Advanced Message Queuing Protocol (AMQP) Claims-based Security
Version 1.0
Working Draft [TBD]
[TBD]
Technical Committee:

OASIS Advanced Message Queuing Protocol (AMQP) TC
Chairs:

Ram Jeyaraman (Ram.Jeyaraman@microsoft.com), Microsoft
Robert Godfrey (robert.godfrey@jpmorgan.com), JPMorgan Chase & Co.
Editors:

TODO: update this

Rob Dolin (RobDolin@microsoft.com), Microsoft
Robert Godfrey (robert.godfrey@jpmorgan.com), JPMorgan Chase & Co.
David Ingham (David.Ingham@microsoft.com), Microsoft
Rafael Schloming (rafaels@redhat.com), Red Hat

Additional artifacts:

This prose specification is one component of a Work Product which also includes:
· XML schemas: (list file names or directory name)

· Other parts (list titles and/or file names)

Related work:

This specification is related to:
· OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview. 29 October 2012. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.
Abstract:

This specification describes an AMQP authentication scheme based on claims-based security tokens.
Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
Initial URI pattern:

http://docs.oasis-open.org/amqp/amqp-cbs/v1.0/csd01/amqp-cbs-v1.0-csd01.doc
(Managed by OASIS TC Administration; please don’t modify.)
Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
41
Introduction

41.1 Terminology

41.2 Normative References

41.3 Non-Normative References

52
Concepts

52.1 Token

52.1.1 Token Expiry

52.1.2 Token Type

52.1.3 Token Value

52.2 Roles

52.2.1 Resource Manager

52.2.2 Client

52.3 Claims-based Security Node

63
Overview

63.1 Scenarios

63.1.1 Link-based

63.1.2 Message-based

74
Communicating Tokens

74.1 Putting a Token

74.1.1 Request Message

74.1.2 Response Message

84.2 Deleting a Token

84.2.1 Request Message

84.2.2 Response Message

95
Error Cases

96
Examples

107
Conformance

11Appendix A.
Acknowledgments

12Appendix B.
Revision History

1 Introduction
This specification defines a claims-based security (CBS) extension for AMQP 1.0 [AMQP]. The goals for this extension are:
1. To support fine-grained claims-based access control to entities accessible over an AMQP connection.

2. To work with existing AMQP client libraries without change.

To satisfy these goals, a layered protocol is defined to exchange claims tokens over an AMQP connection. This protocol is based on the AMQP Management Specification [AMQPMAN] and involves the use of a dedicated link to a special claims-based security node, over which tokens are transferred as standard AMQP messages with a well-defined structure.

A non-goal for this specification is the runtime negotiation and configuration of CBS for a particular connection. It is assumed that applications will be configured out-of-band with the knowledge as to when claims-based security is to be used and what options are supported, e.g., which claim token type is to be used.
1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
1.2 Normative References

[AMQP]
Godfrey, R., Ingham, D., Schloming, R., “Advanced Message Queuing Protocol (AMQP) Version 1.0”, October 2012. OASIS Standard.
https://www.oasis-open.org/standards#amqpv1.0

[AMQPMAN]
Godfrey, R., Ingham, D., Dolin, R., “Advanced Message Queuing Protocol (AMQP) Management Version 1.0”, January 9999. OASIS Working Draft. TODO – update this.
[JWT]
Jones, M., Bradley J., Sakimura N., “JSON Web Token (JWT), Internet Draft, May 2013.
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token-08
[RFC2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14, RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt
[RFC2616]
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., "Hypertext Transfer Protocol -- HTTP/1.1", RFC2616, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html
[RFC4422]
Melnikov, A., and Zeilenga, K., “Simple Authentication and Security Layer (SASL)", RFC4422, June 2006.
http://tools.ietf.org/html/rfc4422
[SWT]
Hardt D., Goland Y., “Simple Web Token (SWT)”, November 2009.
http://msdn.microsoft.com/en-us/library/windowsazure/hh781551.aspx
1.3 Non-Normative References

[AMQPTOKENS]
AMQP Capabilities Registry: Token Types.
http://www.amqp.org/amqp-cbs/1.0/token-types
2 Concepts
2.1 Token

A token is opaque data that may be used to authenticate a user
 and/or authorize the user of a computer system. The tokens described in this specification are bearer tokens; meaning the bearer of the token is treated as the authenticated user
. Examples of commonly-used tokens include JSON Web Token (JWT) [JWT] and Simple Web Token (SWT) [SWT].
2.1.1 Token Expiry

Tokens have an expiry time
 or a time to live (TTL) which limits the usefulness of a token if it is ever compromised.
2.1.2 Token Type

Tokens have a type so the receiving system knows how to handle the token. In this specification, token types are represented as strings that follow the same convention for types defined in the core AMQP specification. Standard token types considered at the time of writing have names prefixed with “amqp:”, e.g., the type of a JSON Web Token is represented as “amqp:jwt”. Proprietary token types should be named using a reverse domain name prefix, e.g., “acme.com:acmetoken”. A registry of commonly defined token types is maintained [AMQPTOKENS].
2.1.3 Token Value

Tokens have a specific value that contains the information used by the receiving system to authenticate the user
 and authorize access to the target resource(s). Tokens generally have a native string representation. This specification caters for token type-specific formats.
2.2 Roles

AMQP is a symmetric peer-to-peer protocol that can be used in a variety of topologies, e.g., client-to-client, client-to-broker and broker-to-broker. This specification is applicable to all these different usage patterns. For the purposes of illustration, this specification defines two roles: Resource Manager and Client. Be aware however, that in some topologies, e.g., broker-to-broker, both endpoints could play both roles.
2.2.1 Resource Manager

A Resource Manager is an AMQP container that is managing AMQP nodes and using claims-based security to control access to them. A CBS-based message broker managing queues is an example of a Resource Manager.

2.2.2 Client

A Client is an application program hosting an AMQP container that is sending messages to, and/or receiving messages from, AMQP nodes hosted in a Resource Manager.
2.3 Claims-based Security Node

A Claims-based Security Node (CBS Node) is an AMQP endpoint responsible for managing tokens. Each Resource Manager MUST provide a CBS Node with the address “$cbs”.

3 Overview

The claims-based security scheme defined in this specification is designed to be usable with existing AMQP client libraries that do not necessarily have any knowledge of claims-based security. To achieve this, the claims-based security scheme is realized as a layered protocol that can be implemented in application code. That said, it is expected that this functionality be incorporated in to client libraries over time. Following from these assumptions, this specification imposes no restrictions on the general use of the protocol.
The claims-based security scheme composes with the security model already defined in [AMQP]. The receiving peer can accept the connection and session without establishing any authentication context, or it can mandate that the client authenticates at the transport level and/or using a supported SASL mechanism.
To use claims-based security, a Client MUST establish (a) an outbound link to the CBS Node of the Resource Manager to which it is connected and (b) an associated inbound link to a temporary local node.

TODO – details here on the precise set-up of the request-response link pair. Ideally this should reference the global addressing specification or wherever this is documented. Is requiring the request-response link pair a restriction on common client libraries? Can we assume that all the libraries we’re interested in support this functionality? When will this be a reality?

The general principle is that before the Client attempts to use a secured node, a token SHOULD be sent to the CBS Node containing the appropriate claim for the type of access being sought (send or receive) for that node. Since tokens have expiry times, the Client MUST send updated tokens for all attached links to secured nodes in order for connectivity not to be disrupted.

Note that CBS is connection-scoped, that is, the link to the CBS Node MUST be made over the same connection as the links to the nodes that are being secured using CBS. There are no restrictions regarding the number of sessions used or the association of links to sessions.
This scheme also defines an optional, custom SASL mechanism, “AMQPCBS”, that allows seeding the connection with an initial set of tokens. AMQPCBS optimizes the initial handshake, allowing one or multiple tokens to be set on the Resource Manager as the connection is created. If AMQPCBS is offered and used, the AMQP message interactions described herein serve to replace tokens initially set via AMQPCBS. Using SASL AMQPCBS also allows for the connection to be protected by requiring valid tokens, and not by either separate authentication for the connection, or anonymous access.
Figure 1 illustrates an example configuration in which the Client is sending messages to a queue, q1, managed by the Resource Manager. Before attaching the link to q1, the Client MUST setup the outbound link to the CBS Node, along with the associated response link. A token MUST be “put” over the CBS request link that provides the appropriate “write” claim for q1. Periodically, before the current token expires, the Client MUST send a new token with a new, later expiry time, in order to continue to be able to send messages to q1.

[image: image1.emf]Resource Manager Client

$cbs

q1

connection

CBS request link

q1 send link

CBS response link

/tmp

Figure 1: Overview

3.1 Scenarios

3.1.1 Link-based

In this scenario, a single link is being used to exchange messages with a single endpoint and access to this particular endpoint is controlled by claims-based security. In order to be able to exchange messages over a link to that endpoint, an appropriate valid claim is required to be in place.

For example, a message broker hosting a queue with address “q1”, could require a “read” claim in order to receive messages and a “write” claim to send messages. In this example, a client application would need to put a token, containing the appropriate claim, to the CBS Node in advance of establishing the link to “q1”. Periodically, before the token expired, the client would need to send a refreshed token in order to be able to continue to exchange messages.

3.1.2 Message-based

In this scenario, a single link is being used to exchange messages with multiple endpoints. This is sometime referred to as a relayed scenario, in which a client establishes a single link to a relay endpoint over which messages can be exchanged for several endpoints.

For example, consider a message broker hosting queues with addresses “q1” and “q2” and a relay endpoint with address “relay”. To send messages to queues “q1” and “q2”, a client establishes a link with a target address of “relay” and uses the “to” property of messages to specify the desired final address, “q1” or “q2”. This is sometimes referred to as the “anonymous publisher” model. In this example, the broker may require “write” claims for the “relay” as well as for the final destination queues in order to accept a message from the client. Conversely, the broker may be securing just the relay or just the final destination queues. It is assumed that the client is aware of what claims are required through some out-of-band configuration.

In this example, if the relay is being secured then the client application would need to put the token, containing the appropriate claim, to the CBS Node in advance of establishing the link to “relay”. Periodically, before the token expired, the client would need to send a refreshed token in order to be able to continue to exchange messages with the relay. In addition, the client application would need to put appropriate tokens for each target endpoint referenced in the “to” addresses of messages sent via the relay in advance of sending a message.
4 Communicating Tokens
Tokens are communicated between AMQP peers by sending specially-formatted AMQP messages to the Claims-based Security Node. The mechanism follows the scheme defined in the AMQP Management specification [AMQPMAN].
4.1 Putting a Token
A token is sent to the CBS Node by transferring a “put-token” message.

4.1.1 Request Message

The request message has the following application-properties:

	Key
	Optional
	Value Type
	Value Contents

	operation
	No
	string
	“put-token”

	Type
	No
	string
	The type of the token being put, e.g., “amqp:jwt”.

	name
	No
	string
	The “audience” to which the token applies.

	expiration
	Yes
	timestamp
	The expiry time of the token.

The body of the message MUST contain the token. The type of the body is dependent on the type of token being put. The table below lists the body types for common token types:
	Token Type
	Token Description
	Body Type

	amqp:jwt
	JSON Web Token (JWT)
	AMQP Value (string)

	amqp:swt
	Simple Web Token (SWT)
	AMQP Value (string)

4.1.2 Response Message

The response message has the following application-properties:

	Key
	Optional
	Value Type
	Value Contents

	status-code
	No
	int
	HTTP response code [RFC2616].

	status-description
	Yes
	string
	Description of the status.

The body of the message MUST be empty.
If the request was successful then the status-code MUST contain 200.
If the request was unsuccessful due to a processing error, then the status-code SHOULD contain 500 and further information MAY be provided in the status-description.
For error conditions related to the content of the request, e.g., unsupported token type, malformed request etc., the status-code SHOULD contain 400 and a detailed description SHOULD NOT be provided in the status-description, in line with general best practice for security-related protocols.
4.2 Deleting a Token
To instruct a peer to delete a token associated with a specific audience, a “delete-token” message can be sent to the CBS Node
4.2.1 Request Message

The request message has the following application-properties:

	Key
	Mandatory
	Value Type
	Value Contents

	operation
	Yes
	string
	“delete-token”

	Type
	Yes
	string
	The type of the token being deleted, e.g., “amqp:jwt”.

	name
	Yes
	string
	The “audience” of the token being deleted.

The body of the message MUST be empty.

4.2.2 Response Message

The response message has the following application-properties:

	Key
	Mandatory
	Value Type
	Value Contents

	status-code
	Yes
	int
	HTTP response code [RFC2616].

	status-description
	No
	string
	Description of the status.

The body of the message MUST be empty.

If the request was successful then the status-code MUST contain 200.

If the request was unsuccessful due to a processing error then the status-code SHOULD contain 500 and further information MAY be provided in the status-description.

For error conditions related to the content of the request, the status-code SHOULD contain 400 and a detailed description SHOULD NOT be provided in the status-description, in line with general best practice for security-related protocols.

Note that a condition in which the token was not found should be treated as success.

5 TLS and SASL Integration
The claims-based security scheme composes with the TLS and SASL security foundation described in [AMQP].
Security tokens used with this scheme are issued with permission to establish and subsequently exchange messages over a link. Unless the tokens are explicitly handled as one-time tokens, interception of a valid token could allow an attacker to gain access to the node.
This claims-based security scheme SHOULD therefore be used with TLS as defined in [AMQP], or the communication path should otherwise be protected through lower-level mechanisms such as IPSec.
This scheme can be combined with SASL mechanisms depending on the protection needs.

5.1 Integration with common SASL mechanisms

5.1.1 SASL ANONYMOUS
The peer acting as TCP Server MAY offer SASL ANONYMOUS in the SASL handshake, allowing the peer acting as TCP Client to establish an anonymous initial connection, a session, and a link with the Resource Manager for interaction with the CBS Node.
Allowing SASL ANONYMOUS carries the risk of allowing unauthenticated clients to open and maintain (potentially very many) connections with the server, leading to significant resource consumption, which is a potential denial-of-service threat vector.
It is therefore recommended that the server only allows such anonymously connections to be maintained for as long as required to perform an initial successful CBS “put-token” operation. Typically, this will be a narrow time window of up to 30 seconds, and much shorter in environments with negligible latency.
5.1.2 SASL EXTERNAL
The peer acting as TCP Server MAY offer SASL EXTERNAL in the SASL handshake, if the underlying transport session from the Client has been established using some form of client authentication, such as TLS with X509 client certificates, TLS with pre-shared symmetric key, or raw-public-key credentials, or IPSec with equivalent credentials.
In this case, the transport session authentication provides protection for the initial connection, session, and link to the Resource Manager, while the claims-based security scheme specifically protects access to the Nodes managed by the Resource Manager.
5.1.3 SASL PLAIN and Others

The peer acting as TCP Server MAY offer SASL PLAIN or any other SASL mechanism in the SASL handshake that is suitable to establish an authenticated context between the peers.

The authentication context provides protection for the initial connection, session, and link to the Resource Manager, while the claims-based security scheme specifically protects access to the Nodes managed by the Resource Manager.
5.2 SASL AMQPCBS Mechanism
The AMQPCBS mechanism is a specialized SASL mechanism that integrates the AMQP CBS capability with the SASL handshake.

As the SASL handshake details may be handled by libraries that don’t understand AMQP encoding, the payload for the SASL handshake defined here do not use AMQP encoding.
The mechanism consists of a challenge response message, a string of [UTF-8] encoded [Unicode] characters, from the client to the server, and an outcome message.

Responding to an empty challenge, the client transfers a list of tokens, equivalent to a sequence of “put-token” operations as defined above for the in-band AMQP flow.

The challenge response starts with a counter value, a textual representation of an integer number in the value range from 1 to 255, followed by a NUL (U+0000) character. The counter indicates the number of rows that follow.

Each row in the transferred list contains token type, token name (audience), and the expiration, followed by the token values. These values are all expressed as strings. The expiration timestamp is expressed as a ISO 8601 string value. Each value is followed by a NUL (U+0000) character. There is no special row separator.

The formal grammar for the challenge response message using Augmented BNF [ABNF] follows [TODO]
[BNF]

All fields, and NUL character delimiters SHALL be transferred as [UTF-8] encoded strings of [Unicode] characters. As the NUL (U+0000) character is used as a delimiter, the NUL (U+0000) character MUST NOT appear in fields.
The outcome response defines additional data for the case that the authentication is not successful. The response consists of a list of error message strings for those tokens that caused the authentication to fail. Tokens that could successfully authenticated have empty entries in the returned list.
The outcome response starts with a counter value, a textual representation of an integer number in the value range from 1 to 255, followed by a NUL (U+0000) character. The counter indicates the number of strings that follow. The count and order of strings in the outcome response MUST match the count and order of tokens that were submitted in the challenge response.
Each error message is followed by a NUL (U+0000) character. An empty (success) message is represented only by the terminating NUL (U+0000) character.
The formal grammar for the outcome response message using Augmented BNF [ABNF] follows [TODO]

[BNF]
6 Error Cases

// TODO: Add error cases

7 Examples

// TODO: Add Examples

8 Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here.
Appendix A. Acknowledgments

TODO: update this before we ship.

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Rob Dolin, Microsoft

Robert Godfrey, JP Morgan

David Ingham, Microsoft

Andreas Moravec, Deutsche Boerse AGRafael Schloming, Red Hat

Jakub Scholz, Deutsche Boerse AG

The following individuals were members of the OASIS Advanced Message Queueing Protocol (AMQP) Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:
Sanjay Aiyagari, VMware, Inc.

Matthew Arrott, Individual

Allan Beck, JPMorgan Chase Bank, N.A.

Laurie Bryson, JPMorgan Chase Bank, N.A.

Raphael Cohn, Individual

Rob Dolin, Microsoft

Robert Gemmell, JPMorgan Chase Bank, N.A.

Rob Godfrey, JPMorgan Chase Bank, N.A.

William Henry, Red Hat

Steve Huston, Individual

David Ingham, Microsoft

Ram Jeyaraman, Microsoft

James Kirkland, Red Hat

Alex Kritikos, Software AG, Inc.

Dale Moberg, Axway Software

Andreas Moravec, Deutsche Boerse AG

Suryanarayanan Nagarajan, Software AG, Inc.

John O'Hara, Individual

Jonathan Poulter, Kaazing

Sandeep Puri, Cisco Systems

Oleksandr Rudyy, JPMorgan Chase Bank, N.A.

Rafael Schloming, Red Hat

Jakub Scholz, Deutsche Boerse AG

Angus Telfer, INETCO Systems Ltd.

Wolf Tombe, US Department of Homeland Security

Appendix B. Revision History

	Revision
	Date
	Editor
	Changes Made

	[Rev number]
	[Rev Date]
	[Modified By]
	[Summary of Changes]

�I believe “Token-based authorization” were a more appropriate and precise description.

�The token is commonly the result of an authentication act.

�The “bearer token” refers to the fact that anyone is possession of the token can use it and that it is not tied to a particular, narrow context. The token does not have to identify the user, at all.

�They MAY have an expiry time. This spec shouldn’t implicitly or explicitly mandate expiration.

�The token is being authenticated by ways of verifying the signing key. Whether that establishes a user context by ways of trusting the party who signed the token shouldn’t be a central concern in this spec – it could explicitly be mentioned as an example.

amqp-cbs-v1.0-wd02
Working Draft 01
12 August 2013
Standards Track Draft
Copyright © OASIS Open 2013. All Rights Reserved.
Page 4 of 14

Resource Manager
Client
$cbs
q1
connection
CBS request link
q1 send link
CBS response link
/tmp

