
Advanced Message Queuing Protocol (AMQP) Claims-based Security Version 1.0
Working Draft 07
12 February 2019
Technical Committee:

OASIS Advanced Message Queuing Protocol (AMQP) TC
Chairs:

Rob Godfrey (rgodfrey@redhat.com), Red Hat
Clemens Vasters (clemensv@microsoft.com), Microsoft
Editors:

Clemens Vasters (clemensv@microsoft.com), Microsoft
Additional artifacts:

This prose specification is one component of a Work Product which also includes:
· XML schemas: (list file names or directory name)

· Other parts (list titles and/or file names)

Related work:

This specification is related to:
· OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0 Part 0: Overview. 29 October 2012. OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.
Abstract:

This specification describes an AMQP authorization scheme based on claims-based security tokens.
Status:

This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
Initial URI pattern:

http://docs.oasis-open.org/amqp/amqp-cbs/v1.0/csd01/amqp-cbs-v1.0-csd01.doc
(Managed by OASIS TC Administration; please don’t modify.)
Copyright © OASIS Open 2013. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
41
Introduction

41.1 Terminology

51.2 Normative References

61.3 Non-Normative References

62
Overview

72.1 Interaction Model

82.2 Client Model

92.3 Scenarios

92.3.1 Link-based

92.3.2 Message-based

93
Communicating Tokens

93.1 Connection Capability

103.2 Establishing a Link

103.3 Putting a Token

103.3.1 put-token Message

113.3.2 Indication of Settlement

113.4 Deleting a Token

113.4.1 delete-token Message

113.4.2 Indication of Settlement

124
TLS and SASL Integration

124.1 Integration with common SASL mechanisms

124.1.1 SASL ANONYMOUS

124.1.2 SASL EXTERNAL

124.1.3 SASL PLAIN and Others

134.2 SASL AMQPCBS Mechanism

134.2.1 SASL and MIN_MAX_FRAME_SIZE

134.2.2 SASL Init

134.2.3 SASL Challenge

144.2.4 SASL Response

144.2.5 SASL Outcome

145
Conformance

15Appendix A.
Acknowledgments

16Appendix B.
Revision History

1 Introduction
This specification defines a claims-based security (CBS) extension for authorizing interactions with AMQP 1.0 [AMQP] containers and nodes.
The goals for this extension are:
1. To support fine-grained claims-based access control for interactions with containers and nodes within the scope of an AMQP connection.

2. To work with existing AMQP client libraries without low-level changes.

To satisfy these goals, a layered protocol is defined to exchange claims tokens over an AMQP connection. This protocol uses a dedicated link to a special claims-based security node, over which tokens are transferred as standard AMQP messages with a well-defined structure.

A non-goal for this specification is the runtime negotiation and configuration of CBS for a specific connection. It is assumed that applications will be configured out-of-band with the knowledge as to when claims-based security is to be used and what options are supported, e.g., which claim token type is to be used.
1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, "NOT RECOMMENDED", “MAY”, and “OPTIONAL” in this document are to be interpreted as described in BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Claim:
A claim is asserted information about a subject by an issuer. It can be evaluated during an authorization process to determine access rights to protected resources. A claim is represented as a name-value pair.
Token:
A token contains one or more claims. It may be digitally signed by the issuer so that it can be verified by the receiver. The tokens in this specification are bearer tokens where possession of the token authorizes the bearer to access the resource indicated by the token. Examples of commonly-used formats and encodings for tokens include JSON Web Token (JWT) [RFC7519], Security Assertion Markup Language (SAML) [SAMLCore], and Simple Web Token (SWT) [SWT].
Token Expiry:
Token expiry is the lifetime (expiration date) for the token after which it must not be accepted. This limits the exposure of the token if it is compromised.
Token Type:
Tokens are assigned a type to allow the receiver to identify the specific claims format and encoding for the token. Types are represented as strings that observe the same namespace convention for types defined in the core AMQP specification. Standard token types have names prefixed with “amqp:”, e.g., the type of a JSON Web Token is represented as “amqp:jwt”. It is recommended that proprietary token types are named using a reverse domain name prefix, e.g., “acme.com:acmetoken”. A registry of commonly defined token types and their meanings is maintained [AMQPTOKENS].

Roles:
AMQP is a symmetric peer-to-peer protocol that can be used in a variety of topologies, e.g., client-to-client, client-to-broker and broker-to-broker. This specification is applicable to all these different usage patterns. For the purposes of illustration, this specification defines two roles: Resource Manager and Client. Be aware however, that in some topologies, e.g., broker-to-broker, both endpoints could play both roles.

Resource Manager:
A Resource Manager is a conceptual entity associated with an AMQP container that manages AMQP nodes and uses claims-based security to authorize access to them. A CBS-based message broker managing queues is an example of a Resource Manager.

Claims-based Security Node:
A claims-based security Node (CBS Node) is an AMQP endpoint responsible for managing tokens. Each Resource Manager MUST provide a CBS Node with the address “$cbs”.

Client:
A Client is an application program hosting an AMQP container that is sending messages to, and/or receiving messages from, AMQP nodes hosted in a Resource Manager.

1.2 Normative References

[AMQP]
Godfrey, R., Ingham, D., Schloming, R., “Advanced Message Queuing Protocol (AMQP) Version 1.0”, October 2012. OASIS Standard.
https://www.oasis-open.org/standards#amqpv1.0

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
<http://www.rfc-editor.org/info/rfc2119>

[RFC3339]
Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002.

<http://www.rfc-editor.org/info/rfc3339>

[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November 2003.

<http://www.rfc-editor.org/info/rfc3629>

[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI 10.17487/RFC4301, December 2005.

<http://www.rfc-editor.org/info/rfc4301>
[RFC4422]
Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple Authentication and Security Layer (SASL)", RFC 4422, DOI 10.17487/RFC4422, June 2006.

<http://www.rfc-editor.org/info/rfc4422>

[RFC5234]
Crocker, D., Ed., and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008.

<http://www.rfc-editor.org/info/rfc5234>
[RFC7519]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015.
<http://www.rfc-editor.org/info/rfc7519>
[RFC8174]
Leiba, B., “Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words”, RFC 8174, DOI 10.17487/RFC8174, May 2017.

<http://www.rfc-editor.org/info/rfc8174>
[SAMLCore]
S. Cantor et al. “Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0”, OASIS SSTC, March 2005. Document ID
samlcore-2.0-os.

<http://www.oasis-open.org/committees/security/>
[SWT]
Hardt D., Goland Y., “Simple Web Token (SWT)”, November 2009.
http://msdn.microsoft.com/en-us/library/windowsazure/hh781551.aspx
1.3 Non-Normative References

[AMQPTOKENS]
AMQP Capabilities Registry: Token Types.
http://www.amqp.org/amqp-cbs/1.0/token-types
Overview

While some message brokers maintain internal account databases and manage local access control lists for the resources they offer, modern cloud platform systems typically separate identity management and authentication, authorization management, and resource interactions into distinct system services, with obvious benefits:
· User and service identities can be centrally managed and are usable with many different services.
· Authorization permissions or roles can be managed with consistent APIs and user experiences across multiple services, also allowing for standardized roles and permissions that apply uniformly to similar features.
· The burden of processing authorization requests is offloaded to a distinct service and the result of the authorization action is captured into reusable tokens that can be efficiently evaluated by the service providing the desired resources.

Some systems use the OpenID Connect [OPENID] to interact with authentication services. The resulting identity tokens might then be passed on to an OAuth 2.0 [OAUTH2] authorization service which issues JWT [JWT] access tokens for the desired resource to the client.

In other systems, the identity is established through some out-of-band method and manifests in the client being in possession of a key or key pair, sometimes held inside a signed X.509 [X509] certificate. The key material is then used to sign authorization requests, and the authorization server might return a SAML [SAML] token.

In either model, the resulting authorization token is an opaque character sequence that the client typically does not need to understand. Any metadata that the client needs for follow-up work, such as the instant at which the token expires and must be replaced, is typically returned separately such that the client can understand it without parsing the token.
In systems like these, the resource service and authorization service will generally have a private trust relationship that has been established via some out-of-band method, and that relationship typically manifests in the resource service and the authorization service agreeing on a token format and sharing key material that allows the resource service to validate the tokens issued by the authorization service.

The AMQP-based claims-based security (CBS) protocol scheme described in this document serves to pass one or multiple issued authorization tokens to an AMQP container. Tokens can be passed either during the SASL-based connection authentication and authorization handshake or at any time later while a connection persists.
When using CBS, an AMQP container maintains a connection-scoped token cache. The CBS protocol is used to manage the contents of this token cache, including replacing expiring tokens. When the connected client interacts with nodes inside the container, the container consults the token cache, locating a token that corresponds to the given node, and determines whether the token is valid and contains an authorization claim that permits the desired operation.

Links that have been established based on the evaluation of a token from the token cache SHOULD be terminated when the token expires UNLESS the token cache holds a renewed and valid token at the time of expiration. Being able to renew tokens for ongoing links is the main motivation for the token cache and not attaching tokens to the “attach” performative.
1.4 Interaction Model
The claims-based security scheme is designed to be usable with existing AMQP client libraries that do not necessarily have any knowledge of claims-based security. To achieve this, the scheme is realized as a layered protocol that can be implemented in application code or incorporated into client libraries.

CBS composes with the security model defined in [AMQP]. An AMQP connection that uses CBS can be established without any authentication context, or the peers can mandate authentication at the transport level and/or use a supported SASL mechanism.

The basic interactions are illustrated in Figure 1:

Access to node “q1” is governed by a Resource Manager. This Resource Manager governs the scope of the AMQP container of the AMQP node “q1”. The Resource Manager’s CBS endpoint uses the reserved node name” $cbs”.

Before the Client can send messages to “q1”, it needs to establish authorization for “send” access to “queue1”.

During connection setup, the Client will establish a connection-level authorization context and then verify the availability of the CBS capability. If CBS is offered as available, the Client then establishes a send link with the Resource Manager’s CBS node.

After a link is established between the Client and the CBS Node, the Client can put tokens on the CBS Node and receives dispositions from the CBS Node that indicate acceptance or rejection of the tokens.
Before the Client establishes a link or sends messages to “q1”, it puts a token with the appropriate claims conferring “send” permission to “q1” on the CBS Node, and verifies its successful disposition. Tokens can be put at any time, and expiring tokens can be replaced at any time.
When a link is established with “q1” or a message is routed to “q1” via the anonymous terminus, the Resource Manager performs a lookup on the CBS token cache and evaluates the token for “q1”. If the token is valid and confers the required permission, the link attachment or routing operation is permitted.
Because CBS is connection-scoped, that is, the link to the CBS Node MUST be made over the same connection as the links to the nodes that are secured using CBS. There are no restrictions regarding the number of sessions used or the association of links to sessions. When the connection terminates, the token cache and all associated tokens are dropped.
For reattaching links after a connection has been terminated, the client MUST again provide a set of tokens on the new connection. Those tokens MAY stem from a client-held cache.

[image: image1.emf]Resource Manager Client

$cbs

q1

connection

Client puts token

q1 send link

CBS Node returns disposition

Figure 1: Overview

The claims-based security scheme also defines an optional, custom SASL mechanism [RFC4422], “AMQPCBS”, that allows seeding the connection with an initial set of tokens. AMQPCBS optimizes the initial handshake, allowing one or more tokens to be set on the Resource Manager as the connection is created. If AMQPCBS is advertised and selected, then subsequent AMQP put-token messages may add to or replace tokens initially seeded using AMQPCBS. Using SASL AMQPCBS also allows for the connection to be protected by tokens rather than requiring some additional connection-level credential verification.
1.5 Client Model

This document does neither define an authentication or authorization protocol nor does it impose any restrictions on protocol choices other than requiring a minimal set of inputs and outputs.
The assumption made for the CBS scheme is that the client programming model encapsulates the token acquisition with a “token provider” abstraction.
The input to the token provider is

1) an AMQP URL that identifies the container (and possibly the node) for which access is requested
2) a maximum duration for the validity of the acquired token

The output from the token provider is

1) opaque access token (string or binary)

2) a UTC timestamp indicating the expiration of the token

Since the CBS scheme allows for replacing tokens for links that have already been established, the client SHOULD track the expiration times of tokens it has placed into the token cache and SHOULD acquire a new token before the prior token expires and place the replacement into the cache.
The token provider model as an abstraction allows for client implementations to perform that acquisition silently for as long as the authentication proof or authorization refresh token is valid.

1.6 Scenarios

Link-based and Message-based scenarios are basic use cases for claims-based security, but other potential scenarios may exist.
1.6.1 Link-based

In this scenario, a single link is being used to exchange messages with a single endpoint and access to this endpoint is controlled by claims-based security. To be able to exchange messages over a link to that endpoint, an appropriate valid claim is required to be in place.

For example, a message broker hosting a queue with address “q1”, could require a “receive” claim to receive messages and a “send” claim to send messages. In this example, a Client would need to put a token, containing the appropriate claim, to the CBS Node in advance of establishing the link to “q1”. Periodically, before the token expires, the client would need to put a refreshed token on the CBS Node for “q1” to be able to continue to exchange messages.

1.6.2 Message-based

In this scenario, a single link is being used to exchange messages with multiple endpoints. This is referred to as a relayed scenario, in which a client establishes a single link to a relay endpoint over which messages can be exchanged for several endpoints.

For example, consider a message broker hosting queues with addresses “q1” and “q2” and a relay endpoint with address “relay”. To send messages to queues “q1” and “q2”, a client establishes a link with a target address of “relay” and uses the “to” property of messages to specify the desired final address, “q1” or “q2”. This is sometimes referred to as the “anonymous terminus” model.
In this example, the broker may require “send” claims for the “relay” as well as for the final destination queues in order to accept a message from the client. Conversely, the broker may secure just the relay or just the final destination queues. It is assumed that the client is aware of what claims are required through some out-of-band configuration.

In this example, if the relay is secured, then the Client would need to put the token containing the appropriate claim to the CBS Node in advance of establishing the link to “relay”. Periodically, before the token expires, the client would need to send a refreshed token to be able to continue to exchange messages with the relay. In addition, the Client would need to put appropriate tokens for each target endpoint referenced in the “to” addresses of messages sent via the relay in advance of sending a message.

A special case is the AMQP Anonymous Terminus [AMQP-AT], which uses the special node name “null”. For establishing and maintaining a link to the Anonymous Terminus under CBS, it is sufficient that the CBS token cache contains at least one valid token for any target node as per the container’s interpretation. The Anonymous Terminus can subsequently be used to route messages to target nodes for which valid tokens are available.
Communicating Tokens
Tokens are communicated between AMQP peers by transferring well-defined AMQP messages to the CBS Node. The incoming transfers are spontaneously settled and a disposition outcome is returned.
1.7 Connection Capability

On connection establishment, a peer MUST indicate whether it supports claims-based security through the exchange of connection capabilities (see Section 2.7.1 [[AMQP]]).

	Capability Name
	Definition

	AMQP_CBS_V1_0
	If present in the offered-capabilities field of the open frame, the sender of the open supports the use of claims-based security by its receiver. If present in the desired-capabilities field of the open frame, the sender of the open MUST use claims-based security if the receiver of the open supports this capability.

The container offering the AMQP_CBS_V1_0 capability MUST provide a CBS Node with address $cbs.
1.8 Establishing a Link
The link for communicating tokens to the Resource Manager is established with the $cbs target.

An implementation MAY make access to the $cbs node conditional on a lower-level access control scheme, for instance it may require having established an authorized SASL authentication context.

Typically, the lower-level authorization context will be established with SASL ANONYMOUS, granting anyone permission to put tokens on the CBS node with the intent of establishing CBS-scoped authorization contexts. When allowing anonymous access, an implementation SHOULD constrain the time during which the connection and the link may exist without a valid token havening been put.
A link MAY be established with the Anonymous Terminus and messages MAY be routed to the $cbs node via the Anonymous Terminus, under the condition that the link is established in conformance with the rules laid out in this section.

In the attach frame for the sender role from the Client:
· the snd-settle-mode field SHOULD be set to unsettled
· the rcv-settle-mode field MUST be set to first
· the outcome field of the source field MUST contain amqp:accepted:list and amqp:rejected:list which are the only outcomes supported by the CBS Node

In the attach frame for the receiver role from the CBS Node:

· the rcv-settle-mode field MUST be set to first
· the durable field of the target field MUST be set to none. (The CBS Node does not support link resumption)

1.9 Putting a Token
A token is cached on the CBS Node by transferring a “put-token” message. An existing token in the cache can be replaced with a new token using the same name application-property without affecting current links that were previously authorized by the existing token.
1.9.1 put-token Message

The put-token message has the following application-properties:

	Key
	Optional
	Value Type
	Value Contents

	operation
	No
	string
	“put-token”

	type
	No
	string
	The type of the token being put, e.g., “amqp:jwt”.

	name
	No
	string
	The name represents the node name (key) that is mapped to the token (value) in the token cache. Each name can map to at most one token. Nodes use their name to locate a token to authorize incoming connections. When the value of name is an empty string, then it is treated as a wild-card value and all nodes can use the mapped token.

	expiration
	Yes
	timestamp
	The expiry time of the token.

The body of the message MUST contain the token. The type of the body is dependent on the type of token being put. The table below lists the body types for common token types:
	Token Type
	Token Description
	Body Type

	amqp:jwt
	JSON Web Token (JWT)
	AMQP Value (string)

	amqp:saml
	Security Assertion Markup Language (SAML)
	AMQP Value (string)

	amqp:swt
	Simple Web Token (SWT)
	AMQP Value (string)

1.9.2 Indication of Settlement

If the request is successful, the CBS Node MUST respond to the Client with a disposition outcome of accepted.

If the request is unsuccessful due to a processing error, the CBS Node MUST respond to the Client with a disposition outcome of rejected. Further information MAY be provided in the error field in the rejected outcome.

For error conditions related to the content of the request, e.g., unsupported token type, malformed request etc., an application-specific description MAY be provided in the error field, with consideration for general best practice for security-related protocols.

1.10 Deleting a Token
A token is deleted on the CBS Node by transferring a “delete-token” message. A token can be deleted without affecting current links that were previously authorized by this token.
1.10.1 delete-token Message

The delete-token message has the following application-properties:

	Key
	Mandatory
	Value Type
	Value Contents

	operation
	Yes
	string
	“delete-token”

	
	
	
	

	name
	Yes
	string
	The name represents the node name (key) that is mapped to the token (value) in the token cache.

The body of the message MUST be empty.

1.10.2 Indication of Settlement
If the request is successful or the name is not mapped to a token in the token cache, the CBS Node MUST respond to the Client with a disposition outcome of accepted.
If the request is unsuccessful due to a processing error, the CBS Node MUST respond to the Client with a disposition outcome of rejected. Further information MAY be provided in the error field in the rejected outcome.

For error conditions related to the content of the request, e.g., unsupported token type, malformed request etc., an application-specific description MAY be provided in the error field, with consideration for general best practice for security-related protocols.
2 TLS and SASL Integration

The claims-based security scheme composes with the TLS and SASL security foundation described in [AMQP]. Security tokens used with this scheme are issued with permission to establish and subsequently exchange messages over a link. Unless the tokens are explicitly managed as one-time tokens, interception of a valid token could allow an attacker to gain access to the node.

This claims-based security scheme SHOULD be used with TLS as defined in [AMQP] or the communication path SHOULD otherwise be protected through lower-level mechanisms such as IPSec [RFC4301].
2.1 Integration with common SASL mechanisms

The claims-based security scheme can be combined with SASL mechanisms depending on the protection needs.

The peer playing the role of the SASL client and the peer playing the role of the SASL server MUST correspond to the TCP client and server respectively.

2.1.1 SASL ANONYMOUS

The peer acting as the SASL server MAY announce the SASL mechanism ANONYMOUS in the sasl-mechanisms frame body, allowing the peer acting as the SASL Client to establish an anonymous initial connection, a session, and a link with the Resource Manager for interaction with the CBS Node.

Allowing ANONYMOUS carries the risk of allowing unauthenticated clients to open and maintain (potentially very many) connections with the server, leading to significant resource consumption, which is a potential denial-of-service threat vector.

It is RECOMMENDED that the server only allows anonymous connections to be maintained for the duration required to perform an initial successful CBS put-token operation. Typically, this will be a narrow time window of up to 30 seconds, or much shorter in environments with negligible latency.

2.1.2 SASL EXTERNAL

The peer acting as the SASL server MAY announce the SASL mechanism EXTERNAL in the sasl-mechanisms frame body, if the underlying transport session from the peer acting as the SASL client has been established using some form of client authentication, such as TLS with X509 client certificates, TLS with pre-shared symmetric key, or raw-public-key credentials, or IPSec with equivalent credentials.

In this case, the transport session authentication provides protection for the initial connection, session, and link to the Resource Manager, while the claims-based security scheme specifically protects access to the Nodes managed by the Resource Manager.

2.1.3 SASL PLAIN and Others

The peer acting as the SASL server MAY announce the SASL mechanism PLAIN or any other SASL mechanism in the sasl-mechanisms frame body that is suitable to establish an authenticated context between the peers.

The authentication context provides protection for the initial connection, session, and link to the Resource Manager, while the claims-based security scheme specifically protects access to the Nodes managed by the Resource Manager.

2.2 SASL AMQPCBS Mechanism

The peer acting as the SASL server MAY announce the SASL mechanism AMQPCBS in the sasl-mechanisms frame body. This mechanism integrates AMQP CBS capabilities into the SASL authentication exchange.

2.2.1 SASL and MIN_MAX_FRAME_SIZE

As defined in Section 5.31 of [AMQP]:

The maximum size of a SASL frame is defined by MIN-MAX-FRAME-SIZE. There is no mechanism within the SASL negotiation to negotiate a different size.

Due to the requirement to transfer potentially large sets of tokens during the SASL exchange, implementations of the AMQPCBS SASL mechanism MUST support a maximum SASL frame size of 8192.

2.2.2 SASL Init

After receiving the SASL Mechanism, the peer acting as the SASL client MUST send a SASL Init with AMQPCBS selected in the mechanism field and response data returned in the initial-response field of the sasl-init frame body. The response data is a list of tokens, equivalent to an ordered sequence of put-token messages as described in Putting a Token.

The formal grammar for the response field using ABNF [RFC5234] follows:

NUL

= %x00
NON-NULL-UTF8

= *(%x01-7F / UTF8-2 / UTF8-3 / UTF8-4)
TOKEN-NAME

= NON-NULL-UTF8 NUL

TOKEN-TYPE

= NON-NULL-UTF8 NUL
TOKEN-EXPIRY

= date-time NUL
TOKEN-VALUE

= NON-NULL-UTF8 NUL

TOKEN

= TOKEN-NAME TOKEN-TYPE TOKEN-EXPIRY TOKEN-VALUE

RESPONSE

= 1*TOKEN NUL NUL
The response data is an ordered list of tokens. Each token in the list is composed of a token name (audience), token type, and token expiry ([RFC3339] format), and token values. All elements are encoded as UTF-8 strings [RFC3629] followed by a NUL (%x00) character. There is no special row separator.
If the response data contains the complete list of tokens, then the last token is followed by two NUL characters. The
peer acting as the SASL server MUST then send a SASL Outcome.
If the list of tokens exceeds the MIN-MAX-FRAME-SIZE, additional SASL Challenge-Response pairs MUST be exchanged until all tokens have been received or an error occurs. Then the peer acting as the SASL server MUST send a SASL Outcome.

The primary scenario for the AMQPCBS SASL mechanism is seeding a token cache. The tokens are not validated until used. The peer acting as the SASL server simply reads and caches all the tokens.
2.2.3 SASL Challenge

In response to receiving a partial list of tokens in the SASL Init or SASL Response, the peer acting as the SASL server MUST send a SASL Challenge with no challenge security data in the challenge field of the sasl-challenge frame body to continue the exchange. Otherwise, it MUST send a SASL Outcome indicating that the exchange was unsuccessful as described in SASL Outcome.
2.2.4 SASL Response

After receiving the SASL Challenge, the peer acting as the SASL client MUST send a SASL Response. The response data in the response field of the sasl-response frame body contains a list of tokens, equivalent to an ordered sequence of put-token messages as described in Putting a Token.

The formal grammar and the response data for the response field is the same as described in SASL Init.

If the response data contains the remaining tokens, then the last token is followed by two NUL characters. The peer acting as the SASL server MUST then send a SASL Outcome; otherwise, additional SASL Challenge-Response pairs MUST be exchanged until all tokens have been received or an error occurs. Then the peer acting as the SASL server MUST send a SASL Outcome.
2.2.5 SASL Outcome

When the SASL exchange is complete or an error occurs, the peer acting as the SASL server MUST send a SASL Outcome, indicating the outcome in the code field in the sasl-outcome frame body. If the exchange is successful, the code field MUST be set to 0; otherwise, the code field MUST be set to one of the failure codes defined by the sasl-code type. No data is returned in the additional-data field in the sasl-outcome frame body.

3 Conformance

The last numbered section in the specification must be the Conformance section. Conformance Statements/Clauses go here.
Appendix A. Acknowledgments

TODO: update this before we ship.

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
Rob Dolin, Microsoft

Robert Godfrey, JP Morgan

David Ingham, Microsoft

Andreas Moravec, Deutsche Boerse AG
Rafael Schloming, Red Hat

Jakub Scholz, Deutsche Boerse AG

The following individuals were members of the OASIS Advanced Message Queueing Protocol (AMQP) Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:
Appendix B. Revision History

	Revision
	Date
	Editor
	Changes Made

	WD03
	March 31 2017
	Clemens Vasters
	Added TLS and SASL Integration

Added AMQPCBS SASL Mechanism

	WD03
	March 31 2017
	Brian Raymor
	Updated Normative References
Moved Concepts to Terminology section
Rewrote CBS interactions to use Disposition
Added Connection Capability for CBS

Drafted ABNF for SASL Mechanism

Updated AMQPCBS SASL Mechanism to support multiple challenge-response exchanges

	WD04
	July 27 2017
	Brian Raymor
	AMQP-100 Increasing MIN-MAX-FRAME-SIZE for SASL AMQPCBS
AMQP-101 Added amqp:sasl as standard token type
AMQP-102 Detailed descriptions for error conditions related to content
AMQP-103 Removed Type field from delete-token
AMQP-104 SASL Outcome: differentiating application-data based on code
AMQP-105 AMQPCBS: Indicating that multiple challenge-responses are required to transmit token set

AMQP-107 Clarifying definition for Token Name (audience)?

AMQP-115 "Type" should be "type" in put-token and delete-token application-properties
AMQP-116 Clarify: putting the same token multiple times
AMQP-119 Deleting tokens
AMQP-120 Make the address "$cbs" more explicit

AMQP-122 Are there any restrictions on token names
Updated Terminology section to include the RFC8174 BCP update

�Original editors – WD02

Rob Dolin (� HYPERLINK "mailto:RobDolin@microsoft.com" �RobDolin@microsoft.com�), � HYPERLINK "http://www.microsoft.com/" ��Microsoft�

Rob Godfrey (� HYPERLINK "mailto:rgodfrey@redhat.com" �rgodfrey@redhat.com�), � HYPERLINK "http://www.redhat.com/" �Red Hat�

David Ingham (� HYPERLINK "mailto:dingham@redhat.com" �dingham@redhat.com�), Red Hat

Rafael Schloming (� HYPERLINK "mailto:rafaels@redhat.com" �rafaels@redhat.com�), � HYPERLINK "http://www.redhat.com/" ��Red Hat�

amqp-cbs-v1.0-wd07
Working Draft 07
12 February 2019
Standards Track Draft
Copyright © OASIS Open 2019. All Rights Reserved.
Page 14 of 14

Resource Manager
Client
$cbs
q1
connection
Client puts token
q1 send link
CBS Node returns disposition

