
W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, pp. 88–103, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Use Cases as Workflows

Michel Chaudron, Kees van Hee, and Lou Somers

 Eindhoven University of Technology, Dept. Math. & Comp.Science, P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands

{m.r.v.chaudron, k.m.v.hee, l.j.a.m.somers}@tue.nl

Abstract. In requirements engineering we have to discover the user require-
ments and then we have to transform them into precise system specifications.
There are two essential aspects to be modeled: the data aspect and the process
aspect of the system. There are many techniques available to describe these as-
pects but it is always difficult to integrate these views in a consistent way. Last
decade two techniques are used frequently in requirements engineering: use
cases and workflow models. We show that these techniques can be integrated in
a natural way, using the framework of colored Petri nets. We only sketch the
underlying formal framework and focus on the practical application of the ap-
proach by a case study.

1 Introduction

Requirements engineering is a distinguished field in software engineering since many
years (see e.g. [16]). There are two famous problems: one is to bridge the gap between
informal requirements and formal specifications, the other one is to integrate models
that describe different aspects of a system. Informal requirements are important for the
principals and the potential users of a system, formal specifications are essential for
the software constructors. The last decade use cases are used more and more as a way
to describe requirements. It seems that non-experts understand them better than for
instance data models and dataflow diagrams. There is no formal definition of a use
case that is accepted by a large community of software engineers. It is generally un-
derstood that a use case describes a “piece of functionality” of a system from the
viewpoint of an actor who will work with the system. A use case combines in fact a
data and a process perspective. In the early stages of system development, where the
concept has to be “sold” to the principals and potential users it might be an advantage
that use cases do not have a formal definition: this gives us some freedom to apply the
concept and to interpret a specific use case. However, for the following phases this
lack of precise semantics is a source of problems for the software engineers. There-
fore, it is essential to have formal semantics for use cases. We use workflow theory for
this purpose.

In the field of business process design the use of modeling techniques with a pre-
cise semantics has proven to be very useful: errors and missing parts become clear in
the early stages and it saves work later on. The availability of techniques for verifica-

Use Cases as Workflows 89

tion of models turned out to be very valuable in practice [2]. Another term for busi-
ness process is workflow. There are several formalisms to model workflows, one very
successful one is to describe workflows as a special class of Petri nets, the so-called
workflow nets [4].

In this document we apply results of workflow theory to model use cases. In fact,
we consider use cases as workflows and we show how the field of requirements engi-
neering can profit from the results of the field of business process modeling. A nice
coincidence is that the term “case” occurs in workflow theory for “job” to be handled
and so a workflow can be seen as a case type. Therefore, a use case is modeled as a
case type in the sense of workflows.

The second problem is the integration of models that describe different aspects of
systems. There are many articles about this subject. The use of colored Petri nets as a
framework for integration has proven to be successful (see for instance [9] or [12]).
Here we use the same approach, although we simply say: use cases could be modeled
as workflow nets.

The remainder of this paper is organized as follows. In Section 2 we consider the
place of requirements in the life cycle of a system and the steps to take to describe the
functional requirements for a software engineering project. So non-functional re-
quirements (availability, performance, adaptability, portability and many other “abili-
ties”) are not covered in this paper. In Section 3 we consider the modeling concepts
and in Section 4 we summarize the most important construction techniques. In Section
5 the main course is served: a case study where we show how the proposed approach
should work.

2 Requirements Engineering in the Lifecycle

There are many standards for phasing the lifecycle of a software system. Rational
Unified Process (RUP [13]) is one newest leaves of this tree. We have chosen here the
standard [17] of the European Space Agency (ESA). The reason for this is that it is a
well-documented standard, that the standard is used frequently in practice, and that
last but not least we adopted this standard some years ago for our students in computer
science. The choice of a standard for our purpose is not essential: they all distinguish
requirements in some form.

The ESA standard distinguishes the following phases in the lifecycle of a software
system: user requirements, software requirements, architectural design, detailed design
and production, transfer, operations and maintenance.

Here, the first two phases refer to requirements. We refer to these phases together
as the “requirements phase” with two sub-phases: “user requirements” and “software
specification” because here the main course is the formal specification of the system.

Each phase has some deliverables as output: the product documents that determine
certain aspects of the system. We do not consider the strategy to perform the phases,
so our contribution is applicable to sequential (or waterfall), iterative, incremental, or
time boxing strategies. In this paper we will concentrate on the production of software
requirements and because this phase is in between the user requirements and archi-

90 M. Chaudron, K. van Hee, and L. Somers

tectural design, we touch these topics as well. The user requirements have a certain
overlap with the software requirements, but they are written in the language of the
user. The software requirements are meant for software engineers and they contain
much more details. In our approach we promote the use of formal methods in the early
stages because these methods encourage us to be precise and enable us to use verifi-
cation methods. In this way we are able to discover inconsistencies and errors in a
very early stage, which will pay off in later phases: the later an error is found the more
expensive it is to correct it.

In the software requirements phase we concentrate on the functionality of the sys-
tem to be made. We encourage having a complete logical model of the software in this
phase. (We use here a pragmatic definition of the term “complete”: a model is com-
plete if it contains enough details to build or generate a computer model of the sys-
tem.) A logical model of a system is often considered as a formal specification of a
system. In the architectural design this logical model is translated into the specifica-
tions for the real system. In both phases we distinguish “components”. In the software
requirements the system is one logical component or it may be refined into several
communicating logical components. In the architectural design the components are
physical components: pieces of software, implemented on hardware. It is necessary to
map the logical components to the physical ones. Sometimes it is possible to have a
one-to-one mapping. However, in many cases one logical component is distributed
over several physical components. It also occurs that several logical components are
realized by one physical one.

The activities to be performed in the first two phases are as follows. Some terms are
not explained here but they will be in the next sections. In the user requirements phase
one has to:

1. Identify the stakeholders: all relevant roles that have some interest in the sys-
tem.

2. Identify the actors: all stakeholders and other systems that interact with the
system.

3. Describe (informally) the use cases: the logical “pieces of functionality”.

4. Describe the non-functional requirements like performance or portability. This
includes development constraints like the development environment or the
execution platform.

In the software requirements phase one has to:

5. Transform the use cases into workflows (WF-nets).

6. Make a class model.

7. Describe class lifecycles (workflows).

8. Describe the interactions between all workflows.

9. Connect the workflow transitions and the methods in the class diagrams.

10. Perform logical system decomposition (if necessary).

Use Cases as Workflows 91

Steps 5 and 6 may be performed in reversed order. In fact, all these tasks are per-
formed iteratively, because in tasks 8, 9, and 10 we may discover inconsistencies that
have to be repaired by redoing earlier tasks. In the software requirements phase also
requirements in the form of necessary or desired properties may be formulated in
terms of logic. In addition, non-functional requirements such as timeliness may be
formulated in a formal way in this phase. However, we concentrate on the functional
requirements here. The results of the first steps are described in the User Require-
ments Document (URD), the others in the Software Requirements Document (SRD).
The URD roughly describes the problem the stakeholders need to address, whereas the
SRD describes the specification of the proposed solution.

3 Modeling Framework

In this section we introduce the modeling concepts that are suitable to perform tasks 5
up to 10, i.e. we consider the formalisms with which we model the various aspects of a
system. It is popular to use the modeling techniques of the Unified Modeling Lan-
guage (UML) (see [7] for a concise introduction). This framework consists of many
useful modeling techniques. In fact, we only use uses cases, class models and (a vari-
ant of) activity diagrams from UML. This does not imply that we abandon the others,
but we focus here on the integration of only a few of the modeling techniques.

The things we have to model of a system are in fact the state space and the events
that may change the states of the system. A state of system is defined by a set of data
objects modeled by means of a data model. For events we use a process model. (At
the end of this section we will establish the relationships between the events and data
objects.)

Persistent data objects are modeled by the class model of UML, i.e. data objects
that remain in the system if there are no events. The UML class model also allows us
to define operations on the data, the methods. The volatile data that are produced and
consumed during the events can be modeled with a standard type system or (if it is
complex data) with a language like XML.

For the process modeling we use (high level) Petri nets. (For an introduction, stan-
dard terminology and many important properties of Petri nets we refer to [15] and
[6].) Events are modeled by (the firing of) transitions and states are modeled by the
marking of places. Petri nets are very close to UML activity diagrams, but have better
defined semantics and many possibilities to verify behavioral properties. An alterna-
tive could be to use a process algebra.

The process models occur in two forms in our specifications: as use cases and as
lifecycles for object classes. We require that these processes are a special kind of Petri
nets: workflow nets [4]. Workflow nets have one initial and one final place and each
node of the net lies on a path from the initial to the final place.

An additional requirement is that the workflow nets are sound (c.f. [1]), i.e. each
reachable state (or marking) of the net lies on a path from the initial to the final state
in the state space, where the initial state has only one token in the initial place and the

92 M. Chaudron, K. van Hee, and L. Somers

final state has only one token in the final place. The reason for requiring that all use
cases and lifecycles are sound workflow nets is that this guarantees that all use cases
and lifecycles are proper transactions of the system: with a start and an ensured end.

The transitions in a use case model are activities of the actors that are involved in
the system: users or other systems. Transitions can also be autonomous, which means
that they are executed by the system itself as soon as the transition is enabled. In many
situations the transitions are triggered by users in a user interface.

Tokens in the workflow nets that model use cases, represent the case that is han-
dled. If there is concurrent behavior possible, then a case is represented by more than
one token. Then we assume that each token has a (case) identity and that transitions,
that consume more than one token at the same time, only consume and produce tokens
with the same identity. Besides a case identity, a token may carry some message
(volatile) data. Therefore, the tokens may have values, which means that we work
with colored Petri nets [11].

We often have some global variables that are used in transitions. They are modeled
by global stores, i.e. places that always contain one token and that are connected to
many transitions by a read and write arc. (We normally do not draw these arcs to
global stores in the diagrams.) The instances of a class model may be stored in a
global store. Therefore, we may associate sub-class models to global stores. In fact,
different global stores may have the same sub-class models.

Since we model with colored Petri (or workflow) nets, we obtain the relationship
between data objects and events in a natural way: the states are modeled by the places
marked with colored tokens (which are the data objects) and the events are modeled
by transitions that change the states by consuming and producing colored tokens.

The last concept we need is the t-workflow. This is a Petri net with an initial and fi-
nal transition instead of initial and final place. It is easy to transform one into the
other: put a place (transition) in front of the initial transition (place) and a place (tran-
sition) after the final transition (place) and one obtains the other form of workflow. In
addition, the concept of soundness can be translated for t-workflows: a t-workflow is
sound if and only if its transformation is a sound workflow net.

4 Construction Techniques

There are several ways to build Petri nets in a structured way (see e.g. [8]). Here we
do not present an exhaustive list of construction techniques; we only present some
important techniques for the construction of workflow nets.

For workflow nets, it is essential that the workflows we model are sound. Non-
sound workflows usually have serious modeling errors. Soundness is not the only
property worthwhile to be verified, but it is the most important domain-independent
“sanity check” for models. There are efficient techniques for verifying the soundness
of workflows [18]. So one can model a workflow and check afterwards whether it is
sound or not automatically. We have good experience with an approach that guaran-
tees soundness by the way we construct the models: “soundness by construction”.

Use Cases as Workflows 93

Essentially, there are two approaches to construct workflow nets in a systematic
way:

1. Top down: by stepwise refinement of places and transitions in a given start net.
2. Bottom up: by connecting existing component nets.

In practice, these approaches may be combined.
For the top down approach we have only one transformation rule: replacement. We

start with a given set of basic workflow nets or workflow patterns for which we have a
proof of soundness. Then we refine or replace a place by a sound workflow net or a
transition by sound t-workflows. (There are some difficulties if a sub-workflow can be
triggered two or more times concurrently, cf [10]). In most cases the result is a sound
workflow again.

In the bottom up approach we also need only one basic transformation rule: fusion
of places or transitions, i.e. two places (transitions) are “glued” together to become
one place (transition). We have some standard constructions, sometimes using some
auxiliary building blocks (also Petri nets) to assemble workflow nets: sequential, al-
ternative, parallel and iterative composition. In sequential composition we fuse the
final place (transition) of the first (t-)workflow net with the initial place (transition) of
the second (t-)workflow net. In alternative composition, we fuse the initial places and
the final places of two workflow nets. For the alternative composition of t-workflows,
we need some auxiliary blocks: an or-split and an or-join (see Fig. 1). The parallel
composition of t-workflows is simply the fusion of the initial and final transitions of
the two t-workflows. For the parallel composition of ordinary workflow we need two
auxiliary blocks: an and-join and an and-split (see Fig. 1). For the iterative composi-
tion we need another auxiliary building brick: a sequence of two places with a transi-
tion in the middle. The first place is fused with the final place of the workflow net and
the last place of the building block with the first place of the workflow net. To make a
correct workflow net of this we use this auxiliary block twice: one in front of the iter-
ated net and one at the end. In case of a t-workflow, we use a similar construction.

There is one other important standard construction: asynchronous coupling be-
tween two workflow nets. In this case, we use an auxiliary building block, which is a
sequence of two transitions with a place in the middle. We fuse the first transition with
some transition of one of the two workflow nets and the last transition with some tran-
sition of the other workflow net. Note that in this way we may loose the workflow
structure and even if we have a connected them such that the overall net is again a
workflow net, then it is not sure that it is sound. However, there are some construc-
tions that guarantee soundness (see [5]). Besides the asynchronous coupling, we have
the synchronous coupling: where we just fuse transitions of two workflow nets, not
being the initial or final ones.

Synchronous and asynchronous couplings are used frequently when we intercon-
nect use cases and lifecycles. Synchronous coupling is applied if two events in differ-
ent use cases are in fact the same. This construction suffers from the same risks as the
asynchronous one concerning soundness. Asynchronous coupling is used if two
workflows do not have overlapping transitions but still need some coordination: a
transition of one workflow may only execute if a transition of another workflow has

94 M. Chaudron, K. van Hee, and L. Somers

executed before. In a synchronous coupling transitions have to execute simultane-
ously, whereas in an asynchronous coupling transitions have to execute in some order.
In step 8 (see also section 5.4) of the requirements phase we apply these couplings.
There we use a notation technique where we list the transitions per use case and life-
cycle and where we relate them (by an arc) to transitions of other use cases or lifecy-
cles. The relationship has a direction if one of the transitions is taking the initiative:
one transition is triggering the other. If each of the related transitions may take the
initiative, or if they have to execute simultaneously there is un undirected relationship.
The choice for synchronous or asynchronous coupling may be delayed, sometimes
even to step 10.

and split

and join

fuse

A B

fuse

A B

or split

or join

A

fuse
fuse

Fig. 1. Two constructions to compose workflows A and B. Iteration of workflow A

There are two other constructions we like to mention: the use of global stores and
of global transitions. As mentioned before, a global store is a place that always con-
tains one token and that is implicit (i.e. without drawing arcs) connected to a set of
transitions with one consume and one produce arc. So the global stores do not influ-
ence the process flow of our workflow nets, but they are used to store variables that
are shared by different transitions. Typically they are used to store a set of objects (the
instance) of one class. Global transitions are implicit connected to a set of places
(called “superplace”) and if they are enabled by normal places, they consume all to-
kens available in the superplace. This can be used to enforce soundness of a workflow
net and it is used frequently to model exception handling: if some event occurs we
have to cancel the whole transaction. (Note that it is not always possible to simulate
the behavior of a global transition without using inhibitor arcs.)

Use Cases as Workflows 95

5 Case Study: The Web Shop

To illustrate the concepts treated in the previous section, we will develop the require-
ments for a web shop. For a part, a web shop is an ordinary shop, with items that are
stored in warehouses, can be purchased by customers, are paid for, and are shipped.
We will use the shopping cart metaphor, where a customer puts the products he wants
to buy in a cart. In our web shop, a customer buys products that can be configured
according to a certain model. So a model is a type of product. Computers or cars are
typical examples of products in our web shop, but also holiday trips where the con-
figuration is in fact the trip design. In this case study we focus on configurable physi-
cal products.

The actors are the persons, organizations, or systems that interact with the system
we are going to build. In the web shop example, these might be a customer (browsing,
buying, monitoring, feedback), inventory control (back ordering, shipping), the system
administrator (back-up, upgrades), controlling (billing), marketing (pricing, product
profiling, changing product portfolio), or design (page layout, styling).

5.1 Use Case Workflows

A use case corresponds to a task the system has to fulfill. Each use case involves a
number of actors. We will show the workflows of a number of customer related use
cases for the web shop and the rationale for the choices that have been made.

Use case “customer walks shop”. As a first example, we will consider the use case
“customer walks shop”. The corresponding workflow is displayed in Fig. 2. Here the
customer browses through the different models, configures products, adds products to
his shopping cart, and possibly removes products from his shopping cart. Note that we
might have modeled these steps also as four different use cases.

In the workflow definition of Fig. 2 we have constrained the cart manipulation:
once the customer has selected a model, he has to put a product belonging to this
model in his shopping cart, or he has to deselect it before he can view the contents of
his shopping cart. A possible solution would be to define two screens allowing the
customer to do both at the same time: we introduce parallel workflows. This is shown
in the workflow at the left-hand side of Fig. 3. The matching of the input tokens by the
exit transition is done on the case identity of the token.

Another issue is the fact that it would be more realistic to allow an exit from every
state (since the customer may leave the site at any time). This is shown in the
workflow at the right hand side of Fig. 3. Note that the exit may be an explicit user
action, or might also be triggered by a timer event. It would be best to indicate explic-
itly who initiates each action (which actor or the system itself).

96 M. Chaudron, K. van Hee, and L. Somers

enter

configure
model

add to cart

view cart

undo remove item

exit

select model

deselect
model

exit view

Fig. 2. First attempt to model the workflow of the use case “customer walks shop”

enter

configure
model

add to cart

undo

remove item

exit

select model

deselect
model

cart
view

model
view

enter

configure
model

add to cart

view cart

undo remove item

exit

select model

deselect
model

exception exit exception exit

exit view

exception exit

Fig. 3. Two alternatives for the use case “customer walks shop”. The first one allows the cus-
tomer to configure products and to view and manipulate the contents of his shopping cart at the
same time. The other one allows an exit at any time

Use Cases as Workflows 97

Use case “customer buys products”. Another example is the workflow
corresponding to the use case “customer buys products”. Here the customer has a non-
empty shopping cart and wants to buy these items. Two equivalent models are shown
in Fig. 4. We have used a “super place” to model the exceptional exit flows.

For each choice of payment method (inter bank, credit card, cash on delivery, or
paycheck), some customer solvability check has to be applied. The inner workings of
these workflows may be different and will show up once we try to detail the transition
“check customer solvability”. We might also add activities to check the existence of
the customer data and to add newly filled in data into the customer administration.

Use cases “back office” and “handling”. The “back office” use case controls the
work after the customer has agreed upon buying a product. The workflow is shown in
Fig. 5. Only for pay on delivery, we have modeled the possibility that the customer
does not pay.

We will use a simple version of the use case “handling” in which the ordered prod-
ucts are assembled and shipped. Note that for such workflows (like the shipping op-
eration) some standard patterns exist in the literature.

enter

exit

check customer
solvability

accept offer

NOK

retry

OK

exception exit exception exit exception exit

log order

enter

exit

check customer
solvability

accept offer

NOK

retry

OK

exception exit

log order

Fig. 4. Use case “customer buys products”, variants without and with a superplace and a global
transition (“exception exit”)

98 M. Chaudron, K. van Hee, and L. Somers

enter

delayed
payment

exit

immediate
payment

payment
received

pay on delivery

build+ship build+ship

payment
received

no payment
received

handled case

exception exit

enter

exit exception exit

assemble

ship

return

disassemble

Fig. 5. Use cases “back office” and “handling”

5.2 Class Diagram

We use an adapted and extended version of the class diagram pattern for internet
shops of [14]. It only models the classes involved in the customer related use cases.
The elaboration of the payment and billing part of the data model is not treated.

cart customer product

invoice

0..*

0..1

0..*

0..*

1..*

1

1

part type part model 0..* 1 1..* supplier 0..* 1..* 1..*

0..*

1

adheres to

0..1

default
1 0..1

Fig. 6. Class diagram of the web shop

Each visit of a customer to the web shop involves a shopping cart. For “product”
one might think of e.g. a PC configured with a number of components (parts). Each
product adheres to (is configured according to) a model. Such a model has part types

Use Cases as Workflows 99

(like a hard disk) that may be chosen from a number of allowed parts. Of course, a
configured product may only contain those parts that are allowed by the part types of
its model. In the table below, we list some attributes.

Table 1. Classes and some attributes

Class Attribute
cart payment mode
product amount

color
price

model assembly price
part price
customer name

5.3 Class Lifecycles

Each instance of a class in the class diagrams has a lifecycle. We will also use
workflow nets for these lifecycles. Note that each transition in a class lifecycle is usu-
ally caused by an external event.

Many lifecycles are very simple, as shown by the examples of Fig. 7. Note that
once a model has a relation with a product, one is not allowed to change it anymore.
Many products may use the same model at the same time, and an update of such a
model is only allowed if all products have released the model. This is modeled by
having n (an arbitrary large number) tokens in the central state of the model lifecycle.

start

remove product

customer
coupling

insert product

end

abandon

exception end

realize

start

update

delete

end

realize

start

update use

end
release

n

n

n

n

Fig. 7. Lifecycles of shipping cart, product, and model

100 M. Chaudron, K. van Hee, and L. Somers

5.4 Interactions between Workflows

The next step is to associate transitions of the use case workflows and the class lifecy-
cles. In Fig. 8 we show how the transitions are associated.

customer

walks shop

customer
buys

products

handling

product
lifecycle

exit

end

remove product

customer
coupling

insert product

remove item

add to cart

accept offer

retry

configure
model delete

enter

select model
update

start

deselect
model

exception exit

check customer
solvability

realize

log order

assemble

ship return

undo

enter

exit

enter

exit

end

start

abandon

view cart

disassemble

back office

enter

delayed
payment

immediate
payment

pay on delivery

build+ship

exception exit

exit

realize

no payment
received

payment
received

model
lifecycle

start

update

use

release

end

cart
lifecycle

exception exit

exception exit

exception end

exit view

Fig. 8. Relations between workflow transitions. Use case transitions are shown on the left, life
cycle transitions on the right

Use Cases as Workflows 101

Relations between transitions in two use cases. A transition in a use case can start
another use case. This may be the exit transition like in “customer walks shop” that
starts (upon normal termination) the workflow “customer buys products”. It can also
be any other transition: for example, “build+ship” in “back office” starts the workflow
“handling”. This coupling is usually asynchronous.

A transition in a use case can also trigger a transition in another use case. For ex-
ample, “return” in “handling” fuses with the “no payment received” in “back office”.
Here we must fuse the transitions to guarantee that “return” is only allowed to fire in
case of pay on delivery.

Relations between transitions in a use case and a lifecycle. Now we look at the
mapping from use case transitions to lifecycle transitions. This mapping can be
synchronous or asynchronous, but will probably never be realized by transition fusion:
the transitions in a data object can be triggered by many use cases.

A transition in a use case may be associated to multiple lifecycle transitions, each in
a different lifecycle. For example, “remove item” in “customer walks shop” means that
both “delete” and “remove product” should fire.

Multiple transitions in the same or different use cases may also be mapped to one
lifecycle transition. For example, “deselect model” and “remove item” both mean that
“delete” should fire. However, this coupling has a direction: if “delete” fires, this does
not imply that also “deselect model” should fire.

Another reason for not having a one-to-one mapping might be that the modeling
has been performed at different levels of abstraction: a transition corresponds to a
subnet. This does not occur in our example.

Note that not all transitions of a use case have to take part in a mapping. For exam-
ple, the “view cart” transition in the “customer buys items” workflow only retrieves
the current contents of a shopping cart and therefore does not take part in the lifecycle
of the cart.

Relations between transitions in two lifecycles. Usually, we will also have relations
between transitions in different class lifecycles: if a class changes state, a change may
also occur in the state of a dependent class. For example, if we create a product, the
corresponding model will be locked: no one is allowed to change it anymore.

5.5 Coupling Workflow Transitions and Class Methods

In the following table, we give an informal overview of the methods that are called if a
transition of a specific use case fires. In a latter stage, we have to specify exactly what
the input and output parameters of each method are and how they are related to the
data carried by the workflow of a use case.

In the table, we see for example that the workflow “customer walks show” has two
instance variables representing global data (cart and current product). Those are filled
if the “start” transitions of the lifecycles of cart and product fire, which is caused by
the transitions “enter” and “select model” of the workflow.

102 M. Chaudron, K. van Hee, and L. Somers

Table 2. Some workflow transitions and related method calls of lifecycle transitions.

Workflow Transition Class Transition Method call or relation change
enter cart start (creation of new instance)
select
model

product start (creation of new instance)

configure
model

product update Change product-part relation.
Update attributes of product (amount,
color, and price).

undo product update Change product-part relation.
Update attributes of product accord-
ing to default (amount, color, and
price).

deselect
model

product delete --

add to cart cart insert
product

Add relation between cart and prod-
uct.

cart remove
product

Remove relation between cart and
product.

remove
item

product delete --
view cart -- -- --
exit view -- -- --
excep. exit -- -- --

customer walks
shop:
cart,
current product

exit -- -- --
log order cart customer

coupling
Create new customer class if not yet
existing.
Add relation between cart and cus-
tomer class.
Update payment mode attribute.

customer buys
items:
cart,
requested pay-
ment mode

….. ….. ….. …..

6 Conclusions and Future Work

We have shown how workflow theory can be applied to requirements engineering, in
particular for the formalization of use cases. It is again a confirmation that the colored
Petri net framework is a sound base for model integration. The approach presented
here gives a systematic way to develop system specifications and the possibility to
verify properties, in particular soundness. We did not have enough room here to show
how this approach can be continued to decompose a system into logical components,
but [12] and [5] provide a theoretical base to support this approach. Experience in
several software development projects has convinced us that that approach works
well.

We are working on a design method for component based development where
workflow nets are first class citizens, i.e. we try to model all process aspects of a sys-
tem components as workflows. We like to do this using standard techniques like use
cases, sequence charts and activity diagrams as much as possible. The idea is to add
some modeling restrictions (as conventions) to the existing techniques and to limit the
introduction of additional notations as much as possible.

Use Cases as Workflows 103

References

1. Aalst, W. van der: Verification of Workflow Nets. In: Azema, P., Balbo, G. (eds.): Appli-
cation and Theory of Petri Nets 1997. Lecture Notes in Computer Science, Vol. 1248.
Springer-Verlag, Berlin (1997) 407–426

2. Aalst, W. van der, Desel, J., Oberweis, A.: Business Process Management, Models, Tech-
niques, and Empirical Studies. Lecture Notes in Computer Science, Vol. 1806. Springer-
Verlag, Berlin (2000)

3. Aalst, W.M.P. van der: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, Vol. 8, no. 1 (1998) 21–66

4. Aalst, W. van der, Hee, K. van: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2002)

5. Aalst, W. van der, Hee, K. van, Toorn, R. van der: Component-based Software Architec-
tures: a Framework Based on Inheritance of Behavior. Science of Computer Program-
ming, Vol. 42 (2002) 129–171

6. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, Vol. 40. Cambridge University Press (1995)

7. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 2nd edn. Addison Wesley (2000)

8. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling, Verifica-
tion, and Applications. Springer-Verlag, Berlin (2002)

9. Hee, K. van: Information Systems Engineering: A Formal Approach. Cambridge Univer-
sity Press (1994)

10. Hee, K. van, Sidorova, N., Voorhoeve, M.: Soundness and Separability of workflow nets.
Submitted for publication

11. Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Vol.
1: Basic concepts. 2nd corrected printing. Springer-Verlag, Berlin (1997)

12. Kindler, E., Martens, A., Reisig, W.: Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In: Aalst, W. van der, Desel, J., Oberweis, A.: Business
Process Management, Models, Techniques, and Empirical Studies. Lecture Notes in Com-
puter Science, Vol. 1806. Springer-Verlag, Berlin (2000) 235–253

13. Kruchten, P.: The Rational Unified Process: An Introduction. 2nd edn. Addison-Wesley
(2000)

14. Fernandez, E. B., Liu, Y., Pan, R.Y.: Patterns for Internet shops. In: Procs. of PLoP 2001,
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/ebfernandez0/P
LoP2001_ebfernandez0_1.pdf

15. Reisig, W.: Petri Nets, An Introduction. Springer-Verlag, Berlin (1985)
16. Sommerville, I.: Software Engineering. 6th edn. Addision-Wesley (2000)
17. Mazza, C., Fairclough, J., Melton, B., de Pablo, D., Scheffer, A., Stevens, R.: ESA Soft-

ware Engineering Standards. Prentice-Hall (1994)
18. Verbeek, H., Aalst, W. van der: Woflan 2.0: A Petri-Net-Based Workflow Diagnosis Tool.

In: Nielsen, M. Simpson, D.: Procs. 21st International Conference on Application and
Theory of Petri Nets. Lecture Notes in Computer Science, Vol. 1825. Springer-Verlag,
Berlin (2000) 475–484

	Introduction
	Requirements Engineering in the Lifecycle
	Modeling Framework
	Construction Techniques
	Case Study: The Web Shop
	Use Case Workflows
	Class Diagram
	Class Lifecycles
	Interactions between Workflows
	Coupling Workflow Transitions and Class Methods

	Conclusions and Future Work
	References

