
W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 152–167, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Contracting Workflows and Protocol Patterns

Andries van Dijk

 Deloitte & Touche Management & ICT Consultants, Postbus 300,
1180 AH, Amstelveen, The Netherlands

anvandijk@deloitte.nl

Abstract. Inter-organizational business processes often involve contracting. ICT
solutions for contracting processes must offer high flexibility in changing the
structure of the contracting process. This can be achieved by ‘process-aware’
software components which are configured by an explicit model of the con-
tracting process: the contracting workflow. However, the design of a contracting
workflow from scratch is a complex task. We propose a solution in which con-
tracting workflows are composed from standard building blocks and show that
protocol patterns for business transaction protocols are a necessity for making
these standard building blocks available. Finally, we propose a number of proto-
col patterns for the negotiation phase in a transaction.

1 Electronic Contracting

Inter-organizational business processes often involve contracting. When one organiza-
tion buys something from another organization, a distinction between ‘products’ and
‘services’ is often made. Although products and services differ in many ways, the
question is whether these differences are relevant from the perspective of the con-
tracting process. This question is answered by for instance Normann and Ramirez [7],
who state “whether customers buy a ‘product’ or a ‘service’, they really buy access to
resources”. Hence, the authors use the term ‘offering’ to refer to both ‘product’ and
‘service’. Others, like Merz et al [6], have the same approach when they consider
payments and tangible goods as services too. In this paper, we will use the term
‘service’ as a synonym for both ‘product’ and ‘service’.

Service contracting involves information exchange between partners, for which elec-
tronic communication is one of the options. The term ‘electronic contracting’ was
already mentioned by Lee in 1988 [5]. In this paper, we define a ‘contract’ as ‘an
agreement between two parties in which the mutual obligations are stated’. Further-
more, we define the term ‘electronic contracting’ as ‘a contracting process in which
the communication between parties is performed by electronic means and in which the
processes at the involved parties are supported by computer applications.’ The term
‘electronic contracting’ is used for a variety of phenomena. This paper is focused on a

Contracting Workflows and Protocol Patterns 153

specific part of this area, which is demarcated by the following characteristics that
define a class of service contracting processes.

• Loosely coupled organizations
We assume a relationship between service clients and service providers where all
communication is performed by exchanging structured messages, of which only
the data types (static aspects) and constraints on the sequence of message types
(dynamic aspects) are mutually agreed. We assume no knowledge of each others
business processes for the participating organizations.

• Buyer side only
Electronic contracting of services always involves a buyer (client) and a seller
(provider). Although these parties communicate via a common message protocol,
they execute different processes. This paper focuses on the contracting workflow
executed by the buyer (service client). The seller (service provider) is treated as a
black box, of which only the external interface (transaction protocol) is known.

• Multiple required services, Multiple available providers
A contracting process is performed for a business case in the enterprise informa-
tion system. This paper focuses on the more complex contracting processes where
each business case requires N different services to be contracted, for which M dif-
ferent service providers are available.

• Dependencies between services
We assume dependencies between required services that define the order in which
services must be contracted. For example, service B must be contracted when
service A has been completed (sequential relation). Or, service B must be con-
tracted only if service A could not be contracted (alternative relation).

Apart from a demarcation of the class of processes under consideration, we further
limit the scope of this paper by focusing on the dynamic aspects of contracting proc-
esses only. Data aspects involved in contracting processes, for instance deriving the
details of required services from case data or evaluating a received offer, are not in the
scope of this paper. A framework for capturing the data aspects of contracting proc-
esses is given by Van Dijk [3].

2 Modeling Technique and Approach

Different approaches have been proposed for modeling of the communication between
partners in a buying process. In this paper, we view contracting processes as inter-
organizational workflows and use Petri Nets as modeling technique. This choice is
made for the following reasons.

154 A. van Dijk

• Workflow management techniques based on Petri Nets have a sound theoretical
basis and have been successfully applied to internal business processes like shown
by Van der Aalst and Van Hee [1]. Since business processes are becoming inter-
organizational increasingly, the application of workflow management techniques
to inter-organizational processes is an obvious choice.

• Workflow management techniques have proven to be a good solution for repeat-
ing, well-structured and potentially long-running processes. The character of the
demarcated class of service contracting processes has many similarities with this
kind of processes.

• Workflow management techniques are increasingly integrated in software tools for
electronic messaging. Apparently, the market recognizes the usefulness of
workflow management in combination with electronic business.

internal workflow

Service
Provider

Service
Provider

contracting workflow

…..

message exchange
defined by
transaction protocols}

Fig. 1. Position of Contracting Workflow and Transaction Protocols

Clearly, a contracting workflow that involves multiple required services, each of
which is controlled by a transaction protocol with multiple messages, can grow to a
complexity where it is very difficult for a user to design this workflow from scratch.
We therefore propose the following approach.

1. We define a standard high-level workflow structure for the contracting process of a
single service (see section 3). The tasks in this high-level workflow need further
refinement by replacing it by a sub-net. We assume a library of sub-nets that can
be used for that purpose.

Contracting Workflows and Protocol Patterns 155

2. We start with an empty workflow (start and end place only) and add the standard
high-level workflow structure for each different service involved in the process.

3. We add transitions and places to the high-level workflow to model the dependen-
cies between the services (contracting requirements).

4. We add transitions and places to make the high-level workflow sound.

5. We create the final contracting workflow by substituting each task in the high-level
contracting workflow with a proper sub-net from the library of sub-nets..

3 A Framework for Contracting a Single Service

A number of frameworks for contracting processes, based on buying products or
services from a third party, can be found in literature, e.g. Action Workflow, DEMO
(Dynamic Essential Modeling of Organizations) by Dietz [2] and BAT (Business as
Action game Theory) by Goldkuhl [2]. These frameworks share the idea that business
transactions consist of four phases:

• Phase 1: Specification
In the specification phase, the service client specifies the details of the service to
be contracted. In fact, because each service requires a service provider to execute
his business process, the specification phase is in its essence the creation of a case
token for the workflow in the service providers information system.

• Phase 2: Negotiation
The negotiation phase aims at establishing a contract with a service provider for
the specified service. This research focuses on service contracting processes in
situations of partial knowledge. This, and the fact that external service providers
are often autonomous organizations, implies that a service client can not simply
assign a task to a service provider but has to negotiate with the service provider in-
stead. A contract is established only if there is an offer made by the provider and
an acceptance of the offer by the client. The negotiation phase ends either with a
contract after which the execution phase starts, or without contract after which the
process ends (failed).

• Phase 3: Execution
If a negotiation process resulted in a contract, both service client and service pro-
vider will have to fulfill the commitments they entered in the contract. An impor-
tant aspect of the execution phase is the exchange of status information from serv-
ice provider to service client, used by the service client to monitor the fulfillment
of the contract. The execution phase ends either with the completion of the execu-

156 A. van Dijk

tion after which the acceptance phase starts, or it ends with an abortion of the exe-
cution after which the process ends.

• Phase 4: Acceptance
The objective of the acceptance phase is to obtain a mutual agreement on the ful-
fillment of commitments. The service provider declares the fulfillment of his
commitments, the service client accepts this declaration and settles the financial
obligations towards the service provider. Settlement of financial obligations is
however outside the scope of this research. During the acceptance phase, informa-
tion must be exchanged between service client and service provider. At this point,
mutual satisfaction is obtained and the transaction is completed.

This results in a standard structure for contracting one service:

start

skipped

specified

failed

executed completed

Specification Negotiation Execution Acceptance

committed

aborted

Fig. 2. High-level workflow structure for contracting a single service

4 A Contracting Workflow for Multiple Services

When multiple services are involved in a contracting process, there are always con-
tracting requirements defining the dependencies between the different services. For
example: service A can only be contracted after service B has been contracted. Or:
when service A can not be contracted, service B must be contracted. This section
discusses the rules according to which a contracting workflow for multiple services is
composed from the building blocks defined before and from the contracting require-
ments.

Copy the high-level workflow structure
The starting point for each contracting workflow is a source place ‘start’ and a sink
place ‘end’. The first step in creating the contracting workflow is to add the transitions
and places (see Figure 2) of the high-level workflow structure for each individual
service. This step can be fully automated in the configuration environment of a soft-
ware component for contracting processes, when the user defines a list of required
services.

Model the dependencies between services
The second step in creating the contracting workflow is to add transitions and places
that model the contracting requirements, i.e. the conditions under which a token is

Contracting Workflows and Protocol Patterns 157

produced in the ‘start’ place of the structure from Figure 2. This step can be partially
automated when we assume a relative small number of types of dependencies between
services. If the user can define the contracting requirements by selecting from the list
of services and a list of dependency types, the corresponding changes to the contract-
ing workflow can be made automatically. To illustrate this, we give two examples of
dependencies between services and the corresponding representation in the contracting
workflow.

Example 1 – ‘B starts when A failed’
In this type of dependency, service B is an alternative for service A. The dependency
is modeled by an extra processor that consumes a token from place ‘failed_A’ and
produces the token in place ‘start_B’.

start_A

skipped_A

specified_A

failed_A

executed_A completed_A
Specification

A
Negotiation

A
Execution

A
Acceptance

A

committed_A

aborted_A

start_B

skipped_B

specified_B

failed_B

executed_B completed_B

Specification
B

Negotiation
B

Execution
B

Acceptance
B

committed_B

aborted_B

T

Fig. 3. Example of dependency ‘B starts when A failed’

Example 2 – B starts when A is committed
Another typical type of triggering is when the contracting for a service B is started
when another service A has been contracted. This dependency is modeled by dupli-
cating the place ‘committed_A’ into ‘committed_1A’ and ‘committed_2A’ and adding
a transition that consumes a token from place ‘committed_1A’ and producing the
token in places ‘committed_2A’ and ‘start_B’.

start_A

skipped_A

specified_A

failed_A

executed_A completed_A

Specification
A

Negotiation
A

Execution
A

Acceptance
A

committed
1A

aborted_A

start_B

skipped_B

specified_B

failed_B

executed_B

completed_B

Specification
B

Negotiation
B

Execution
b

Acceptance
B

committed_B

aborted_B

committed
2A

Fig. 4. Example of dependency ‘B starts when A is committed’

158 A. van Dijk

Make the high-level contracting workflow sound
We require contracting workflows to be a sound WF-net if we omit the places via
which message tokens are exchanged with workflows of service providers. At this
point, we have created a structure which is not a sound WF-net. Therefore, the third
step in creating the contracting workflow is to add those transitions and places to the
high-level contracting workflow that make the resulting high-level contracting
workflow a sound WF-net. This can be done by analyzing the distribution of tokens in
possible end-states. There after, new transitions and places are added in such a way
that in each end-state the tokens that define the end-state are consumed and one token
is produced in place ‘end’. This task can be automated completely. An example of a
sound high-level contracting workflow is given in Figure 5. The example is about a
company in which employees have to travel frequently. Each business trip requires
two flights to be booked (outbound and inbound). If the employee is not able to travel
on one day, a hotel reservation has to be made. Finally, if the employee wants to, a
rental car must be made available at the airport of arrival.

Refinement of the high-level contracting workflow
The high-level contracting workflow that we have defined so far is a sound workflow,
but is still a high-level workflow where the tasks need further refinement by replacing
each task with a sub-net. The structure of the sub-net by which a task in the high-level
workflow is replaced depends highly on the transaction protocol that defines the dy-
namics of the information exchange between service client and service provider. A
standard set of sub-nets that can be substituted in the task of the high-level workflow
can only exist when there is some type of standardization in transaction protocols. This
is why we propose to standardize a relative small number of transaction protocol pat-
terns, on the basis of which we can define the business transactions in specific situa-
tions.

5 Transaction Protocol Patterns

Clearly, there is not a single transaction protocol common to all possible service types.
Differences in transaction protocols are likely to occur due to differences in legisla-
tion, business model, fulfillment processes, etc. However, although we can not present
a single transaction protocol for all services, we are able to define patterns for trans-
action protocols. We define a protocol pattern as “a transaction protocol pattern cap-
tures the underlying common structure of a set of transaction protocols with different
message types but identical dynamic behavior.” Since a transaction protocol encom-
passes the consecutive negotiation, execution and acceptance phases, it can be seen as
composed of three smaller transaction protocols, one for each phase. In the rest of this
section, we will present patterns for the negotiation phase. Requirements to protocol
patterns and correctness criteria can be found in Van Dijk [3].

C
ontracting W

orkflow
s and P

rotocol P
atterns 159

start_A

completed_A

failed_A

Outbound
Flight

start

T
1

T
2

start_B

completed_B

failed_B

Inbound
Flight

failed_C

completed_C

Cancel
Inbound

Flight

T
3

start_C

start_E

Medium
Car

start_D

skipped_D

failed_D

Hotel

completed_D

skipped_E

failed_E

completed_E

T
4

start_F

Compact
Car

T
5

failed_F

completed_F

E
2

E
2 E

3

b

a

c

E
4

end

F
ig. 5. E

xam
ple of a sound high-level contracting w

orkflow

160 A. van Dijk

Negotiation Pattern: ‘Implicit Accept’

This negotiation pattern is used in situations where there is no explicit response by the
service provider to a request made by the service client. Instead, the contract is con-
sidered to be established after the request has been made. Clearly, this variant can only
be applied under circumstances where the implicit accept is agreed in previous agree-
ments or laws.

c
1 Request contract p

1

committedS
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Fig. 6. The ‘implicit accept’ protocol pattern

Negotiation Pattern: ‘Binding Request’

This negotiation pattern is used in a situation where a service client makes a binding
request to a service provider, who responds by either accepting or rejecting the re-
quest. If the service provider accepts the request, a service contract is established, after
which the execution protocol starts. If the service provider rejects the request, neither
of the parties has a commitment to each other and the transaction ends.

c
1 Request contract p

1

requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject contract

Accept contract

committed

p
2

c
2

c
3

p
3

Fig. 7. The ‘binding request’ protocol pattern

Contracting Workflows and Protocol Patterns 161

Negotiation Pattern: ‘Single Binding Offer’

Instead of requesting a contract from a service provider directly, a service client can
also request an offer from a service provider. Offers can be binding or non-binding.
This negotiation pattern is based on a single binding offer given by the service pro-
vider to the service client. When the service provider receives a request for an offer,
he either responds by sending a notification that he will not make an offer (e.g. be-
cause he is not able to fulfill the request) or he responds by sending an offer message.
When the service client receives an offer, he will either accept the offer after which a
service contract is established and the execution phase starts, or he rejects the offer
after which neither of the parties has a commitment to each other and the transaction
ends.

c
1 Request contract p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject offer

Accept offer

committed

p
4

c
4

c
5

p
5

No offer p
2

c
2

Offer p
3

c
3

offer made

Fig. 8. The ‘single binding offer’ protocol pattern

162 A. van Dijk

Negotiation Pattern: ‘Single Non-binding Offer’

An extension to the ‘single binding offer’ pattern emerges when the service provider
sends a non-binding offer instead of a binding offer. This leaves the possibility that
after the service client accepted the offer the contract can still not be established, e.g.
because the resources required for the fulfillment have been exhausted in the period
between sending the offer and accepting it. The pattern is equal to the ‘single binding
offer’ pattern, but has two additional message types that can be received by the service
client after he accepted the offer. The confirm accept message indicates that a service
contract has been established and the execution phase started. The reject accept mes-
sage indicates that no contract could be established after all which ends the transaction
and leaves both parties without any obligation towards each other.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Reject offer

Accept offer

committed

p
4

c
4

c
5

p
5

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject accept p
6

c
6

Confirm accept p
7

c
7

offer accepted

Fig. 9. The ‘single non-binding offer’ protocol pattern

Contracting Workflows and Protocol Patterns 163

Negotiation pattern ‘Multiple Binding Offers’

An extension to the ‘single binding offer’ pattern is to allow the service provider to
send multiple binding offers instead of a single binding offer, in order to give the
service client alternatives to choose from. The negotiation pattern starts with a request
from the service client to the service provider. The provider answers either by sending
an offer, or by sending a notification that he will not send an offer. If the service pro-
vider sends one offer, he can send an arbitrary number of additional offers thereafter.
When the service client received one or more offers, he evaluates them and either
rejects all offers by sending a reject offers message or he accepts the offer he finds
‘best’ by sending an accept offer message, which contains a reference to the particular
offer he is accepting. If the service client accepts an offer, a service contract is estab-
lished and the execution phase starts. Otherwise, the transaction ends and leaves both
parties without any obligation towards each other.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Additional offer

committed

c
4

p
4

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject offers p
4

c
5

Accept offer p
6

c
6

Fig. 10. The ‘multiple binding offers’ protocol pattern

164 A. van Dijk

Negotiation pattern: ‘Multiple Non-binding Offers’

An extension to the ‘multiple binding offers’ pattern emerges when the service pro-
vider sends non-binding offers instead of binding offers. This leaves the possibility
that after the service client accepted an offer the contract can still not be established,
e.g. because the resources required for the fulfillment have been exhausted in the pe-
riod between sending the offer and accepting it. The pattern is equal to the ‘multiple
binding offers’ pattern, but has two additional message types that can be received by
the service client after he accepted the offer. The confirm accept message indicates
that a service contract has been established and the execution phase started. The reject
accept message indicates that no contract could be established. However, the transac-
tion returns to state ‘offer made’, in which the service client can cancel the negotiation
or accept another offer from the pool of offers received from the service provider. In
the same state, the service provider can send new offers to the service client.

c
1 Request offer p

1

offer requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

Additional offer

committed

c
4

p
4

No offer p
2

c
2

Offer p
3

c
3

offer made

Reject offers p
4

c
5

Accept offer p
6

c
6

Reject accept p
7

c
7

Confirm accept p
8

c
8

offer accepted

Fig. 11. The ‘multiple non-binding offers’ protocol pattern

Contracting Workflows and Protocol Patterns 165

Negotiation Pattern: ‘Single Binding Counter Offer’

An extension to the ‘binding request’ pattern is to allow the possibility of a binding
counter offer by the service provider as a third type of response to a direct request for
a contract. When the service provider makes a counter offer, the negotiation process
enters a state in which the service client can either accept or reject the counter offer
and in which the service provider can withdraw the counter offer. If the service client
accepts the counter offer, a service contract is established and the execution phase
starts. Otherwise, the transaction ends leaving both parties without any obligations
towards each other.

c
1 Request contract p

1

contract requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r
committed

p
7

c
5

Reject contract p
2

c
2

Counter offer p
4

c
4

offer made

Accept contract p
3

c
3

Accept offer

Reject offer

Withdraw offer

p
5

p
6

c
6

c
7

Fig. 12. The ‘single binding counter offer’ protocol pattern

166 A. van Dijk

Negotiation Pattern: ‘Alternating Binding Counter Offers’

An extension to the ‘single binding counter offer’ pattern is to allow the possibility of
a counter offer to be followed by a different counter offer made by either the service
client of service provider. If a counter offer is made, it replaces all earlier made coun-
ter offers. Hence, a maximum of one counter offer can be under consideration at each
moment. The party that made the current counter offer can replace it by a different
counter offer or withdraw it. The party that did not make the counter offer under con-
sideration can either accept it, reject it, or make a counter offer himself. If a party
accepts an offer made by the other party, a service contract is established and the exe-
cution phase starts. Otherwise, the transaction ends leaving both parties without any
obligations towards each other.

c
1 Request contract p

1

contract requested

S
er

vi
ce

 c
lie

nt

S
er

vi
ce

 p
ro

vi
de

r

committed

p
8

c
6

Reject contract p
2

c
2

Counter offer P p
4

c
4

offer by P

Accept contract p
3

c
3

Accept offer P

Reject offer P

Withdraw offer P

p
6

p
7

c
7

c
8

p
5Replace offer Pc

5

p
e

c
c Accept offer C

Reject offer C

Withdraw offer C

p
c

p
d

c
d

c
e

p
bReplace offer Cc

b

p
9Counter offer Pc

9

p
aCounter offer Cc

a

offer by C

Fig. 13. The ‘alternating binding counter offers’ protocol pattern

Contracting Workflows and Protocol Patterns 167

6 Conclusions and Future Research

We have proposed a method for the efficient design of contracting workflows in the
configuration process of ‘process-aware’ ICT components for contracting. The method
proposes a standard high-level structure of contracting workflows of which the tasks
can be replaced by sub-nets from a library. A prerequisite for this library of sub-nets is
a clear standardization of transaction protocols. We propose to standardize a number
of protocol patterns on the basis of which specific transaction protocols can be de-
fined. This paper has given an example of possible protocol patterns for the negotia-
tion phase.

Further research has to be conducted to design a set of protocol patterns that is suffi-
cient for the majority of transaction protocols. Mapping of existing transaction proto-
cols to the proposed protocol patterns and the formal standardization process itself are
major activities. Another line of research is to extend the Petri Nets defining a trans-
action protocol with additional quality of service properties (cost of providing serv-
ices, response times, failure rates, etc.). A transaction protocol extended with these
properties can act as an interface agreement between communicating parties. A next
step would be the specification of a repository in which a party can publish the trans-
action protocols that define the external behavior of his services.

References

1. Aalst, W.M.P. van der And K.M. Van Hee, Workflow Management: Models, Methods and
Systems, MIT Press, Cambridge, MA, 2001.

2. Dietz, J.L.G., Introduction to DEMO, Samson Bedrijfsinformatie, 1996.
3. Dijk, A. van, The Contracting Agent – concepts and architecture of a generic software com-

ponent for electronic business based on outsourcing of work, Ph.D. Thesis, Eindhoven Uni-
versity of Technology, 2001.

4. Goldkuhl, G., Generic Business Frameworks and Action Modeling, Proc. of 1st Inter-
national workshop on Communication Modeling, Springer-Verlag, 1996.

5. Lee, R.M., A Logic Model for Electronic Contracting, Decision Support Systems, Vol. 4,
No. 1, pages 27–44, 1988.

6. Merz, M., F. Griffel, T. Tu, S. Müller-Wilken, H. Weinreich, M. Boger and W. Lamersdorf,
Supporting Electronic Commerce Transactions with Contracting Ser-vices, International
Journal of Cooperative Information Systems, Vol. 7, No. 4, World Scientific, 1998.

7. Normann, R. and R. Ramirez, Designing interactive strategy: from value chain to value
constellation, John Wiley & Sons Ltd, 1994.

	1 Electronic Contracting
	2 Modeling Technique and Approach
	3 A Framework for Contracting a Single Service
	4 A Contracting Workflow for Multiple Services
	
	Copy the high-level workflow structure
	Model the dependencies between services
	Make the high-level contracting workflow sound

	5	Transaction Protocol Patterns
	Negotiation Pattern: ‚Implicit Accept™
	Negotiation Pattern: ‚Binding Request™
	Negotiation Pattern: ‚Single Binding Offer™
	Negotiation Pattern: ‚Single Non-binding Offer™
	Negotiation pattern ‚Multiple Binding Offers™
	Negotiation pattern: ‚Multiple Non-binding Offers™
	Negotiation Pattern: ‚Single Binding Counter Offer™
	Negotiation Pattern: ‚Alternating Binding Counter Offers™

	6 Conclusions and Future Research
	References

