
Web Services Events (WS-Events) Version 2.0 

16 July 2003 

Authors:  
Nicolas Catania (editor), Hewlett-Packard Company  
Pankaj Kumar, Hewlett-Packard Company  
Bryan Murray, Hewlett-Packard Company  
Homayoun Pourhedari, Hewlett-Packard Company  
William Vambenepe, Hewlett-Packard Company  
Klaus Wurster, Hewlett-Packard Company  

Copyright Notice 

Copyright © 2003 Hewlett-Packard Development Company, L.P. 
PERMISSION TO COPY AND DISPLAY THIS WSMF PAPER, IN ANY MEDIUM WITHOUT FEE OR ROYALTY, IS HEREBY GRANTED PROVIDED 
THAT YOU INCLUDE THE ABOVE COPYRIGHT NOTICE ON *ALL* COPIES OF THIS WSMF SPECIFICATION, OR PORTIONS THEREOF, THAT YOU 
MAKE. 
DISCLAIMER OF WARRANTIES. USER ACKNOWLEDGES THAT THE SPECIFICATION MAY HAVE ERRORS OR DEFECTS AND IS PROVIDED "AS 
IS." HEWLETT-PACKARD MAKES NO EXPRESS OR IMPLIED WARRANTIES OF ANY KIND WITH RESPECT TO THE SPECIFICATION, AND 
SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, EVEN IF THAT 
PURPOSE IS KNOWN TO HEWLETT-PACKARD. HP MAKES NO EXPRESS OR IMPLIED WARRANTY THAT THE SPECIFICATION IS NON-
INFRINGING, AND NO LICENSE, EXPRESS OR IMPLIED, IS PROVIDED TO ANY PATENT OR TRADEMARK RIGHT. 
LIMITATION OF LIABILITY. HEWLETT-PACKARD SHALL NOT BE RESPONSIBLE FOR ANY LOSS TO ANY THIRD PARTIES CAUSED BY USING 
THE SPECIFICATION IN ANY MANNER WHATSOEVER. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, 
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, ARISING OUT OF 
ANY USE OF THE SPECIFICATION OR ANY PERFORMANCE OF HEWLETT-PACKARD RELATED TO THIS SPECIFICATION. USER FURTHER 
ACKNOWLEDGES THAT THE SPECIFICATION IS PROVIDED FOR EVALUATION PURPOSES ONLY, AND USER ASSUMES ALL RISKS 
ASSOCIATED WITH ITS USE. 

Abstract 

This document describes Web Services Events (WS-Events) Version 2.0, an XML syntax and a set of processing rules for advertising, subscribing, 
producing and consuming Web Services Events. An Event is an abstract concept that is physically represented by a Notification. Notifications flow from 
Event producer to Event consumer using asynchronous or synchronous delivery modes (push/pull).  

Status of this Document 

Page 1 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



This WS-Events Specification is an initial public draft release and is provided for review and evaluation only. Hewlett-Packard Company hopes to solicit 
your contributions and suggestions in the near future. Hewlett-Packard Company makes no warranties or representations regarding the specification in any 
manner whatsoever.  

Table of Contents 

1. Introduction 
    1.1 Notational Conventions 
    1.2 Versions, Namespaces and Identifiers 
    1.3 Compliance 
    1.4 Terminology 
2. Examples 
    2.1 Event discovery example 
    2.2 Event Notification Subscription example 
    2.3 Example of a Notification message 
3. Event Notification Advertising and Discovery 
    3.1 Operations overview 
    3.2 The GetAllEventTypes operation 
    3.3 The GetEventTypeDefinition operation 
    3.4 The GetEventInstanceInfo operation 
    3.5 Notifications For Event Type Discovery 
    3.6 The NewEventTypeNotification 
    3.7 The EventTypeUpdatedNotification 
4. Event Notification Subscription 
    4.1 Push/Pull Mode Overview 
    4.2 Subscription Request: The Subscribe message 
    4.3 Subscription Response 
    4.4 Extending Subscription 
    4.5 Cancelling Subscription 
5. Event Notification Retrieval (Pull Mode) 
    5.1 GetEventsSinceUUID 
    5.2 GetEventsSinceDate 
    5.3 GetEventsRangeByDate 
6. Event Notification Syntax 
    6.1 The NotificationList Element 
7. Common Types 
    7.1 The EventTypeList and EventType Element Types 
    7.2 The UUID Element Type 
    7.3 The dateTime Type 
8. Transport Considerations 
    8.1 Message encoding 
    8.2 Default Binding 
    8.3 Reliability 
9. Security 

Page 2 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



    9.1 Transport 
    9.2 Authentication and Authorization 
10. Future Directions (Non-Normative)  
11. Appendix A: Extended notification examples 
    11.1 Notification for a management plate form 
12. References 

1. Introduction 

This document describes Web Services Events (WS-Events) Version 2.0, an XML syntax and a set of processing rules for advertising, subscribing, 
producing and consuming Web Services Events using a push and pull mode. In the push mode, the event notification producer calls a method (callback) 
on the event consumer passing one or more notifications as parameter. In effect the producer pushes asynchronously notifications to the consumer. In the 
pull mode, the consumer invokes methods on the producer the retrieve the buffered notifications. WS-Events defines the following:  

An extensible XML representation of event notifications. 
A simple subscription protocol between notification consumers, producers and brokers. 
Mechanisms to advertise and discover events. 
Support for both asynchronous and synchronous communication of notifications from the producer to the consumer through a push and pull mode. 
A lightweight XML syntax to describe event filters. 

WS-Events does not define a general-purpose event mechanism, rather, it defines one suitable for the Web services infrastructure. 
WS-Events builds upon the existing Web services framework. It uses Web Service Defnition Language (WSDL 1.1) [WSDL], and the XML schema 
specifications [XML Schema: Structures] and [XML Schema: Datatypes] to describe management interfaces and message structure. WS-Events is 
applicable to any version of SOAP and its message processing model, as well as to other protocols that may be described in WSDL documents.A mapping 
to WSDL 1.1 is included as part of this specification. However, there is ongoing work in the definition of WSDL 1.2 [WSDL 1.2] which may be useful in 
future versions of WS-Events. It is expected that a mapping of WS-Events to WSDL 1.2 will be made when that specification is released.  

1.1 Notational Conventions 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and 
"OPTIONAL" in this document are to be interpreted as described in [KEYWORDS].  
WS-Events is designed to work with the general Web Services framework including WSDL service descriptions and the [SOAP] message structure and 
message processing model. WS-Events should be applicable to any version of [SOAP]. The SOAP 1.1 namespace URI [URI] is used herein to provide 
detailed examples, but there is no intention to limit the applicability of this specification to a single version of SOAP.  
All parts of this specification are normative, with the exception of examples and sections explicitly marked as "Non-Normative". In cases where this 
document and the WSDL or XML Schema Definitions differ, the WSDL and XSD files are considered normative.  

1.2 Versions, Namespaces and Identifiers 

This specification does not provision for an explicit version number in this syntax. Any future version of this specification will use a different namespace 

Page 3 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



identifier. The namespace that MUST be used by implementations of this (dated) specification is: 
    http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/ 
This URI designates a namespace that is under the control of this specification. The following namespaces are also used in this document: 

1.3 Compliance 

An implementation is not WS-Events compliant if it fails to satisfy one or more of the MUST or REQUIRED level requirements defined in this specification. 
A SOAP receiver MUST comply with this specification in order to process a WS-Events message successfully. A SOAP sender MUST NOT use the 
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/ XML Namespace identifier unless it is WS-Events compliant. A Web service 
provider MUST NOT use the http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/ XML Namespace identifier in its WSDL description 
unless it is WS-Events compliant. 

1.4 Terminology 

We introduce the following terms which are used throughout this document: 

Event  
An event is a change in the state of a resource or request for processing. 

Event Producer  
An event producer is an entity which generates notifications. 

Event Consumer  
An event consumer is a receiver of notifications. 

Event Broker  
An event broker is an entity which routes notifications. Brokers typically aggregate and publish events from other producers. An event broker can 
also apply some transformation to the notifications it processes. 

Notification  
A notification is an XML element representing an event. One or more notifications are emitted by an event producer and received or retrieved by 
one or more event consumers possibly through a broker. 

Resource  
A resource is defined in [URI] as:  
"A resource can be anything that has identity. Familiar examples include an electronic document, an image, a service (e.g., 'today's weather report 
for Los Angeles'), and a collection of other resources. [...] The resource is the conceptual mapping to an entity or set of entities, not necessarily the 
entity which corresponds to that mapping at any particular instance in time. Thus, a resource can remain constant even when its content---the 

Prefix Namespace
xs http://www.w3.org/2001/XMLSchema
wsdl http://schemas.xmlsoap.org/wsdl/
soap http://schemas.xmlsoap.org/wsdl/soap/
evt http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/

Page 4 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



entities to which it currently corresponds---changes over time, provided that the conceptual mapping is not changed in the process." 
A resource is identified by one or more URIs. If there is more than one URI, the most specific should be used (e.g. 
http://www.example.com/news.html.en instead of http://www.example.com/news ).  

Web Service  
This specification uses a slightly modified definition of the one from the W3C WS-Architecture group. Namely it make WSDL the standard way to 
define and describe interfaces: 
"A Web service is a software system identified by a URI, whose public interfaces and bindings are defined and described using XML. Its definition 
can be discovered by other software systems. These systems may then interact with the Web service in a manner prescribed by its definition, using 
XML based messages conveyed by internet protocols." 
This specification restricts this definition by making WSDL mandatory to describe a Web Service. 

2. Examples 

2.1 Event discovery example 

This examples shows how an event producer such as a managed service communicates the list of events accessible by an event consumer like a 
management console. 
Usually, this discovery step happens before the subscription set-up using the methods GetAllEventTypes and GetEventTypeDefinition to discover 
which events it is interested in. 
An event notification consumer may be interested in events that have happened before it started its subscription if, for instance, it is the first time it 
monitors the service. By analogy, if a file were used to store events, the event notification consumer would read from one of the following: 

1. Last file position 
2. Beginning of the file 
3. A random position in the file 

In the same way, this is gets done using the GetEventInstanceInfo. The management application would then know how much historical information it 
could retrieve assuming that the past events could shed some light on a current or likely future problem. 

 Management Application                           Managed Service 
 
           |                                                | 
           |            GetAllEventTypes()                  | 
           | ---------------------------------------------> | 
           |                                                | 
           |               EventTypeList                    | 
           | <--------------------------------------------- | 
           |                                                | 
           |   GetEventTypeDefinition(wsee:ClusterStarted)  | 
           | ---------------------------------------------> | 
           |                                                | 
           |          EventTypeDefinitionList               | 
           | <--------------------------------------------- | 
           |                                                | 

Page 5 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



The management application would query the managed service for all the event notifications it can subscribe to. If one (say wsee:ClusterStarted) is of 
particular interest, it would ask for a more detailled definition and how many past instances can still be retrieved.  
Below is an example of what the EventTypeDefinition and EventInstanceInfo could look like: 

2.2 Event Notification Subscription example 

To achieve scalability, WS-Events uses a subscription mechanism by which an event consumer informs the producer that it is interested in receiving 
notifications. 
Subscriptions allow the notification producer to plan and allocate resources depending on the number of subscribers, event notification types and access 
modes and length of subscriptions. 
Subscriptions have a limited duration in time. For instance, a subscription might last for one hour. This ensures that if a subscriber went away and forgot to 
cancel its subscription, resources would not be held indefinitely, but could be recovered by the event producer. A subscription can be renewed before it 
expires. 
The diagram below illustrates an Event Consumer (EC) that subscribes to an event evt1 published by a Event Producer (EP). 
EC sends a request to EP indicating for which event it is interested in receiving notification from as well as a suggested duration for the subscription. Since 

           |   GetEventInstanceInfo(wsee:ClusterStarted)    | 
           | ---------------------------------------------> | 
           |                                                | 
           |          EventInstanceInfoList                 | 
           | <--------------------------------------------- | 
           |                                                | 
 
         

  <EventTypeDefinition> 
    <EventType> 
      ns:ClusterStarted 
    </EventType> 
    <SchemaLocation> 
      http://schemas.examples.com/2003/04/ClusterStarted.xsd 
    </SchemaLocation> 
    <SubscriptionURL> 
      http://a.service.examples.com/ 
    </SubscriptionURL> 
    <Description> 
      Indicates that the WS execution environment cluster was started 
    </Description> 
    <SubscriptionMode> 
      push 
    </SubscriptionMode> 
  </EventTypeDefinition> 
 
  <EventInstanceInfo> 
    <EventType> 
      ns:ClusterStarted 
    </EventType> 
    <Available> 
      200 
    </Available> 
  </EventInstanceInfo> 
 
         

Page 6 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



no callback URL was given it is a pull mode subscription. 
If EP accepted the subscription request, it replies with a unique subscription ID. This ID is used by EC later when it invokes operations to extend or cancel 
the subscription. 

2.3 Example of a Notification message 

Notifications are used to communicate events. Typically zero or more notification are packed in a NotificationList and sent using operations 
described using WSDL. In this example the Notify method of the consumer is invoked by the producer to push a list of 1 notification over SOAP. 
This example also demonstrates how the basic Notification format can be extended by a 3rd party (mngmt) to include other application specific information. 

      Event consumer(EC)                              Event producer(EP) 
 
           |                                                | 
           |            subscribe(evt1, 100s)               | 
           | ---------------------------------------------> | 
           |                                                | 
           |               subsId_1234                      | 
           | <--------------------------------------------- | 
           |                                                | 
           |             extend(subsId_1234, 200s)          | 
           | ---------------------------------------------> | 
           |                                                | 
           |                  OK                            | 
           | <--------------------------------------------- | 
           |                                                | 
           |             cancel(subsId_1234)                | 
           | ---------------------------------------------> | 
           |                                                | 
           |                                                | 
           |                  OK                            | 
           | <--------------------------------------------- | 
           |                                                | 
 
       

     <SOAP-ENV:Envelope 
         xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"> 
       <SOAP-ENV:Header> 
       ... 
       </SOAP-ENV:Header> 
       <SOAP-ENV:Body> 
[e01]    <evt:Notify xmlns:evt="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/" 
                      xmlns:mngmt="http://samples.com/management"> 
[e02]      <evt:NotificationList> 
[e03]        <evt:Notification Id="notification-1"> 
[e04]          <evt:Source>http://myservice.com</evt:Source> 
[e05]          <evt:Type>http://openview.hp.com/shutdown</evt:Type> 
[e06]          <evt:Timestamp>2001-04-02T13:20:00Z</evt:Timestamp> 
[e07]          <evt:Duration>20S</evt:Duration> 
[e08]          <evt:ExpiresOn>2001-04-02T15:20:00Z</evt:ExpiresOn> 
[e09]          <evt:UUID>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d8</evt:UUID> 
[e10]          <mngmt:Severity>warning</mngmt:Severity> 
[e11]          <mngmt:Message>A message</mngmt:Message> 
[e12]          <mngmt:CorrectiveMessage>Try this</mngmt:CorrectiveMessage> 
[e13]        </evt:Notification> 
[e14]      </evt:NotificationList> 

Page 7 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



[e01-e15] Notify call to push a notification to a subscriber. 
[e02-e14] A list of notifications. In this case, there is only one notification in the list. 
[e03] Start of a notification. The Id attribute identifies the notification in the list. In this example there is only one notification so the Id is optional. However 
when there is more than one notification in the list, the Id attribute SHOULD be used to make potential XML transformation easier (e.g. XML digital 
signature). 
[e04] Source is the URI of the source of the notification. 
[e05] The Type element identifies the kind of notification. 
[e06] Each notification has a creation date captured by the Timestamp element. This time should be equal to the time of the associated event.  
[e07] Events can be instantaneous but they also can have a duration. The optional element Duration contains the time period of the associated event.  
[e08] A notification may expire. In that case an ExpiresOn element contains the date. This element is optional but if present, the date and time MUST be 
greater than the date and time specified by the Timestamp element. An event producer could make use of this element to implement the policy to cache 
unretrieved notifications in the pull mode.  
[e09] A notification has a identifier that is unique across time and space also called UUID. An element named UUID contains the identifier value. The 
UUID value is used to create causality chains and hierarchy of events.  
[e10-e12] These are examples of extra elements from a foreign namespace that carry some extra data related to this notification. It demonstrates how 
the notification mechanism can be extended. 

3. Event Notification Advertising and Discovery 

WS-Events provides a publish/subscribe mechanism for a notification consumer to discover the list of events the producer exposes. This information can 
be retrieved in different ways including: 

1. A standard API to support dynamic/run-time discovery. 
2. An XML fragment published in a well-known registry (e.g. UDDI, event broker). 
3. Some out-of-band mechanism (e.g. mail). 

Currently, this specification addresses only the first method since it truly enables dynamic discovery of published events. The event producer can use the 
programmatic method to limit the scope of the events published based on the requesters identity and/or some internal policies. Solutions based on a global 
registry to disclose events are more static and the producer loses access control rights on the information published this way. 
This specification uses three operations and two reserved events to discover information about event notifications exposed by a resource. 

3.1 Operations overview 

The following methods are grouped in the DiscoveryInterface of the WSDL associated with this specification. 

[e15]    </evt:Notify> 
       </SOAP-ENV:Body> 
     </SOAP-ENV:Envelope> 
         

Page 8 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



1. GetAllEventTypes takes no argument and returns a list of all the event types URI that can be subscribed to. 
2. GetEventTypeDefinition takes a list (possibly empty) of event types and returns a list of EventTypeDefinition elements describing the 

corresponding types. When invoked without any argument, all subscribable event definitions are returned. 
3. GetEventInstanceInfo takes a list (possibly empty) of event types and returns a list of EventInstanceInfo elements. EventInstanceInfo 

contains information on notifications of past events that the producer still holds. These past events may be of interest to a potential subscriber and 
could be retrieved using the pull mode. 

To indicate runtime changes in the list of event definitions exposed by a producer, two reserved events are defined and sent over the implicit control 
subscription: 

1. NewEventType indicates that a new event type is available for subscription. 
2. EventTypeUpdated is used to signal a change in an event type definition. This is sent when any element or attribute of the EventTypeDefinition 

has changed. In particular this can be used to indicate when an event type becomes obsolete. 

3.2 The GetAllEventTypes operation 

This operation is used to retrieve all the event types (encoded as URIs) that can be subscribed to. The caller may or may not be able to associate 
meanings with all the event types returned. In that case, further information on one or more type can be obtained by using the GetEventTypeDefinition 
operation.  
Below is the structure returned by the call. It uses the common EventTypeList to encapsulate the event types. The list may be empty. 

3.3 The GetEventTypeDefinition operation 

This method is used to provide detailed and meaningful information about an event type. As we have seen above, the type of an event is a simple unique 
string. There is no additional information associated with it. To enable true dynamic discovery, one should be able to get more complete information on an 
event type to make a decision whether the event should be subscribed to or not. GetEventTypeDefinition takes a list (possibly empty) of event types 
and returns a list of EventTypeDefinition elements describing the corresponding types.  
When invoked without any argument, all event definitions that can be subscribed to are returned. 

3.3.1 The EventTypeDefinitionList Element 

This is the root element that encapsulates zero or more event type info elements. 

Schema Definition: 
 
<element name="GetAllEventTypesResponse"> 
  <complexType> 
    <sequence> 
      <element ref="evt:EventTypeList"/> 
    </sequence> 
  </complexType> 
</element> 
  

Page 9 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



3.3.1.1 The EventTypeDefinition element 

This is the main element that carries all the information describing an event type. To make the discovery process as exhaustive as possible, both human 
and machine targeted information are included in an EventTypeDefinition element: 

Below is an explaination of the various attributes and elements: 

1. EventType is the URI representing the event type and its definition. This information is used in a subscription call. 
2. Obsolete is an optional element to indicate that the event type has been obsoleted. If non nil, the content of this element is the new type that 

superseded this one. All the other infos contained in the subsequents elements were correct when this event type was active but may not longer be 
(e.g. URIs may not be dereferencable anymore). 

3. SchemaLocation is the URI to the notification schema. It should point to an XML document that the subscriber can use to validate notifications 
against. 

Schema Definition: 
 
<element name="EventTypeDefinitionList" type="evt:EventTypeDefinitionListType"/> 
<complexType name="EventTypeDefinitionListType"> 
  <sequence> 
    <element ref="evt:EventTypeDefinition" minOccurs="0" maxOccurs="unbounded"/> 
  </sequence> 
</complexType> 
    

Schema Definition: 
 
<complexType name="EventTypeDefinitionType"> 
  <sequence> 
    <element name="EventType" type="xs:anyURI"/> 
    <element name="Obsolete" type="xs:anyURI" minOccurs="0"/> 
    <element name="SchemaLocation" type="xs:anyURI"/> 
    <element name="Description" type="string" minOccurs="0"/> 
    <element name="SubscriptionURL" type="xs:anyURI"/> 
    <element name="SubscriptionMode"> 
      <simpleType name="SubscriptionToken"> 
        <restriction base="token"> 
          <enumeration value="push"/> 
          <enumeration value="pull"/> 
          <enumeration value="pushAndPull"/> 
          <enumeration value="none"/> 
        </restriction> 
      </simpleType> 
    </element> 
 
    <choice minOccurs="0"> 
      <element name="Aggregates" type="evt:EventTypeListType"/> 
      <element name="CausalityExpression" type="string"/> 
    </choice> 
    <element name="Causes" type="evt:EventTypeListType" minOccurs="0"/> 
 
    <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/> 
  </sequence> 
  <anyAttribute namespace="##other" processContents="skip"/> 
</complexType> 
             

Page 10 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



4. Description is an optional description of the purpose and semantic of the event. It should be explicit enough so that the requester can make a 
decision whether or not it should subscribe to the event. 

5. SubscriptionURL is a dereferencable URL that points to a WSDL document of the service implementing the subscription interface.  
6. SubscriptionMode is an indication if this event can be retrieved or not. If it is retrievable, the pull and/or push mode is indicated. The producer 

can choose the allowed retrival mode as needed, depending for instance on the identity of the requester, the network bandwith available, the 
frequency of the event. 

7. Any other events that this type is dependant upon aggregation or causality (optional). This can be used to create high-level events from low-level 
ones and reduces the number of notificatins sent.  

8. Any known events that depend on this type (optional).  
9. any and anyAttribute can be used to extend this base EventTypeDefinition to create new definitions. 

3.4 The GetEventInstanceInfo operation 

An event producer may keep some event instances stored for some time. A potential event consumer may be interested in retrieving events that occured 
before subscription time using the synchronous calls. 
The GetEventInstanceInfo call gives a way for the potential subscriber to discover if the producer has stored some past events and if that is the case, 
how many and during what period of time. 
If some notification can be retrieved, the producer gives an estimate of the time left before it will discard the event. 
The data returned by that call is only informational and may have changed when the subscriber retrieves the notification, depending on the policy used by 
the producer to manage its resources. 

3.4.1 The EventInstanceInfoList Element 

This is the root element that encapsulates zero or more event instance info elements. 

3.4.1.1 The EventInstanceInfo element 

This element contains information about the set of notification instances that may be retrieved for a specific event type. 

Schema Definition: 
 
<element name="EventInstanceInfoList" type="evt:EventInstanceInfoListType"/> 
<complexType name="EventInstanceInfoListType"> 
  <sequence> 
    <element ref="evt:EventInstanceInfo" minOccurs="0" maxOccurs="unbounded"/> 
  </sequence> 
</complexType> 
    

Schema Definition: 
 
<complexType name="EventInstanceInfoType"> 
 <sequence> 
   <element name="EventType" type="xs:anyURI"/> 
   <element name="Available" type="xs:integer"/> 

Page 11 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



Below is an explaination of the various attribute and elements: 

1. EventType is the URI representing the event type and its definition. This information is used in a subscription call. 
2. Available is the number of instances that can be retrieved at the time of the call. 
3. LastInstance is an optional element that contains information on the oldest instance that can be retrieved. 
4. FirstInstance is an optional element which contains information on the newest notification that can be retrieved. 
5. UUID Is the UUID of the event.  
6. Date is the time when the event was created. 
7. AvailableUntil is the time when notifications associated with the event will be discarded. 

3.5 Notifications For Event Type Discovery 

To indicate changes in the event definitions exposed by a producer, two reserved events are defined and can be subscribed to in order to get notifications 
when event type gets created, deleted or updated: 

1. NewEventType indicates that a new event type is available for subscription. 
2. EventTypeUpdated is used to signal a change in an event type definition. This is sent when any element or attribute of the event type info has 

changed. In particular this can be used to indicate when an event type becomes obsolete. 

3.6 The NewEventTypeNotification 

This event is used by a producer to inform a consumer that one or more new events are available for subscription. The URI for this event type is 
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/new-event-type. The base Notification type is restricted so that the value of the 
Type element is fixed and equal to the URI above. Also the new EventTypeDefinition has been appended at the end of the base notification.  

   <element name="LastInstance" minOccurs="0"> 
     <complexType name="LastInstanceData"> 
       <attribute name="UUID" type="xs:anyURI"/> 
       <attribute name="Date" type="xs:dateTime"/> 
       <attribute name="AvailableUntil" type="xs:dateTime"/> 
     </complexType> 
   </element> 
   <element name="FirstInstance"  minOccurs="0"> 
     <complexType name="FirstInstanceData"> 
       <attribute name="UUID" type="xs:anyURI"/> 
       <attribute name="Date" type="xs:dateTime"/> 
       <attribute name="AvailableUntil" type="xs:dateTime"/> 
     </complexType> 
   </element> 
   <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/> 
 </sequence> 
 <anyAttribute namespace="##other" processContents="skip"/> 
</complexType> 
 
    

Schema Definition: 

Page 12 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



3.7 The EventTypeUpdatedNotification 

This event is used by a producer to inform a consumer that one or more event definitions have been updated. The URI for this event type is 
http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/event-type-updated. The base Notification type is restricted so that the value of 
the Type element is fixed and equal to the URI above. Also the new EventTypeDefinition has been appended at the end of the base notification. 

4. Event Notification Subscription 

4.1 Push/Pull Mode Overview 

This specification describes two modes to retrieve events: synchronous and asynchronous also known as pull and push modes. In the push mode, the 
event notification producer calls a method (callback) on the event consumer passing one or more notifications as parameter. In effect the producer pushes 

 
  <complexType name="NewEventTypeNotification"> 
    <complexContent> 
      <restriction base="evt:NotificationType"> 
        <sequence> 
          <element ref="evt:Source"/>  
          <element name="Type" type="xs:anyURI" 
            fixed="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/new-event-type"/> 
          <element ref="evt:Timestamp"/> 
          <element ref="evt:ExpiresOn" minOccurs="0" maxOccurs="1"/> 
          <element ref="evt:Duration" minOccurs="0"/> 
          <element name="UUID" type="xs:anyURI"/> 
          <element ref="evt:EventTypeDefinition"/> 
        </sequence> 
      </restriction> 
    </complexContent> 
  </complexType> 
 
         

Schema Definition: 
 
  <complexType name="EventTypeUpdatedNotification"> 
    <complexContent> 
      <restriction base="evt:NotificationType"> 
        <sequence> 
          <element ref="evt:Source"/>  
          <element name="Type" type="xs:anyURI" 
            fixed="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/event-type-updated"/> 
          <element ref="evt:Timestamp"/> 
          <element ref="evt:ExpiresOn" minOccurs="0" maxOccurs="1"/> 
          <element ref="evt:Duration" minOccurs="0"/> 
          <element name="UUID" type="xs:anyURI"/> 
          <element ref="evt:EventTypeDefinition"/> 
        </sequence> 
      </restriction> 
    </complexContent> 
  </complexType> 
 
         

Page 13 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



notifications to the consumer asynchronously. In the pull mode, the consumer invokes methods on the producer to retrieve the buffered notifications.  
While the push mode is what people associate naturally with an event subsystem, WS-Events also specifies a pull version to retrieve events. In that case, 
the consumer initiates the notifications retrieval by first calling the event producer. Notifications are returned by that call.  
There is no general rule to choose between the two modes however the following should be considered to make a decision:  

Network bandwidth and connectivity: The push mode tends to be more network intensive since the notifications are typically sent as soon as they 
are created. Sometimes, however the network topology (firewalls) does not allow asynchronous traffic. In that case, the pull mode is preferable. 
Latency: The push mode is more suitable for real-time or near real-time systems than the pull mode, the granularity being the period used to do the 
pulling calls. 
Producer resources: The pull mode requires more resources on the producer side. It needs to buffer notifications between calls to retrieve them.  

4.2 Subscription Request: The Subscribe message 

An event notificaion consumer subscribes to events using the Subscribe message. It contains the information needed to set up the subscription: a 
selector for the types, a proposed duration for the subscription, optionally a filter and a callback for the pull mode.  
In the pull mode, the subscription request message contains enough information to create a pull based subscription:  

1. An event selector that could be an EventType (URI), a regular expression matching event types or the string token all to match all the events 
exposed by the producer. 

2. The expiration time is either an absolute time expressed in the producer timezone or the 'infinite' string token to indicates that the subscription 
should last forever. 

3. An optional filter represented by a QName or a well formed XML document. A QName value can be used to reference a well known filter. It is 
expected that both the event producer and the consumer have a common understanding of the filter capabilities. Alternatively any XML document 
representing a filter can be passed to the producer. The description of the syntax and sematic of such a filter is out of the scope of this document.  
When a filter is present, the producer will silently discard notifications that match the filter 

4. A nil callback element. Because the callback is nil, this subscription is interpreted as a pull one. 

In the push mode, the subscription to a set of event types is similar to the pull mode, except that an extra callback element is given. The callback contains 

 WSDL subscription message type  
 
<!-- Subscription --> 
<xs:element name="Subscribe"> 
  <xs:complexType name="SusbscribeType"> 
    <xs:sequence>  
      <xs:element name="EventSelector" type="evt:EventSelectorType"/>  
      <xs:element name="ExpirationTime"  type="xs:dateTime"/> 
      <xs:element name="Filter"  type="evt:FilterType" minOccurs="0"/> 
      <xs:element name="CallbackUrl" type="evt:CallbackType" minOccurs="0" maxOccurs="1"/> 
    </xs:sequence>  
  </xs:complexType> 
</xs:element> 
 
         

Page 14 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



a URL where Notify messages should be sent.  

4.2.1 The Notify Message and CallbackUrl Element 

In the push mode, notifications are still packed in a NotificationList element but the delivery mechanism is different: the producer sends the 
NotificationList to the consumer in an asynchronous fashion using a Notify message sent to the CallbackUrl specified at subscription time.  
The Notify operation has a default SOAP over HTTP binding, but more bindings will be added to future versions of this specification as necessary. 
WS-Events cannot standardize the WSDL port used by asynchronous event consumers because the WSDL port describes how a binding is associated 
with protocol-specific address.  
The CallbackType is used by the event notification consumer to communicate one or more port(s) it wants the producer to push the Notification to. 
CallbackType leverages the port type definition from WSDL 1.1. 

For instance this is what the callback of a service using the SOAP over HTTP (see WS-Event.wsdl) binding could look like:  

The event notification producer would forward notifications associated with this subscription to the given HTTP URL using the SOAP over HTTP binding. 

4.3 Subscription Response 

The response to a subscription request is either an opaque string that is used as a subscription ID or a Fault element containing the fault message. 

Schema Definition: 
 
<xs:element name="Callback" type="evt:CallbackType"/> 
  <xs:complexType name="CallbackType"> 
    <xs:sequence>  
      <xs:element name="port" type="wsdl:tPort" maxOccurs="unbounded"/> 
      <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/>      
    </xs:sequence>   
  <xs:anyAttribute namespace="##other" processContents="skip"/> 
</xs:complexType> 
 
           

<evt:CallbackUrl> 
  <evt:port binding="evt:NotifySoapHttpBinding"> 
    <soap:address location="http://example.org/aservice/notify"/> 
  </evt:port> 
</evt:CallbackUrl> 
             
           

  WSDL subscription response message type 
 
 
  <xs:element name="SubscribeResponse"> 
    <xs:complexType name="SubscribeResponseType"> 
      <xs:choice> 
        <xs:element name="SubscriptionId" type="xs:string"/> 
        <xs:element name="Fault" type="xs:string"/> 
      </xs:choice> 
    </xs:complexType> 
  </xs:element> 
 

Page 15 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



If the expiration time is not acceptable for the producer, an error message is returned with a suggested expiration time.  
If the filter is unknown to the producer, an error message SHOULD be returned. 

4.4 Extending Subscription 

Subscription MAY have a finite duration. If that is the case, a subscriber could extend a subscription before it expires. This is done using the 
ExtendSubscription call to provide a new ExpirationTime for the given SubscriptionId. The new expiration time should be greater than the current 
one. 
If the subscription ID is invalid, the producer MUST return a fault message. 

4.5 Cancelling Subscription 

The message CancelSubscription containing the SubscriptionId to be cancelled can be sent to the producer to end a subscription. If the subscription 
ID is invalid, the producer MUST return a fault message. 

5. Event Notification Retrieval (Pull Mode) 

In the push mode, the callback entry point is used to forward event notification to the consumer. In the pull mode, some standard getters are defined to do 
so. Currently three operations are defined: 

GetEventsSinceUUID: Retrieve all events that happened after the one with a given UUID. 
GetEventsSinceDate: Retrieve all events that occured on or after the given date.  
GetEventsRangeByDate: Retrieve all events that occured on or after the start date up to the end date (included). 

For these 3 calls, the first element in the request document is named SubscriptionId. It is a string which value should be the one returned by a 
successful subscription call. All the selectors apply to a specific subscription. Events that are not part of the original subscription will not be matched. 
These 3 calls return a NotificationList that contains zero or more Notification elements matching the request. 
These 3 calls MUST return a fault if the SubscriptionId did not exist or if it does not belong to the caller or if it refers to a push subscription. 
The next sections cover the specifics for each call 

5.1 GetEventsSinceUUID 

The EventId element specifies the event uuid from which events will be returned. If this a valid UUID and if the producer still has a copy of the event, the 
list returned start with this event followed by any events that occured after if any. 
If the UUID is wrong or if the producer does not hold a copy of the event anymore, a fault message MUST be returned. This could be the indication that the 
consumer has missed some events. 

         

Page 16 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



5.2 GetEventsSinceDate 

The Date element specifies the date and time from which events will be returned. 
If the date is in the future a fault message MUST be returned. 

5.3 GetEventsRangeByDate 

The BeginDate element specifies the date and time from which events will be returned. The date should be expressed in the producer's timezone. The 
GetEventInstanceInfo call can be used to get a sample of the producer's clock and timezone indication.  
The EndDate element specifies the ending date and time from which events will be returned. The date should be expressed in the producer's timezone. It 
should be greater than the value specified in the BeginDate element.  
If a date is in the future or if the end date is smaller than the begin date value, a fault message MUST be returned. 

       WSDL: 
 
 
      <!-- Get since Id --> 
      <xs:element name="GetEventsSinceUUID"> 
        <xs:complexType name="GetEventsSinceUUIDType"> 
          <xs:sequence> 
            <xs:element name="SubscriptionId" type="xs:string"/> 
            <xs:element name="EventId" type="xs:anyURI"/> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
         

       WSDL: 
 
 
      <!-- Get since Id --> 
      <xs:element name="GetEventsSinceDate"> 
        <xs:complexType name="GetEventsSinceDateType"> 
          <xs:sequence> 
            <xs:element name="SubscriptionId" type="xs:string"/> 
            <xs:element name="Date" type="xs:dateTime"/> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
         

       WSDL: 
 
 
      <!-- Get since Id --> 
      <xs:element name="GetEventsRangeByDate"> 
        <xs:complexType name="GetEventsRangeByDateType"> 
          <xs:sequence> 
            <xs:element name="SubscriptionId" type="xs:string"/> 
            <xs:element name="BeginDate" type="xs:dateTime"/> 
            <xs:element name="EndDate" type="xs:dateTime"/> 
          </xs:sequence> 

Page 17 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



6. Event Notification Syntax 

An event is state change in the producer. A notification is the XML representation of such a state change.  

6.1 The NotificationList Element 

This is the root element that encapsulates zero or more Notifications. It is a named complex type used in the WSDL to define the message that carries 
notifications. There are no constraints on how the Notification elements are grouped in a NotificationList. For instance, a NotificationList can 
contain Notification elements of various types or from different sources in any order. 

6.1.1 The Notification Element 

The Notification element is the basic building block used to convey information about events. It contains the minimal set of information to: 

Be able to order event according to time but also causality. This allows representation of a chain of events. 
Support aggregation of events. 
Provide for extension to support more complex notification syntax. 

        </xs:complexType> 
      </xs:element> 
         

Schema Definition: 
 
<element name="NotificationList" type="evt:NotificationListType"/> 
<complexType name="NotificationListType"> 
  <sequence> 
    <element ref="evt:Notification" minOccurs="0" maxOccurs="unbounded"/> 
  </sequence> 
</complexType> 
 
  

Schema Definition: 
 
<element name="Notification" type="evt:NotificationType"/> 
<complexType name="NotificationType"> 
  <sequence> 
    <element ref="evt:Source"/> 
    <element ref="evt:Type"/> 
    <element ref="evt:Timestamp"/> 
    <element ref="evt:Duration" minOccurs="0"/> 
    <element ref="evt:ExpiresOn" minOccurs="0"/> 
    <element ref="evt:UUID"/> 
    <any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents="lax"/> 
  </sequence> 
  <anyAttribute namespace="##other" processContents="skip"/> 
</complexType> 
    

Page 18 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



While a notification is uniquely identified by its UUID, a notification is also uniquely identified by the result of the concatenation of the content of the Source, 
Type and Timestamp elements. That is to say that 2 events of the same type cannot happen at the same time in the same event producer. It is the 
responsibility of the source to make sure that the time granularity used to timestamp notifications is small enough so that two subsequent occurences of 
the same event have different Timestamp values. 

6.1.1.1 The Source Element 

This element contains the URI of the event producer. It MAY be different from the URL of the Notification sender. For instance an event consumer MAY 
subscribe to an event broker to receive notifications when a particular event happens. In this case, the address of the event source and the notification 
source are different. 

6.1.1.2 The Type Element 

The Type is a URI which uniquely identify the type of the notification. 

6.1.1.3 The Timestamp Element 

The date and time that uniquely identify the instant when the notification was created. This time should be equal to the time the event or events which 
generated this notification happened. This is not always the same as the time the notification itself was created.  
The dateTime XML Schema type can have an arbitrary number of decimal after the second field. Howver when the granularity of the source clock is too 
big, it may happen that two or more event notifications are created with the same Timestamp value. In this case it is not possible to order the nofication 
according to time. 

6.1.1.4 The Duration Element 

Events can be instantaneous but they also can last in time. The time the event lasts can be set in the optional Duration element. If this element is absent, 
it means that the associated event had a duration time of 0s.  

Schema Definition: 
 
<element name="Source" type="xs:anyURI"/> 
      

Schema Definition: 
 
<element name="Type" type="xs:anyURI"/> 
      

Schema Definition: 
 
<element name="Timestamp" type="xs:dateTime"/> 
      

Schema Definition: 
 
<element name="Duration" type="evt:DurationType"/> 
      

Page 19 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



6.1.1.5 The ExpiresOn Element 

An optional element to indicate how long the notification is valid for. Events happen at a single point in time but notification can last longer since they are a 
physical representation of the event that propagates through systems.  
If ExpiresOn is present, the values MUST be greater than one in Timestamp. 
If omitted, the notification will never expire. 
A system SHOULD not propagate any notification that have expired though the mechanisms described in this specification. 

6.1.1.6 The UUID Element 

The UUID element uniquely identifies an event across time and space. The implementation is free to use any algorithm to generate a UUID. However, this 
specification recommends that a well known algorithm and format (see UUIDType) should be used. The recommended UUID generation algorithm does 
not require any centralized authority and supports high generation rate.  

7. Common Types 

7.1 The EventTypeList and EventType Element Types 

EventType is a URI that is not intended to be dereferencable. To get the definition of an EventType from its URI, the client must use the 
GetEventTypeDefinition facility. 
EventTypeList is used to encapsulate 0 or more EventType. 

7.2 The UUID Element Type 

[Definition: UUID] The UUID element uniquely identifies an event across time and space. 
This document recommends the following UUID generation algorithm and format [UUID]. The generation does not require any centralized authority and 
support high generation rate. UUIDs are statistically unique. 
The UUID format is made of the concatenation of the uuid: scheme [uuid Scheme]and a pseudo random number. The random number part is made of 

Schema Definition: 
 
<element name="ExpiresOn" type="evt:DateTimeType"/> 
      

Schema Definition: 
 
<element name="EventTypeList" type="evt:EventTypeListType"/> 
<complexType name="EventTypeListType"> 
  <sequence> 
    <element name="EventType" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/> 
  </sequence> 
</complexType> 
           

Page 20 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



hexadecimal digits arranged in the common 8-4-4-4-12 format pattern. 
Here is an example of such a UUID: 

7.3 The dateTime Type 

The XML Schema type is used many time in this specification. Eventhough the time is part of the value of an xs:dateTime attribute or element, it is 
RECOMMENDED to use the UTC timezone for consistency. However, local timezone MAY be used. 

8. Transport Considerations 

8.1 Message encoding 

The Web Services community has defined two XML encoding styles that map between SOAP data models and SOAP messages: RPC style with SOAP 
encoding (RPC/encoded) and Document style with literal encoding (document/literal). Having two accepted styles creates a degree of ambiguity that can 
produce conflicts. This specification recognizes both styles, but recommends standardizing on the document/literal style in order to guarantee 
interoperability.  
With RPC/SOAP encoded style, the method calls, parameters and return values are mapped to XML elements according to the schema described in 
Section 5 of the SOAP [SOAP] specification. Section 5 also describes how the RPC/SOAP encoded style handles the request/response sequence and 
exception serialization. This style constrains each element in the message Body. However, the message as a whole is not constrained by any schema. As 
a consequence, schema validation cannot happen on the Body of the SOAP message. Additionally SOAP encoding allows the use of id and href 
attributes to reference elements and avoid duplication.  
On the other hand, the Document style with literal encoding means that the Body of the SOAP message conforms to an XML schema typically available as 
message elements from the target WSDL. With literal encoding, there is no standard rule for encoding a method invocation as a SOAP message.  
Even though RPC/SOAP encoded style was historically developed first, the web services industry is adopting and recommending the document/literal 
style. As a result, the major web services standardization bodies (WS-I, W3C WSDL) recommend against the use of the RPC/SOAP encoding style. To be 
compatible with the rest of the industry this specification also adopts the document/literal style to describe defined interfaces and messages.  

8.2 Default Binding 

SOAP 1.1 defines only one binding: HTTP 1.1. To comply with the WS-I basic profile all messages SHOULD be sent over HTTP/1.1 and comply with 
section 4.3 of the basic profile 1.0 [WS-I-basic-profile]. In the future other transports MAY be supported. 

8.3 Reliability 

Reliability is a key feature for event systems. Today Web services are widely relying on HTTP, a non-reliable point-to-point protocol. However, Web 
services may use other transport protocols to provide reliability, or one of the SOAP-based reliability mechanisms, such as WS-ReliableMessaging [WS-

uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d8 
  

Messages SHOULD be sent using HTTP/1.1.

Page 21 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



ReliableMessaging]. To address reliability needs, the appropriate protocol should be chosen. Nevertheless, all WS-Events implementations MUST support 
SOAP HTTP binding. 

9. Security 

Security for Web services is a big concern for the industry. Since WS-Events is built on top of WS technology, some recommendations with regard to 
security should be provided to prevent attacks. Here is a non-exhaustive list of examples of potential threats: 

1. A malicious party could spoof a subscription packet and use the ID to cancel the subscription, impersonating the original subscriber.  
2. An attacker could generate extra meaningless event notifications, in the push mode. 

WS-Events require some confidentiality and/or integrity at the transport level, as well as some access control mechanisms. 

9.1 Transport 

Some attempts have been made to provide transport level security for XML payloads with WS-Security and XML firewalls. However, in their current state, 
these solutions fall short of creating a usable framework to create secure sessions for the transport of SOAP messages. Furthermore, how WS-Security 
affects performance is a concern. There are other concerns also, such as the slow rate at which WS-Security is being adopted and the fact that WS-I 
current basic profile was left out of WS-Security because of its shortcomings. The current recommendation is to only use HTTPS as a transport level 
security. 

HTTPS has been around for a while now, is widely accepted and provides a robust way of securing the transport of event notifications. However, because 
HTTPS cannot be relayed, security applies only to the first hop. If the peer is not the final destination (e.g, a broker), the sender cannot assume anything 
with regard to the security used by the peer to forward the data to the final recipient. In that scenario, WS-Security MAY be used to provide end-to-end 
security. 

9.2 Authentication and Authorization 

For the access control part, most of the modern execution environments support client side authentication and provide a way to map SSL client side 
certificates to their proprietary access control mechanisms. Until the Web services community comes up with a standard solution, client side certificates 
should be used to perform authentication and the access control rights should be derived from the assessed identity. 

Even though Web services is a machine-to-machine framework, HTTP basic authentication (username/password) MAY be used when the security 
requirements are very light or when XML cryptography is not suitable for the environment (heavyweight). SSL MUST be used to perform the HTTP 
authentication process. 

When integrity and/or confidentiality of the SOAP payload are required at the transport level, HTTPS SHOULD be used.

When the integrity and/or confidentiality of the SOAP payload is required at the transport level in a multi-hops path, WS-Security MAY be used.

Access control MAY be applied to the subscription and notification operations.

When authentication is needed, HTTPS with mutual authentication is RECOMMENDED.

HTTP Basic authentication over SSL MAY be used.

Page 22 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



The adoption of HTTPS and a firewall-friendly transport will facilitate adoption of WS-Events as a cross-enterprise solution. However, this flexibility comes 
at a cost: firewalls cannot apply security policies on an encrypted stream, in effect by-passing corporate security. While this has been a concern for some 
time now, it is a current practice. Since the authentication is now done at the end-point, HTTPS with client side authentication is recommended to carry 
WS-Events between two distinct security domains.  

10. Future Directions (Non-Normative)  

There are several areas which WS-Events may address in the future. These include (but are not limited to) the following:  

In the pull mode, a generic GetEvents call which would take an expression defined in a grammar to select events. These expressions would be 
able to select events according to time and/or causality. 
A filtering syntax and semantic to indicate at subscription time a complex condition under which event notification should be sent. For instance, if 
there is an event that is generated when a CPU load changes, the subscriber should be able to specify that it wishes to receive the associated 
notification when the CPU load reaches 95% and above. 
A new call to retrieve the EventTypes associated with a given subscription. The producer would return the list of event types subscribed. This would 
be useful when the 'all' selector or a regular expression was used at subscription time. 
Brokering is an important concept in event systems. The current version of this specification touches on that but needs to explain this concept in 
more detail. More specifically, how a broker can relay event notification advertising and subscription, and how notifications are transmitted through 
one or more brokers in both the push and pull modes. 
Fault messages need more details. 
The callback element is a URL and assumes SOAP over HTTP. However to support multiple bindings, the URL could be a WSDL URL, forcing the 
producer to retrieve the consumer WSDL which would be inefficient. A better solution would be for the consumer to send a fragment of its WSDL 
containing the service element and all the endpoints (ports) for the bindings defined by this specification. 
EventTypeDefinition for the NewEventType and EventTypeUpdated is missing. 

11. Appendix A: Extended notification examples 

This appendix contains examples of nofitication schemas extending the basic notification. 

11.1 Notification for a management plate form 

Below is an example of a notification type that can be used to notify a management console. The schema defines an EventSeverityType and a 
RelationType types. EventSeverityType is used to indicate the severity of the event according the source rating policy. RelationType is used to 
indicate what was the change in the managed object relationships that triggered the notification. 

When going across firewalls, HTTPS with client side authentication SHOULD be used.

<?xml version="1.0" encoding="utf-8"?> 
 
<s:schema xmlns:s="http://www.w3.org/2001/XMLSchema" 
  xmlns:tns="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/notification-info" 
  xmlns:core="http://devresource.hp.com/drc/specifications/wsmf/2003/07/foundation/" 

Page 23 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



  targetNamespace="http://devresource.hp.com/drc/specifications/wsmf/2003/07/events/notification-info" 
  version="2.0" elementFormDefault="qualified"> 
 
  <s:simpleType name="EventSeverityType"> 
    <s:annotation> 
      <s:documentation> 
        This type represents enum used to indicate the severity of an 
        event. This is a standard list of severity values used in 
        management software. 
      </s:documentation> 
    </s:annotation> 
 
 
    <s:restriction base="s:string"> 
      <s:enumeration value="Critical" /> 
      <s:enumeration value="Major" /> 
      <s:enumeration value="Minor" /> 
      <s:enumeration value="Warning" /> 
      <s:enumeration value="Normal" /> 
      <s:enumeration value="Unknown" /> 
    </s:restriction> 
  </s:simpleType> 
 
  <s:complexType name="NotificationInfoType"> 
    <s:sequence> 
      <s:element name="Severity" type="tns:EventSeverityType"/> 
      <s:element name="Message" type="s:string"/> 
      <s:element name="ResourceHostName" type="s:string" /> 
      <s:element name="CorrectiveMessage" type ="s:string" nillable="true" /> 
      <s:element name="ApplicationName" type="s:string" nillable="true" /> 
    </s:sequence> 
  </s:complexType> 
 
  <!-- NotificationInfo --> 
  <s:annotation> 
    <s:documentation> 
      This type represents the operational notification information 
      returned by the managed object. 
    </s:documentation> 
  </s:annotation> 
 
 
  <s:element name="NotificationInfo" type="tns:NotificationInfoType"/> 
 
 
  <s:simpleType name="RelationType"> 
    <s:annotation> 
      <s:documentation> 
        This type represents the relational notification information 
        returned by the managed object. 
      </s:documentation> 
    </s:annotation> 
 
    <s:restriction base="s:string"> 
      <s:enumeration value="RelationCreate" /> 
      <s:enumeration value="RelationDelete" /> 
    </s:restriction> 
  </s:simpleType> 
 
</s:schema> 
         

Page 24 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



12. References 

[URI]  
RFC2396. Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, Authors. Internet Engineering Task Force, 
August 1998. Available at http://www.ietf.org/rfc/rfc2396.txt. (See http://www.ietf.org/rfc/rfc2396.txt.)  

[KEYWORDS]  
RFC2119. Key words for use in RFCs to Indicate Requirement Levels , S. Bradner, Author. Internet Engineering Task Force, June 1999. Available 
at http://www.ietf.org/rfc/rfc2119.txt. (See http://www.ietf.org/rfc/rfc2119.txt.)  

[SOAP]  
Simple Object Access Protocol (SOAP) 1.1 , D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. 
Winer, Editors. World Wide Web Consortium, 8 May 2000. This version of the Simple Object Access Protocol 1.1 Note is 
http://www.w3.org/TR/2000/NOTE-SOAP-20000508. The latest version of Simple Object Access Protocol 1.1 is available at 
http://www.w3.org/TR/SOAP. (See http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.)  

[WSDL]  
Web Services Description Language (WSDL) 1.1, E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Authors. World Wide Web 
Consortium, 15 March 2002. This version of the Web Services Description Language Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 
The latest version of Web Services Description Language is available at http://www.w3.org/TR/wsdl. (See http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.)  

[WSDL 1.2]  
Web Services Description Language (WSDL) Version 1.2 , R, Chinnici, M. Gudgin, J. Moreau, and S. Weerawarana, Editors. World Wide Web 
Consortium. The latest version of Web Services Description Language, Version 1.2 is available at http://www.w3.org/TR/wsdl12. (See 
http://www.w3.org/TR/2003/WD-wsdl12-20030303.)  

[UUID]  
UUIDs and GUIDs , Paul J. Leach, Rich Salz, Authors. Internet Engineering Task Force, February 1998. Available at latest version of UUIDs and 
GUIDs is available at http://hegel.ittc.ukans.edu/topics/internet/internet-drafts/draft-l/draft-leach-uuids-guids-01.txt. (See 
http://hegel.ittc.ukans.edu/topics/internet/internet-drafts/draft-l/draft-leach-uuids-guids-01.txt.)  

[uuid Scheme]  
The uuid: URI scheme , Charlie Kindel, Author. Internet Engineering Task Force, February 1997. Available at latest version of the uuid: scheme is 
available at http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html. (See http://www.globecom.net/ietf/draft/draft-kindel-uuid-uri-00.html.)  

[WS-ReliableMessaging]  
Web Services Reliable Messaging Protocol (WS-ReliableMessaging) , BEA, IBM, Microsoft, TIBCO, March 2003. Available at latest version of the 
WS-ReliableMessaging specification is available at http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-
reliablemessaging.asp. (See http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-reliablemessaging.asp.)  

[XML 1.0]  
Extensible Markup Language (XML) 1.0 (Second Edition), T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, Editors. World Wide Web 
Consortium, 10 February 1998, revised 6 October 2000. This version of the XML 1.0 Recommendation is http://www.w3.org/TR/2000/REC-xml-
20001006. The latest version of XML 1.0 is available at http://www.w3.org/TR/REC-xml. (See http://www.w3.org/TR/2000/REC-xml-20001006.)  

[XML Namespaces]  
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium, 14 January 1999. This version of the XML 
Information Set Recommendation is http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML is available 
at http://www.w3.org/TR/REC-xml-names. (See http://www.w3.org/TR/1999/REC-xml-names-19990114.)  

[XML Schema: Structures]  
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors. World Wide Web Consortium, 2 May 2001. 
This version of the XML Schema Part 1 Recommendation is http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of XML 
Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1. (See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.)  

Page 25 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003



[XML Schema: Datatypes]  
XML Schema Part 2: Datatypes, P. Byron and A. Malhotra, Editors. World Wide Web Consortium, 2 May 2001. This version of the XML Schema 
Part 2 Recommendation is http://www.w3.org/TR/2001/REC-xmlschema-2-20010502. The latest version of XML Schema Part 2 is available at 
http://www.w3.org/TR/xmlschema-2. (See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.)  

[IETF RFC 2616]  
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Authors. Internet 
Engineering Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt. (See http://www.ietf.org/rfc/rfc2616.txt.)  

Page 26 of 26Web Services Events (WS-Events) Version 2.0

7/30/2003


