Usage of ebMS in a Four-Corner-Model

This document describes typical questions that arise in a situation where different domains using proprietary standards are connected via gateways, and a common protocol is used only between those gateways.

In this type of architecture (also known as a Four-Corner-Model
) some additional agreements beyond what is already specified in the ebMS standard are required, as described in the following sections.

[image: image1.png]publidector instiution

Private compart_

/
Customer relationship.
Unknown inteface

Customs relatonship
Unknown nteface.

N

Access point Access Point
Ofered by Service Provider Ofered by Service Provider

Figure 1 – Four-Corner-Model

Note that these sections also cover profiling aspects. Relevant P-Mode settings are listed in the Appendix.
Addressing
In the usual scenarios where the ebMS protocol is used between end entities, it is obvious that the From and To fields in the UserMessage will be used for the sender and receiver respectively. However in a four-corner-model (i.e., an architecture that uses gateways to connect existing proprietary infrastructures) the senders / recipients of ebMS messages are the gateways, not the end entities.

In order to keep the option open to use out-of the box messaging products, From/PartyId and To/PartyId shall therefore in this case denote the addresses of gateways.

The addresses of end entities will then be transmitted as ebMS properties.

An example is given in “B2B Protocols for Multi-Corner Message Exchange”

<eb3:UserMessage>

 <eb3:MessageInfo>

 <!-- Omitted -->

 </eb3:MessageInfo>

 <eb3:PartyInfo>

 <eb3:From>

 <eb3:PartyId>http://edelivery.de/gateway</eb3:PartyId>

 <eb3:Role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator</eb3:Role>

 </eb3:From>

 <eb3:To>

 <eb3:PartyId>http://edelivery.nl/gateway</eb3:PartyId>

 <eb3:Role>http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder</eb3:Role>

 </eb3:To>

 </eb3:PartyInfo>

 <eb3:CollaborationInfo>

 <eb3:Service>http://docs.oasis-open.org/ebxml-msg/as4/200902/service</eb3:Service>

 <eb3:Action>http://docs.oasis-open.org/ebxml-msg/as4/200902/action</eb3:Action>

 <eb3:ConversationId>ecae53d4-7473-45a6-ad70-61970dd7c4b0</eb3:ConversationId>

 </eb3:CollaborationInfo>

 <eb3:MessageProperties>

 <eb3:Property
 name="FromPartyId">123456789</eb3:Property>

 <eb3:Property
 name="FromPartyIdType">urn:oasis:names:tc:ebcore:partyid-type:iso6523:0002</eb3:Property>

 <eb3:Property
 name="ToPartyId">192837465</eb3:Property>

 <eb3:Property
 name="ToPartyIdType">urn:oasis:names:tc:ebcore:partyid-type:iso6523:0106</eb3:Property>

 <eb3:Property name="Service">urn:www.cenbii.eu:profile:BII06:ver1.0</eb3:Property>

 <eb3:Property name="Action">RejectOrder</eb3:Property>

 </eb3:MessageProperties>

 <eb3:PayloadInfo>

 <eb3:PartInfo />

 </eb3:PayloadInfo>

</eb3:UserMessage>

To denote the different types of national transport infrastructures, values for the address type will have to be defined within the different communities, e.g.

<eb:Property name="FromPartyId">govello-1234567890123-456789012</eb:Property>

<eb:Property name="FromPartyIdType">urn:oasis:names:tc:ebcore:partyid-type:unregistered:egvp</eb:Property>

Reliability

The ebMS specification supports three different, mutually incompatible Reliability modules (all of which are OASIS standards
):

· WS-Reliability is implemented in some existing products.

· The newer WS-ReliableMessaging standard is today supported by a larger number of SOAP toolkits (for Apache Axis through the Sandesha
 library). It has however some known interoperability issues.

· The AS4 profiling of ebMS also defines a receipt mechanism (reception-awareness) which is similar to Reliability.

The question which reliability-module is available may additionally depend on the application server that is used.
In a general context it might be feasible that business partners agree bilaterally on which of these modules to use. With dynamic discovery of capabilities
 this is well possible. However in a setting where partners rely on being able to communicate with any other entity that is part of the same community, inside such communities a stricter profiling is required.

In order to be in line with other recent profiles of ebMS which already have some adoption (notably the AS4 profile
) in the context of this document it is assumed that participants must at least support AS4 reception-awareness
.

Non-repudiation between gateways

While end-to-end non-repudiation is usually handled in the business layer (which may be through evidences according to the ETSI REM specification
for more e-mail-like exchanges or any other , more specific business documents), it should be noted that for domains which do not use business-level evidences an option is to use AS4 signals between gateways, if so desired.
Trust establishment / Security

Gateway Authentication

For the mutual authentication of gateways according to WS-Security certificates (X509 v3) are required.

In user groups with a small number of participants it is common to exchange these certificates between communication partners in advance. However with a large number of gateways this will not be feasible. Among the possible solutions are Trusted Service Lists (TSLs) or a dedicated PKI (Public Key Infrastructure).

End Entity Authentication (Original Sender)

Before submitting messages users will usually have to authenticate themselves to their providers or to some kind of authority that is running the gateway through which this user communicates.

The type and level of authentication required varies in each case. (As an example, for European cross-border governmental (or justice) communication authentication based on (national) e-ID as conceived be the Large-Scale Pilot STORK
 may be required).
It is to be expected that over time standardized authentication mechanisms will be used and that proof of this authentication should be submitted to the receiving gateway as part of the message.

SAML
 tokens are a well-known mechanism for end entity authentication that can be easily used in B2B messaging.
[image: image2.png]© [samassertonType

© @ attioutes

Samtissuer
©
Type_semkNamelDType,

deSnture 1O

samSubject
Type semkSubjectType,

.}

samiConcitions

Type samkCondtionsType, ©
@ e o

samtAdvice

Type_samk AdvicsTyne,

SamiStetement
Type_samiStatementabstractType,

SamtAuhrSistement

Type_samk authnStatementType,

et AuhzDecisionStatement

Tyne_semk AuthzDecisionStatementType,

et AtriteStatemert,
Type_samk AtriouteStatementType

Figure 2 – SAML Assertion
In an ebMS message, this SAML token should be added as a separate message part.

For which business exchanges this type of special payload is required, can be configured in the

BusinessInfo.PayloadProfile setting of the P-Mode. (That is, communication partners can in this setting agree upon whether they need the SAML token or not.)

The PayloadInfo element of the ebMS UserMessage structure will then contain a corresponding PartInfo structure referencing this additional message part (see section “Summary: Message parts” below).
[image: image3.png]Buitin derved type. The token datatype represents
tokenized sings. The base type of token s
normalizedSting,

o s
e

o [tedescrpton
Base Type | tnsimon-empty-string

(Cmsmmamrsm)o

Descrpion o

Type tnsDescription o0
ertroperion ©

Type tns:PartProperties

Figure 3 – PartInfo in the UserMessage

Example:
<eb3:UserMessage>

 <eb3:MessageInfo>

 <!-- Omitted -->

 </eb3:MessageInfo>

 <eb3:PartyInfo>

 <eb3:From>

 <!-- Omitted -->
 </eb3:From>

 <eb3:To>

 <!-- Omitted -->
 </eb3:To>

 </eb3:PartyInfo>

 <eb3:CollaborationInfo>

 <!-- Omitted -->

 </eb3:CollaborationInfo>

 <eb3:PayloadInfo>

 <eb3:PartInfo>
 <eb3:Description>XML business document in SOAP body</eb3:Description>

 </eb3:PartInfo>

 <eb3:PartInfo href="cid:8563d9f0-86e2-11e1-b0c4-0800200c9a66@edelivery.de">

 <eb3:Description>SAML Token</eb3:Description>

 </eb3:PartInfo>

 </eb3:PayloadInfo>
 <!— Other payloads -->
</eb3:UserMessage>

A profile for the SAML token is given in the appendix.

Example:

<saml2:Assertion

 Version="2.0"

 ID="1234567890123456789012345678901234567"
 IssueInstant="2012-03-08T14:22:00">

 <saml2:Issuer>http://edelivery.de/gateway</saml2:Issuer>
 <ds:Signature><!-- Omitted --></ds:Signature>
 <saml2:Subject>

 <saml2:NameID Format="type">SomeUser</saml2:NameID>
 <saml2:SubjectConfirmation><!-- Omitted --></saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions><!-- Omitted --></saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2012-03-08T14:22:00">

 <saml2:AuthnContext>

 <saml2:AuthnContextClassRef>
 <!-- Omitted -->
 </saml2:AuthnContextClassRef>

 </saml2:AuthnContext>

 </saml2:AuthnStatement>

 <saml2:AttributeStatement><!-- Omitted --></saml2:AttributeStatement>
</saml2:Assertion>
The NameID element in the Subject must contain the end entity identifier in the same format as given for the original sender in the end entity adressing field (see section “Addressing“ above).
Summary: Message parts

The following table summarizes the different message parts for a business message and their meaning.

	PartInfo

	Contents

	
	Payload (XML business document) in SOAP body

	
	SAML token for end entity authentication

	
	Additional Payloads (attachments)

Table 1: Message parts

In the PMode[1].BusinessInfo.PayloadProfile[] setting communication partners can agree which message parts must be present and which are optional. That way e.g. the use of the SAML token can be configured according to bilateral agreements.

For all business messages a PayloadInfo element must be provided in the ebMS Header.

For all message parts listed above, if present, PartInfo elements must be provided with the values given in the table.
Note that (with the exception of the first part, which is the SOAP body) PartInfo XML structures are linked to the corresponding MIME parts via the MIME content-ID.

Example:

Content-Type: Multipart/Related; boundary=MIME_boundary;

type=application/soap+xml;

start="<0e6dedc0-8734-11e1-b0c4-0800200c9a66@edelivery.de>"

--MIME_boundary

Content-Type: application/soap+xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <0e6dedc0-8734-11e1-b0c4-0800200c9a66@edelivery.de>

<?xml version='1.0' ?>

<S12:Envelope xmlns:S12="http://www.w3.org/2003/05/soap-envelope"

xmlns:eb="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">

<S12:Header>

 <eb:Messaging S12:mustUnderstand="true">

 <!-- ... -->
 <eb:PayloadInfo>

 <eb:PartInfo>
 <eb:Description>Actual business document payload</eb:Description>

 </eb:PartInfo>

 <eb:PartInfo href="cid:2baedf50-8736-11e1-b0c4-0800200c9a66">

 <eb:Description>SAML Token</eb:Description>

 </eb:PartInfo>

 <eb:PartInfo href="cid:f4f8b7f0-8736-11e1-b0c4-0800200c9a66">

 <eb:Description>Additional attachment</eb:Description>

 </eb:PartInfo>

 </eb:PayloadInfo>

 </eb:Messaging>

 </S12:Header>

<S12:Body>

 <eCodex:EPO>

 <!-- ... -->
 </eCodex:EPO>

</S12:Body>

</S12:Envelope>

--MIME_boundary

Content-Type: application/samlassertion+xml
Content-Transfer-Encoding: 8bit

Content-ID: <cid:2baedf50-8736-11e1-b0c4-0800200c9a66@edelivery.de>

<?xml version='1.0' ?>

<saml2:Assertion

 Version="2.0"

 ID="1234567890123456789012345678901234567"
 IssueInstant="2012-03-08T14:22:00">
 <!-- ... -->
</saml2:Assertion>
--MIME_boundary

Content-Type: image/tiff

Content-Transfer-Encoding: binary

Content-ID: <cid:f4f8b7f0-8736-11e1-b0c4-0800200c9a66@edelivery.de>

...scanned document binary...

--MIME_boundary--

Message Exchange Patterns

In general, the simplest way to send a message is by making an HTTP request, so implementations are expected to support (One-Way) push mode at minimum. If both gateways support being sender and receiver in this pattern, the Two-Way/Push-and-Push pattern technically poses no extra challenges. On the logical level it introduces the possibility to have messages related to each other, that is, to implement question- and-answer scenarios.

Pulling patterns are primarily useful for communication partners with limited capabilities (for example mobile devices which cannot act as HTTP servers). Therefore service providers might choose to use this feature to implement lightweight clients as backend interfaces; however for interoperability between gateways it will not be required
.

Implementations must support a least the One-Way/Push and Two-Way/Push-and-Push MEPS.
Other settings

Some other settings that are in ebMS3 configurable but should have the same value inside one user community (such as SOAP version) are listed in the appendix.
Appendix – P-Mode Configuration

	Parameter
	Usage

	PMode.MEP
	http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay

	PMode.MEPbinding
	http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push

	PMode.Initiator.Role
	Default value:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator

	PMode.Responder.Role
	Default value:
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder

	PMode[1].Protocol.SOAPVersion
	1.2

	PMode[1].BusinessInfo.Service
	Communities may set up their own rules how these are constructed for the community’s business scenarios.

	PMode[1].BusinessInfo.Action
	

	PMode[1].BusinessInfo.Properties[]
	

	PMode[1].BusinessInfo. PayloadProfile[]
	Should be used to specify which message parts are mandatory (see section 3.3.3.5 “Summary: Message parts”).

	PMode[1].BusinessInfo.PayloadProfile.maxSize
	Should for each service provider running a gateway be set to the maximum message size admissible (possibly dependent on the infrastructure used to forward messages to end entities)

	PMode[1].BusinessInfo.MPC
	Should not be used.

III.1. Reliability

WS-Reliability and WS- Reliablemessaging are not considered within this document.

III.2. Security

	PMode[1].Security.WSSVersion
	1.1

	PMode[1].Security.X509.Sign.Element[]
	

	PMode[1].Security.X509.Sign.Attachment[]
	

	PMode[1].Security.X509.Signature.Certificate
	

	PMode[1].Security.X509.Signature.HashFunction
	

	PMode[1].Security.X509.Signature.Algorithm
	

	
	

	PMode[1].Security.X509.Encryption.Encrypt.Element[]
	

	PMode[1].Security.X509.Encryption.Encrypt.Attachment[]
	

	PMode[1].Security.X509.Encryption.Certificate
	

	PMode[1].Security.X509.Encryption.Algorithm
	

	PMode[1].Security.X509.Encryption.MinimumStrength
	

	
	

	PMode[1].Security.UsernameToken
.username
	

	PMode[1].Security.UsernameToken.password
	

	PMode[1].Security.UsernameToken.Digest
	

	PMode[1].Security.UsernameToken.Nonce
	

	PMode[1].Security.UsernameToken.Created
	

	
	

	PModeAuthorize
	

	PMode[1].Security.SendReceipt
	false

	Pmode[1].Security.SendReceipt.ReplyPattern
	not used

III.3. Other Required Features
In addition to the settings mentioned in the previous section messaging products need to support at least
:

· Attachments and encryption of attachments
� It is called a „Four-Corner-Model“ because a message passes four „corners“ on its way: the original sender, the sending gateway/access point, the receiving gateway/access point and the final recipient.

� PEPPOL Transport Architecture, http://www.peppol.eu/events/peppol-conferences/conference-pan-european-eprocurement-with-peppol/Conference%20Presentations/20091022-peppol-conference-3-architecture-overview-fremantle/view

� http://www.oasis-open.org/committees/document.php?document_id=43769&wg_abbrev=bdx

� http://ws.apache.org/sandesha/

� Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard, 15 March 2005, http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

� Note that the AS4 profile requires support for the One-Way/Pull MEP as well. Even so, obviously any AS4-compliant implementation would still satisfy the requirements outlined in this document.

� As far as these parameter values aren’t specific to the requirements of a particular community, they should correspond to the recommendations in the AS4 profile (�HYPERLINK "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/csprd03/AS4-profile-v1.0-csprd03.odt"�http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/csprd03/AS4-profile-v1.0-csprd03.odt�).

� Note that this list is not exhaustive and may grow over time.

�ToDO: Quote the specs

�Is there anything I can quote to support this statement?

�ToDo: reference here other BDX work

�ToDO: Quote the specs

�ToDO: Quote here Pim’s functional specification.

�ToDO: Quote ETSI spec and e-CODEX’ profiling thereof.

�The question which certificates to trust remains unsolved!

This needs more work.

�ToDO: Quote here STORK specs

�Though strictly speaking I still don’t understand the need for this – if a provider hasn’t successfully authenticated the user, I assume it wouldn’t even accept his message for sending. And the SAML token used in present LSPs is a “sender-vouches”-token anyway, as ar as I understand it.

�ToDO: Suggest values for the respective PartInfos

�ToDO: List PModes for AS4 receipts.

�To be discussed with the ebMS experts

�

ToDo: Check the meaning of these settings.

How do they relate to gateway authentication and/or end entity authentication

8/9

