult to transmit large
messages with constrained memory devices, however.

Messaging Scenarios
MQTT supports publish-subscribe messaging to topics. MQTTʼs messaging is effectively
ephemeral: it is optimised for the use case of active routing of simultaneously connected
publishers and subscribers. Consequently, it is very difficult to use it for classic long-lived
message queuing. AMQP supports this use case, and more, with five different kinds of
message publisher-consumer ʻlifetimeʼ, from ʻas long as connectedʼ to ̒ nobody is using this
queueʼ.

AMQP permits almost any form of messaging including classic message queues, round-
robin, store-and-forward and combinations thereof. For example, some consumers can get
copies of messages whilst others pull straight from the same queue, all using different
filters. AMQP also uses message meta-data to support idempotent messages and
message grouping.

StormMQ: A Comparison of AMQP and MQTT

2

Transactions
This is short but poignant. MQTT does not support transactions; it does support basic
acknowledgments. AMQP supports different acknowledgment uses cases and transactions
across message queues; it allows separation of the different transactional semantics,
should that be needed, and for acknowledgments to be out-of-order or even delayed, and
batched up as a performance optimisation. The protocol also defines, but makes optional,
support for distributed transactions, such as X/Open XA transactions or MS DTC ones.

Connection Security
MQTT does not address connection security, although the community does provide
advice. AMQP on the other hand, has specifically worked to integrate with TLS (eg TLS
virtual server extensions, known as SNI) and SASL, the IETF set of RFCs that provide
appropriate ways of securing the right to use a connection. Going further, it has ensured
that modern SASL mechanisms, e.g. SCRAM-SHA and GS2, and security techniques (eg
binding TLS channels to SASL mechanisms) works seamlessly. AMQPʼs core design
allows separate negotiation of, and policies for, TLS and SASL mechanisms and upwards
replacement with alternative techniques as they develop.

AMQP provides for different approaches to TLS negotiation, allowing its use over
intermediate locked-down firewalls and SOCKS proxies, for example.

User Security
MQTT requires short user names and short passwords that do not provide enough entropy
in the modern world. It has made these part of the protocol itself, so any change in policy,
or security weakness, requires a new protocol version. AMQP uses SASL mechanisms,
allowing organisations to choose the security that matters to them (e.g. Kerberos V5)
without protocol change. It also supports a common security practice, the notion of proxy
security servers, i.e. that the message queuing server (broker) is not the same as that
providing the termination of the security layer(s). This allows organisations to use
gatekeepers, nested firewalls, etc. AMQPʼs approach of authenticating the user before
establishing a messaging connection allows for complete sand boxing of server resources.

Messages Matter, Too
To MQTT, a message is opaque. Notionally, this is a good thing; but it limits the
infrastructure to nothing more than transmission from sender to receiver. In AMQP, they
are not.

In practice, messages are not solely transmitted from a client to a receiver. They may be
redirected or routed. They may pass through another pair of hands. There may be many
consumers of those messages, interested in different subsets. MQTT can manage to
support different ʻtopicsʼ, in a simple hierarchy, but that really isnʼt enough even in some
simple cases.

For example, imagine a fleet of electric delivery trucks. Some days, you might want to find
a problem with part of your fleet, but not affect ordinary operations by stealing their
messages. So you attach the messaging equivalent of a multimeter, to listen for some
subset. Perhaps by customer, by depot, by truck id, or may be later by truck model or date
of manufacture. Those needs are orthogonal; only with perfect foresight could you have
designed one hierarchy to capture all that.

StormMQ: A Comparison of AMQP and MQTT

3

AMQP separates the structure of a message, from its manner of delivery, with explicit and
implicit meta-data which your infrastructure can use. Even better, its forwards-compatible
so an older piece can still make use of newer messages. Some of this meta-data might
need to mutate as a message passes through a network. Some of it must never change,
as its used to calculate a signature (AMQP provides for cryptographically secure
messaging needs).

Lastly, the MQTT topic is ʻglobalʼ - it is a global namespace, equivalent to one queue or
one node; in AMQP, their are as many queues as you wish to define.

Last-Value-Queues
MQTT has, with its ʻRETAINʼ command, the ability to support Last-Value-Queues (LVQs).
These are useful when a consumer connects for the first time, and, rather than read a
historic set of messages, just wants to get the latest state of play and then receive updates
on it. AMQP does not support such a feature, although the protocol design easily allows for
a vendor, or the entire standards body, to add one in a compatible way without breaking
existing implementations. There is also an architectural argument that a LVQ should be
implemented in the application infrastructure around the messaging, as itʼs difficult for one
message queue implementation to provide for the many scenarios in use, eg a Front-
Office stock quote LVQ use case is quite different to a vehicle CANBUS telemetry one.

Reliable Messaging
Essentially, most users of messaging either care a message is sent and definitively
received once, or they do not. Both protocols provide for ʻfire-and-forget, donʼt try to hardʼ
messaging. AMQP provides fine-grained control over this, should it be required. This is
useful when data delivery doesnʼt have to be reliable, but order of delivery matters.

In practice, such use cases arenʼt quite as common as them seem. A classic one is a
stream of sensor data. On closer examination, though, the bandwidth for such a stream
over a mobile network or serial line, say, is expensive, and that unreliability unpredictable.
Itʼs rarely a simple ʻ5%ʼ figure - often itʼs ʻ100% for 20 minsʼ and ʻ0% for 2 daysʼ.
Consequently, reliable messaging is far more useful.

Both protocols claim to provide reliable messaging, essentially using a series of
acknowledgments to give ʻexactly-onceʼ receipt of a message. However, under analysis,
this is not always the case with MQTT. MQTT assumes ʻgeneral reliabilityʼ of the parties
involved. This is simply not the case in the real world. AMQP addresses these scenarios
with ʻlink recoveryʼ, which allows fine-grained control, and will ensure eventual delivery
under hostile conditions. MQTT also naively assumes that messages are always accepted
by the server. In practice, this is not the case, and AMQP provides control to allow both a
server and a client to reject and ʻreturn-to-sender / forward-toʼ in the same way the postal
service does. MQTTʼs only option here to specify a ʻWill Messageʼ, to be sent on a clientʼs
behalf, if a connection dies. In essence, this acts a bit like the Royal Navyʼs Letters of Last
Resort, and, in the same way, is a nuclear option that provides no finesse.

StormMQ: A Comparison of AMQP and MQTT

4

Message Namespaces
MQTTʼs only ʻnamespaceʼ is a hierarchal topic space, into which all messages go. The
implementorsʼ of it have developed some naming conventions for it. This is quite limiting.
In AMQP, there are multiple such spaces (ʻnodesʼ or ʻqueuesʼ), each of which can have
many different ways of finding messages. The method of finding a message is at a
consumerʼs choice, not necessarily by the server. As such, many consumers can share a
queue, in which some always pull messages off, and others receive copies, each using the
same or different expression to find messages. Such an expression could be a topic; or it
can be anything else, and AMQPʼs use of message meta-data allows implementors to
choose some original schemes for finding messages.

More than Just a Connection
In practice, thereʼs more to life that just a connection. Some clients are ephemeral,
connecting once and then disappearing into the light. Both MQTT and AMQP support
those sort. Others are long-lived, and have state, such as which messages they think
theyʼve sent, which have bits missing and which they think they didnʼt (but did). AMQP
provides for this using ʻContainersʼ; ʻMQTTʼ does in a small way, using a client-id, but this
is marginally useful. And lastly, some clients are themselves as capable as a server,
sending and receiving all at once to many queues. In AMQP, a client is the same as a
server; all concepts are bidirectional, so it doesnʼt matter which behaviors one uses. In
MQTT, the relationship is asymmetric, and a client can never be so powerful.

Some clients might be quite powerful, and capable of sending and receiving on multiple
threads. AMQP supports this multiplexing, using a concept called ʻsessionsʼ. Such a set up
might very easily require flow control quite different to that in the underlying TCP. MQTT
does not support this, but AMQP does, ensuring that a memory-constrained device that
needs reliable messaging is never swamped by more messages than it can hold onto
before acknowledging them. Some clients can go further, and have different needs at the
same time. AMQP provides for this using links.

Itʼs Alive
Message queuing implementations can live a very long time, especially ʻin the fieldʼ.
Different parts of the infrastructure can come and go, be upgraded or replaced. MQTT can
only provide for very basic needs here using DNS redirects. AMQP goes much further, for
example allowing a server to redirect to a peer, at either the level of an entire connection
or just for a particular queue. In the later case, that allows for fine-grained load-balancing
of popular queues, or to provide for when some of a fleet of vehicles is sold-on.

Implementation
It is certainly easier to implement MQTT; it is a much smaller protocol. However, that is
arguably mute in todayʼs world. Open protocols result in open source libraries. The vast
majority of users will simply choose the open source client library for their operating
system or language. However, a simple protocol does not necessarily mean less
operational size. Both AMQP and MQTT have been implemented in devices with less than
64Kb of RAM, so it would seem that any comparison here is moot.

StormMQ: A Comparison of AMQP and MQTT

5

Extensibility
AMQP has explicitly defined points of extensibility allowing vendor-specific and standards-
agreed future extensions in a way compatible with, and usable by, existing
implementations. MQTT requires a completely new protocol draft. AMQPʼs protocol is
layered, allowing change in one part of the specification to be isolated from another.

Availability of Server Implementations
Today, both protocols have several implementations. MQTT, however, has several that are
IBM backed and only one that seems open source and separate, Mosquito. It is not
obvious if commercial support is available for this. AMQP has implementations available
from StormMQ, VMWare and RedHat, with further product likely from other contributors
such as Microsoft.

Conclusion
MQTT and AMQP are both message queuing protocols, suitable for use in hardware and
software and on all major operating systems and platforms. MQTT is suited to its use case
of simple clients talking to a server, but any infrastructure using it is exposed to serious
security weaknesses and an inability to make best use of resources or to support
additional use cases. AMQP is suited to these uses cases and many others, supports far
better use of resources, far more pragmatic security and message reliability and has a
future place as an ISO standard. Its origins as customer-orientated protocol, and its
backing by big, competing names in IT bodes well for customers traditionally worried about
support of open protocols and vendor lock-in.

Author
If you have any questions, comments, or would like to know more about StormMQʼs
Messaging-as-a-Service offering, please visit www.stormmq.com or contact:-

Raphael Cohn

Chief Architect

StormMQ

raphael.cohn@stormmq.com

+44 7590 675 756

StormMQ: A Comparison of AMQP and MQTT

6

http://www.stormmq.com
http://www.stormmq.com
mailto:raphael.cohn@stormmq.com
mailto:raphael.cohn@stormmq.com

