
 1

Web Services – Human Task 2

(WS-HumanTask) 3

Specification Version 1.1 4

Committee Draft 02 Revision 7865431 5

39182135 6 January20 FebruaryMarch 6

2009 7

 8

 9

Specification URIs: 10

This Version: 11

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.html 12
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.doc 13
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-02.pdf 14

Previous Version: 15

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.html 16
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.doc 17
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cd-01.pdf 18

Latest Version: 19

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html 20
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc 21
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf 22

Latest Approved Version: 23

N/A 24

 25

Technical Committee: 26

OASIS BPEL4People TC 27

 28

Chair: 29

Dave Ings, IBM 30

 31

Editor(s): 32

Luc Clément, Active Endpoints, Inc. 33

Dieter König, IBM 34

Vinkesh Mehta, Deloitte Consulting LLP 35

Ralf Mueller, Oracle Corporation 36

http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.html
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.doc
http://docs.oasis-open.org/bpel4people/ws-humantask-1.1.pdf
http://www.oasis-open.org/committees/

Krasimir Nedkov, SAP AG 37

Ravi Rangaswamy, Oracle Corporation 38

Michael Rowley, Active Endpoints, Inc. 39

Ivana Trickovic, SAP 40

 41

Related work: 42

This specification is related to: 43

WS-BPEL Extension for People (BPEL4People) Specification – Version 1.1 44

 45

Declared XML Namespace(s): 46

WS-HumanTask namespaces (defined in this specification): 47

htd – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803 48

hta – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/200803 49

htt – http://docs.oasis-open.org/ns/bpel4people/ws-humantask/types/200803 50

htc - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803 51

htcp- http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803 52

htp - http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803 53

 54

Other namespaces: 55

wsa – http://www.w3.org/2005/08/addressing 56

wsdl – http://schemas.xmlsoap.org/wsdl/ 57

wsp – http://www.w3.org/ns/ws-policy 58

xsd – http://www.w3.org/2001/XMLSchema 59

 60

Abstract: 61

The concept of human tasks is used to specify work which has to be accomplished by people. 62
Typically, human tasks are considered to be part of business processes. However, they can also 63
be used to design human interactions which are invoked as services, whether as part of a 64
process or otherwise. 65

This specification introduces the definition of human tasks, including their properties, behavior 66
and a set of operations used to manipulate human tasks. A coordination protocol is introduced in 67
order to control autonomy and life cycle of service-enabled human tasks in an interoperable 68
manner. 69

 70

Status: 71

This document was last revised or approved by the OASIS WS-BPEL Extension for People 72
Technical Committee on the above date. The level of approval is also listed above. Check the 73
“Latest Version” or “Latest Approved Version” location noted above for possible later revisions of 74
this document. 75

Technical Committee members should send comments on this specification to the Technical 76
Committee’s email list. Others should send comments to the Technical Committee by using the 77
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-78
open.org/committees/bpel4people/. 79

For information on whether any patents have been disclosed that may be essential to 80
implementing this specification, and any offers of patent licensing terms, please refer to the 81
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-82
open.org/committees/bpel4people/ipr.php. 83

http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/services/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/api/types/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/context/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/200803
http://docs.oasis-open.org/ns/bpel4people/ws-humantask/policy/200803
http://www.w3.org/2005/08/addressing
http://schemas.xmlsoap.org/wsdl/
http://www.w3.org/ns/ws-policy
http://www.w3.org/2001/XMLSchema
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/sca-bpel/ipr.php
http://www.oasis-open.org/committees/sca-bpel/ipr.php

The non-normative errata page for this specification is located at http://www.oasis-84
open.org/committees/bpel4people/. 85

http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/
http://www.oasis-open.org/committees/%5bTC%20short%20name%5d%20/

Notices 86

Copyright © OASIS® 2009. All Rights Reserved. 87

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual 88
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website. 89

This document and translations of it may be copied and furnished to others, and derivative works that 90
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, 91
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 92
and this section are included on all such copies and derivative works. However, this document itself may 93
not be modified in any way, including by removing the copyright notice or references to OASIS, except as 94
needed for the purpose of developing any document or deliverable produced by an OASIS Technical 95
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must 96
be followed) or as required to translate it into languages other than English. 97

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 98
or assigns. 99

This document and the information contained herein is provided on an "AS IS" basis and OASIS 100
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 101
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 102
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 103
PARTICULAR PURPOSE. 104

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would 105
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, 106
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to 107
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that 108
produced this specification. 109

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of 110
any patent claims that would necessarily be infringed by implementations of this specification by a patent 111
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR 112
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such 113
claims on its website, but disclaims any obligation to do so. 114

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 115
might be claimed to pertain to the implementation or use of the technology described in this document or 116
the extent to which any license under such rights might or might not be available; neither does it 117
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with 118
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be 119
found on the OASIS website. Copies of claims of rights made available for publication and any 120
assurances of licenses to be made available, or the result of an attempt made to obtain a general license 121
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee 122
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no 123
representation that any information or list of intellectual property rights will at any time be complete, or 124
that any claims in such list are, in fact, Essential Claims. 125

The names "OASIS", [insert specific trademarked names and abbreviations here] are trademarks of 126
OASIS, the owner and developer of this specification, and should be used only to refer to the organization 127
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, 128
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-129
open.org/who/trademark.php for above guidance. 130

http://www.oasis-open.org/who/trademark.php
http://www.oasis-open.org/who/trademark.php

Table of Contents 131

1 Introduction .. 7 132

2 Language Design ... 8 133

2.1 Dependencies on Other Specifications .. 8 134

2.2 Notational Conventions .. 8 135

2.3 Conformance Targets ... 8 136

2.4 Language Extensibility.. 89 137

2.5 Overall Language Structure ... 9 138

2.5.1 Syntax .. 9 139

2.5.2 Properties ... 910 140

3 Concepts .. 1213 141

3.1 Generic Human Roles .. 1213 142

3.2 Assigning People .. 1314 143

3.2.1 Using Logical People Groups .. 1315 144

3.2.2 Using Literals ... 1516 145

3.2.3 Using Expressions ... 1517 146

3.2.4 Data Type for Organizational Entities .. 1617 147

3.3 Task Rendering .. 1718 148

3.4 Task Instance Data ... 1719 149

3.4.1 Presentation Data .. 1719 150

3.4.2 Context Data .. 1719 151

3.4.3 Operational Data .. 1819 152

3.4.4 Data Types for Task Instance Data ... 1921 153

4 Human Tasks ... 2325 154

4.1 Overall Syntax .. 2325 155

4.2 Properties ... 2426 156

4.3 Presentation Elements ... 2527 157

4.4 Elements for Rendering Tasks ... 2729 158

4.5 Elements for People Assignment ... 2730 159

4.6 Elements for Handling Timeouts and Escalations .. 2931 160

4.7 Human Task Behavior and State Transitions ... 3437 161

4.7.1 Normal processing of a Human Task .. 3538 162

4.7.2 Releasing a Human Task .. 3639 163

4.7.3 Delegating or forwarding a Human Task ... 3639 164

4.7.4 Suspending and resuming a Human Task .. 3639 165

4.7.5 Skipping a Human Task ... 3739 166

4.7.6 Termination of a Human Task ... 3739 167

4.7.7 Error handling for Human Task .. 3740 168

5 Notifications ... 3841 169

5.1 Overall Syntax .. 3841 170

5.2 Properties ... 3942 171

5.3 Notification Behavior and State Transitions ... 3942 172

6 Programming Interfaces .. 4043 173

6.1 Operations for Client Applications .. 4043 174

6.1.1 Participant Operations ... 4144 175

6.1.2 Simple Query Operations .. 4851 176

6.1.3 Advanced Query Operation ... 5254 177

6.1.4 Administrative Operations .. 5457 178

6.1.5 Operation Authorizations ... 5558 179

6.2 XPath Extension Functions .. 5759 180

7 Interoperable Protocol for Advanced Interaction with Human Tasks 6164 181

7.1 Human Task Coordination Protocol Messages .. 6366 182

7.2 Protocol Messages ... 6467 183

7.2.1 Protocol Messages Received by a Task Parent .. 6467 184

7.2.2 Protocol Messages Received by a Task ... 6467 185

7.3 WSDL of the Protocol Endpoints .. 6468 186

7.3.1 Protocol Endpoint of the Task Parent .. 6468 187

7.3.2 Protocol Endpoint of the Task .. 6568 188

7.4 Providing Human Task Context .. 6568 189

7.4.1 SOAP Binding of Human Task Context ... 6568 190

7.5 Human Task Policy Assertion .. 6770 191

8 Providing Callback Information for Human Tasks ... 6871 192

8.1 EPR Information Model Extension ... 6871 193

8.2 XML Infoset Representation ... 6871 194

8.3 Message Addressing Properties .. 7074 195

8.4 SOAP Binding ... 7174 196

9 Security Considerations ... 7478 197

10 Conformance ... 7579 198

11 References... 7680 199

A. Portability and Interoperability Considerations ... 7882 200

B. WS-HumanTask Language Schema .. 7983 201

C. WS-HumanTask Data Types Schema ... 8084 202

D. WS-HumanTask API Port Types.. 8185 203

E. WS-HumanTask Protocol Handler Port Types ... 8286 204

F. WS-HumanTask Context Schema.. 8387 205

G. WS-HumanTask Policy Assertion Schema .. 8488 206

H. Sample ... 8589 207

I. Acknowledgements .. 8690 208

J. Non-Normative Text .. 8892 209

K. Revision History ... 8993 210

 211

 212

1 Introduction 213

Human tasks, or briefly tasks enable the integration of human beings in service-oriented applications. 214
This document provides a notation, state diagram and API for human tasks, as well as a coordination 215
protocol that allows interaction with human tasks in a more service-oriented fashion and at the same time 216
controls tasks’ autonomy. The document is called Web Services Human Task (abbreviated to WS-217
HumanTask for the rest of this document). 218

Human tasks are services “implemented” by people. They allow the integration of humans in service-219
oriented applications. A human task has two interfaces. One interface exposes the service offered by the 220
task, like a translation service or an approval service. The second interface allows people to deal with 221
tasks, for example to query for human tasks waiting for them, and to work on these tasks. 222

A human task has people assigned to it. These assignments define who should be allowed to play a 223
certain role on that task. Human tasks may also specify how task metadata should be rendered on 224
different devices or applications making them portable and interoperable with different types of software. 225
Human tasks can be defined to react on timeouts, triggering an appropriate escalation action. 226

This also holds true for notifications. Notifications are a special type of human task that allows the 227
sending of information about noteworthy business events to people. Notifications are always one-way, 228
i.e., they are delivered in a fire-and-forget manner: The sender pushes out notifications to people without 229
waiting for these people to acknowledge their receipt. 230

Let us take a look at an example, an approval task. Such a human task could be involved in a mortgage 231
business process. After the data of the mortgage has been collected, and, if the value exceeds some 232
amount, a manual approval step is required. This can be implemented by invoking an approval service 233
implemented by the approval task. The invocation of the service by the business process creates an 234
instance of the approval task. As a consequence this task pops up on the task list of the approvers. One 235
of the approvers will claim the task, evaluate the mortgage data, and eventually complete the task by 236
either approving or rejecting it. The output message of the task indicates whether the mortgage has been 237
approved or not. All that is transparent to the caller of the task (a business process in this example). 238

The goal of this specification is to enable portability and interoperability: 239

 Portability - The ability to take human tasks and notifications created in one vendor's environment 240

and use them in another vendor's environment. 241

 Interoperability - The capability for multiple components (task infrastructure, task list clients and 242

applications or processes with human interactions) to interact using well-defined messages and 243

protocols. This enables combining components from different vendors allowing seamless 244

execution. 245

Out of scope of this specification is how human tasks and notifications are deployed or monitored. Usually 246
people assignment is accomplished by performing queries on a people directory which has a certain 247
organizational model. The mechanism determining how an implementation evaluates people 248
assignments, as well as the structure of the data in the people directory is out of scope. 249

2 Language Design 250

The language introduces a grammar for describing human tasks and notifications. Both design time 251
aspects, such as task properties and notification properties, and runtime aspects, such as task states and 252
events triggering transitions between states are covered by the language. Finally, it introduces a 253
programming interface which can be used by applications involved in the life cycle of a task to query task 254
properties, execute the task, or complete the task. This interface helps to achieve interoperability between 255
these applications and the task infrastructure when they come from different vendors. 256

The language provides an extension mechanism that can be used to extend the definitions with additional 257
vendor-specific or domain-specific information. 258

Throughout this specification, WSDL and schema elements may be used for illustrative or convenience 259
purposes. However, in a situation where those elements or other text within this document contradict the 260
separate WS-HumanTask, WSDL or schema files, it is those files that have precedence and not this 261
document. 262

2.1 Dependencies on Other Specifications 263

WS-HumanTask utilizes the following specifications: 264

 WSDL 1.1 265

 XML Schema 1.0 266

 XPath 1.0 267

 WS-Addressing 1.0 268

 WS-Coordination 1.1 269

 WS-Policy 1.5 270

2.2 Notational Conventions 271

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 272
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described 273
in RFC 2119 [RFC 2119]. 274

2.3 Conformance Targets 275

The following conformance targets are defined as part of this specification 276

 WS-HumanTask Definition 277
A WS-HumanTask Definition is any artifact that complies with the human interaction schema and 278
additional constraints defined in this document. 279

 WS-HumanTask Processor 280
A WS-HumanTask Processor is any implementation that accepts a WS-HumanTask definition 281
and executes the semantics as defined in this document. 282

 WS-HumanTask Parent 283
A WS-HumanTask Parent is any implementation that supports the Interoperable Protocol for 284
Advanced Interactions with Human Tasks as defined in this document. 285

 WS-HumanTask Client 286
A WS-HumanTask Client is any implementation that uses the Programming Interfaces of the 287
WS-HumanTask Processor. 288

2.4 Language Extensibility 289

The WS-HumanTask extensibility mechanism allows: 290

 Attributes from other namespaces to appear on any WS-HumanTask element 291

 Elements from other namespaces to appear within WS-HumanTask elements 292

Extension attributes and extension elements MUST NOT contradict the semantics of any attribute or 293
element from the WS-HumanTask namespace. For example, an extension element could be used to 294
introduce a new task type. 295

The specification differentiates between mandatory and optional extensions (the section below explains 296
the syntax used to declare extensions). If a mandatory extension is used, a compliant implementation has 297
to understand the extension. If an optional extension is used, a compliant implementation can ignore the 298
extension. 299

2.5 Overall Language Structure 300

Human interactions subsume both human tasks and notifications. While human tasks and notifications 301
are described in subsequent sections, this section explains the overall structure of human interactions 302
definition. 303

2.5.1 Syntax 304

<htd:humanInteractions 305
 xmlns:htd="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803" 306
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 307
 xmlns:tns="anyURI" 308
 targetNamespace="anyURI" 309
 expressionLanguage="anyURI"? 310
 queryLanguage="anyURI"?> 311
 312
 <htd:extensions>? 313
 <htd:extension namespace="anyURI" mustUnderstand="yes|no"/>+ 314
 </htd:extensions> 315
 316
 <htd:import namespace="anyURI"? 317
 location="anyURI"? 318
 importType="anyURI" />* 319
 320
 <htd:logicalPeopleGroups>? 321
 <htd:logicalPeopleGroup name="NCName" reference="QName"?>+ 322
 <htd:parameter name="NCName" type="QName" />* 323
 </htd:logicalPeopleGroup> 324
 </htd:logicalPeopleGroups> 325
 326
 <htd:tasks>? 327
 <htd:task name="NCName">+ 328
 ... 329
 </htd:task> 330
 </htd:tasks> 331
 332
 <htd:notifications>? 333
 <htd:notification name="NCName">+ 334
 ... 335
 </htd:notification> 336
 </htd:notifications> 337
 338
</htd:humanInteractions> 339
 340

2.5.2 Properties 341

The <humanInteractions> element has the following properties: 342

 expressionLanguage: This attribute specifies the expression language used in the enclosing 343

elements. The default value for this attribute is urn:ws-ht:sublang:xpath1.0 which 344

represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask 345

Definition that uses expressions MAY override the default expression language for individual 346

expressions. A WS-HumanTask Processor MUST support the use of XPath 1.0 as the expression 347

language. 348

 queryLanguage: This attribute specifies the query language used in the enclosing elements. The 349
default value for this attribute is urn:ws-ht:sublang:xpath1.0 which represents the usage of XPath 350
1.0 within human interactions definition. A WS-HumanTask Definition that use query expressions 351
MAY override the default query language for individual query expressions. A WS-HumanTask 352
Processor MUST support the use of XPath 1.0 as the query language. 353

 extensions: This element is used to specify namespaces of WS-HumanTask extension attributes 354
and extension elements. The element is optional. If present, it MUST include at least one 355

 element. The element is used to specify a namespace of WS-HumanTask 356

extension attributes and extension elements, and indicate whether they are mandatory or 357

optional. Attribute is used to specify whether the extension must be understood 358

by a compliant implementation. If the attribute has value “yes” the extension is mandatory. 359
Otherwise, the extension is optional. If a WS-HumanTask Processor does not support one or 360

more of the extensions with , then the human interactions definition MUST 361

be rejected. A WS-HumanTask Processor MAY ignore optional extensions. A WS-HumanTask 362
Definition MAY declare optional extensions. The same extension URI MAY be declared multiple 363

times in the element. If an extension URI is identified as mandatory in one 364

 element and optional in another, then the mandatory semantics have precedence 365

and MUST be enforced by a WS-HumanTask Processor. The extension declarations in an 366

 element MUST be treated as an unordered set. 367

 import: This element is used to declare a dependency on external WS-HumanTask and WSDL 368

definitions. Zero or more <import> elements MAY appear as children of the 369

<humanInteractions> element. 370

The namespace attribute specifies an absolute URI that identifies the imported definitions. This 371

attribute is optional. An <import> element without a namespace attribute indicates that external 372

definitions are in use which are not namespace-qualified. If a namespace is specified then the 373
imported definitions MUST be in that namespace. If no namespace is specified then the imported 374
definitions MUST NOT contain a targetNamespace specification. The namespace 375

http://www.w3.org/2001/XMLSchema is imported implicitly. Note, however, that there is no 376

implicit XML Namespace prefix defined for http://www.w3.org/2001/XMLSchema. 377

The location attribute contains a URI indicating the location of a document that contains 378

relevant definitions. The location URI MAY be a relative URI, following the usual rules for 379

resolution of the URI base [XML Base, RFC 2396]. The location attribute is optional. An 380

<import> element without a location attribute indicates that external definitions are used by 381

the human interactions definition but makes no statement about where those definitions may can 382

be found. The location attribute is a hint and a WS-HumanTask Processor is not required to 383

retrieve the document being imported from the specified location. 384

The mandatory importType attribute identifies the type of document being imported by 385

providing an absolute URI that identifies the encoding language used in the document. The value 386

of the importType attribute MUST be set to http://docs.oasis-387

open.org/ns/bpel4people/ws-humantask/200803 when importing human interactions 388

definitions, or to http://schemas.xmlsoap.org/wsdl/ when importing WSDL 1.1 389

documents or to http://www.w3.org/2001/XMLSchema when importing XML Schema 390

documents. 391

According to these rules, it is permissible to have an <import> element without namespace and 392

location attributes, and only containing an importType attribute. Such an <import> element 393

http://www.w3.org/2001/XMLSchema

indicates that external definitions of the indicated type are in use that are not namespace-394
qualified, and makes no statement about where those definitions may can be found. 395

A WS-HumanTask Definition MUST import all other WS-HumanTask definitions and, WSDL 396
definitions, and XML Schema definitions it uses. In order to support the use of definitions from 397
namespaces spanning multiple documents, a WS-HumanTask Definition MAY include more than 398

one import declaration for the same namespace and importType, provided that those 399

declarations include different location values. <import> elements are conceptually unordered. A 400

WS-HumanTask Processor MUST reject the imported documents if they contain conflicting 401
definitions of a component used by the imported WS-HumanTask Definition. 402

Documents (or namespaces) imported by an imported document (or namespace) MUST NOT be 403
transitively imported by a WS-HumanTask Processor. In particular, this means that if an external 404
item is used by a task enclosed in the WS-HumanTask Definition, then a document (or 405
namespace) that defines that item MUST be directly imported by the WS-HumanTask Definition. 406
This requirement does not limit the ability of the imported document itself to import other 407
documents or namespaces. 408

 logicalPeopleGroups: This element specifies a set of logical people groups. The element is 409

optional. If present, it MUST include at least one logicalPeopleGroup element. The set of logical 410

people groups MUST contain only those logical people groups that are used in the 411

humanInteractions element, and enclosed human tasks and notifications. The 412

logicalPeopleGroup element has the following attributes. The name attribute specifies the name 413

of the logical people group. The name MUST be unique among the names of all 414

logicalPeopleGroups defined within the humanInteractions element. The reference attribute is 415

optional. In case a logical people group used in the humanInteractions element is defined in an 416

imported WS-HumanTask definition, the reference attribute MUST be used to specify the logical 417

people group. The parameter element is used to pass data needed for people query evaluation. 418

 tasks: This element specifies a set of human tasks. The element is optional. If present, it MUST 419

include at least one <task> element. The syntax and semantics of the <task> element are 420

introduced in section 4 “Human Tasks”. 421

 notifications: This element specifies a set of notifications. The element is optional. If 422

present, it MUST include at least one <notification> element. The syntax and semantics of the 423

<notification> element are introduced in section 5 “Notifications”. 424

 Element humanInteractions MUST NOT be empty, that is it MUST include at least one element. 425

 426

All elements in WS-HumanTask Definition MAY use the element <documentation> to provide annotation 427
for users. The content could be a plain text, HTML, and so on. The <documentation> element is optional 428

and has the following syntax: 429

 430

<htd:documentation xml:lang="xsd:language"> 431
 ... 432
</htd:documentation> 433

3 Concepts 434

3.1 Generic Human Roles 435

Generic human roles define what a person or a group of people resulting from a people query can do with 436
tasks and notifications. The following generic human roles are taken into account in this specification: 437

 Task initiator 438

 Task stakeholders 439

 Potential owners 440

 Actual owner 441

 Excluded owners 442

 Business administrators 443

 Notification recipients 444

 445

A task initiator is the person who creates the task instance. A Depending on how the task has been 446
instantiated the task initiator may or may not be defined. That is, a WS-HumanTask Definition MAY define 447
assignment for this generic human role. That is, dDepending on how the task has been instantiated the 448
task initiator can be defined. 449

The task stakeholders are the people ultimately responsible for the oversight and outcome of the task 450
instance. A task stakeholder can influence the progress of a task, for example, by adding ad-hoc 451
attachments, forwarding the task, or simply observing the state changes of the task. It is also allowed to 452
perform administrative actions on the task instance and associated notification(s), such as resolving 453
missed deadlines. A WS-HumanTask Definition MAY define assignment for this generic human role. WS-454
HumanTask Processors MUST ensure that at least one person is associated with this role at runtime. 455

Potential owners of a task are persons who receive the task so that they can claim and complete it. A 456
potential owner becomes the actual owner of a task by explicitly claiming it. Before the task has been 457
claimed, potential owners can influence the progress of the task, for example by changing the priority of 458
the task, adding ad-hoc attachments or comments. All excluded owners are implicitly removed from the 459
set of potential owners. A WS-HumanTask Definition MAY define assignment for this generic human role. 460

Excluded owners are people who cannot become an actual or potential owner and thus they cannot 461
reserve or start the task. A WS-HumanTask Definition MAY define assignment for this generic human 462
role. 463

An actual owner of a task is the person actually performing the task. A task managed by a WS-464
HumanTask Processor MUST have exactly one actual owner. When task is performed, the actual owner 465
can execute actions, such as revoking the claim, forwarding the task, suspending and resuming the task 466
execution or changing the priority of the task. A WS-HumanTask Definition MUST NOT define assignment 467
for this generic human role. 468

Business administrators play the same role as task stakeholders but at task type level. Therefore, 469
business administrators can perform the exact same operations as task stakeholders. Business 470
administrators may can also observe the progress of notifications. A WS-HumanTask Definition MAY 471
define assignment for this generic human role. WS-HumanTask Processors MUST ensure that at runtime 472
at least one person is associated with this role. 473

Notification recipients are persons who receive the notification, such as happens when a deadline is 474
missed or when a milestone is reached. This role is similar to the roles potential owners and actual owner 475
but has different repercussions because a notification recipient does not have to perform any action and 476
hence it is more of informational nature than participation. A notification has one or more recipients. A 477
WS-HumanTask Definition MAY define assignment for this generic human role. 478

3.2 Assigning People 479

To determine who is responsible for acting on a human task in a certain generic human role or who will 480
receive a notification, people need to be assigned. People assignment can be achieved in different ways: 481

 Via logical people groups (see 3.2.1 “Using Logical People Groups”) 482

 Via literals (see 3.2.2 “Using Literals”) 483

 Via expressions e.g., by retrieving data from the input message of the human task (see 3.2.3 484

“Using Expressions”). 485

When specifying people assignments then the data type 486

htd:tOrganizationalEntityhtt:tOrganizationalEntity is used. Using 487

htd:tOrganizationalEntityhtt:tOrganizationalEntity allows to the assignment of either a 488

set of people or an unresolved group of people (“work queue”). 489

Syntax: 490

<htd:peopleAssignments> 491
 492
 <htd:genericHumanRole>+ 493
 <htd:from>...</htd:from> 494
 </htd:genericHumanRole> 495
 496
</htd:peopleAssignments> 497

The following syntactical elements for generic human roles are introduced. They can be used wherever 498

the abstract element genericHumanRole is allowed by the WS-HumanTask XML Schema. 499

<htd:potentialOwners> 500
 <htd:from>...</htd:from> 501
</htd:potentialOwners> 502
 503
<htd:excludedOwners> 504
 <htd:from>...</htd:from> 505
</htd:excludedOwners> 506
 507
<htd:taskInitiator> 508
 <htd:from>...</htd:from> 509
</htd:taskInitiator> 510
 511
<htd:taskStakeholders> 512
 <htd:from>...</htd:from> 513
</htd:taskStakeholders> 514
 515
<htd:businessAdministrators> 516
 <htd:from>...</htd:from> 517
</htd:businessAdministrators> 518
 519
<htd:recipients> 520
 <htd:from>...</htd:from> 521
</htd:recipients> 522

Element <htd:from> is used to specify the value to be assigned to a role. The element has different 523

forms as described below. 524

3.2.1 Using Logical People Groups 525

A logical people group represents either one person, a set of people, or one or many unresolved groups 526
of people (i.e., group names). A logical people group is bound to a people query against a people 527
directory at deployment time. Though the term query is used, the exact discovery and invocation 528

mechanism of this query is not defined by this specification. There are no limitations as to how the logical 529
people group is evaluated. At runtime, this people query is evaluated to retrieve the actual people 530
assigned to the task or notification. Logical people groups MUST support query parameters which are 531
passed to the people query at runtime. Parameters MAY refer to task instance data (see section 3.4 for 532
more details). During people query execution an task processor infrastructure maycan decide which of 533
the parameters defined by the logical people group are used. A WS-HumanTask Processor It mayMAY 534
use zero or more of the parameters specified. It may MAY also override certain parameters with values 535
defined during logical people group deployment. The deployment mechanism for tasks and logical people 536
groups is out of scope for this specification. 537

A logical people group has one instance per set of unique arguments. Whenever a logical people group is 538
referenced for the first time with a given set of unique arguments, a new instance MUST be created by 539
the WS-HumanTask Processor. To achieve that, the logical people group MUST be evaluated / resolved 540
for this set of arguments. Whenever a logical people group is referenced for which an instance already 541
exists (i.e., it has already referenced before with the same set of arguments), the logical people group 542
MAY be re-evaluated/re-resolved. 543

In particular, for a logical people group with no parameters, there is a single instance, which MUST be 544
evaluated / resolved when the logical people group is first referenced, and which MAY be re-evaluated / 545
re-resolved when referenced again. 546

People queries are evaluated during the creation of a human task or a notification. If a people query fails 547
a WS-HumanTask Processor MUST create the human task or notification anyway. Failed people queries 548
MUST be treated like people queries that return an empty result set. If the potential owner people query 549
returns an empty set of people a WS-HumanTask Processor MUST perform nomination (see section 550
4.7.1 “Normal processing of a Human Task”). In case of notifications, a WS-HumanTask Processor MUST 551
apply the same to notification recipients. 552

People queries return either one person, a set of people, or the name of one or many groups of people. 553
The latter is added to support “work queue” based business scenarios, where people see work they have 554
been assigned to due to their membership of a certain group. Especially in cases where group 555
membership changes frequently, this “late binding” to the actual group members is beneficial. 556

Logical people groups are global elements enclosed in a human interactions definition document. Multiple 557
human tasks in the same document can utilize the same logical people group definition. During 558
deployment each logical people group is bound to a people query. If two human tasks reference the same 559
logical people group, they are bound to the same people query. However, this does not guarantee that 560
the tasks are actually assigned to the same set of people. The people query is performed for each logical 561
people group reference of a task and maycan return different results, for example if the content of the 562
people directory has been changed between two queries. Binding of logical people groups to actual 563
people query implementations is out of scope for this specification. 564

 565

Syntax: 566

<htd:from logicalPeopleGroup="NCName"> 567
 <htd:argument name="NCName" expressionLanguage="anyURI"? >* 568
 expression 569
 </htd:argument> 570
</htd:from> 571
 572

The logicalPeopleGroup attribute refers to a logicalPeopleGroup definition. The element 573

<argument> is used to pass values used in the people query. The expressionLanguage attribute 574

specifies the language used in the expression. The attribute is optional. If not specified, the default 575
language as inherited from the closest enclosing element that specifies the attribute MUST be used by 576
WS-HumanTask Processor. 577

 578

Example: 579

<htd:potentialOwners> 580
 <htd:from logicalPeopleGroup="regionalClerks"> 581
 <htd:argument name="region"> 582
 htd:getInput("part1")/region 583

 </htd:argument> 584
 </htd:from> 585
</htd:potentialOwners> 586

3.2.2 Using Literals 587

People assignments can be defined literally by directly specifying the user identifier(s) or the name(s) of 588

groups using either the htd:tOrganizationalEntityhtt:tOrganizationalEntity or 589

htd:tUserhtt:tUser data type introduced below (see 3.2.4 “Data Type for Organizational Entities”). 590

Syntax: 591

<htd:from> 592
 <htd:literal> 593
 ... literal value ... 594
 </htd:literal> 595
</htd:from> 596

 597

Example specifying user identifiers: 598

<htd:potentialOwners> 599
 <htd:from> 600
 <htd:literal> 601
 <htd:organizationalEntityhtt:organizationalEntity> 602
 <htd:usershtt:users> 603
 <htd:userhtt:user>Alan</htd:userhtt:user> 604
 <htd:userhtt:user>Dieter</htd:userhtt:user> 605
 <htd:userhtt:user>Frank</htd:userhtt:user> 606
 <htd:userhtt:user>Gerhard</htd:userhtt:user> 607
 <htd:userhtt:user>Ivana</htd:userhtt:user> 608
 <htd:userhtt:user>Karsten</htd:userhtt:user> 609
 <htd:userhtt:user>Matthias</htd:userhtt:user> 610
 <htd:userhtt:user>Patrick</htd:userhtt:user> 611
 </htd:usershtt:users> 612
 </htd:organizationalEntityhtt:organizationalEntity> 613
 </htd:literal> 614
 </htd:from> 615
</htd:potentialOwners> 616
 617

Example specifying group names: 618

<htd:potentialOwners> 619
 <htd:from> 620
 <htd:literal> 621
 <htd:organizationalEntityhtt:organizationalEntity> 622
 <htd:grouphtt:sgroups> 623
 <htd:grouphtt:group>bpel4people_authors</htd:grouphtt:group> 624
 </htd:grouphtt:sgroups> 625
 </htd:organizationalEntityhtt:organizationalEntity> 626
 </htd:literal> 627
 </htd:from> 628
</htd:potentialOwners> 629

3.2.3 Using Expressions 630

Alternatively people can be assigned using expressions returning either an instance of the 631

htd:tOrganizationalEntityhtt:tOrganizationalEntity data type or the 632

htd:tUserhtt:tUser data type introduced below (see 3.2.4 “Data Type for Organizational Entities”). 633

 634

Syntax: 635

<htd:from expressionLanguage="anyURI"?> 636
 expression 637
</htd:from> 638

 639

The expressionLanguage attribute specifies the language used in the expression. The attribute is 640

optional. If not specified, the default language as inherited from the closest enclosing element that 641
specifies the attribute MUST be used by WS-HumanTask Processor. 642

 643

Example: 644

<htd:potentialOwners> 645
 <htd:from>htd:getInput("part1")/approvers</htd:from> 646
</htd:potentialOwners> 647
 648
<htd:businessAdministrators> 649
 <htd:from> 650
 htd:except(htd:getInput("part1")/admins, 651
 htd:getInput("part1")/globaladmins[0]) 652
 </htd:from> 653
</htd:businessAdministrators> 654

3.2.4 Data Type for Organizational Entities 655

The following XML schema definition describes the format of the data that is returned at runtime when 656
evaluating a logical people group. The result can contain either a list of users or a list of groups. The latter 657
is used to defer the resolution of one or more groups of people to a later point, such as when the user 658
accesses a task list. 659

<xsd:element name="organizationalEntity" type="tOrganizationalEntity" /> 660
<xsd:complexType name="tOrganizationalEntity"> 661
 <xsd:choice> 662
 <xsd:element ref="users" /> 663
 <xsd:element ref="groups" /> 664
 </xsd:choice> 665
</xsd:complexType> 666
 667
<xsd:element name="user" type="tUser" /> 668
<xsd:simpleType name="tUser"> 669
 <xsd:restriction base="xsd:string" /> 670
</xsd:simpleType> 671
 672
<xsd:element name="users" type="tUserlist" /> 673
<xsd:complexType name="tUserlist"> 674
 <xsd:sequence> 675
 <xsd:element ref="user" minOccurs="0" maxOccurs="unbounded" /> 676
 </xsd:sequence> 677
</xsd:complexType> 678
 679
<xsd:element name="group" type="tGroup" /> 680
<xsd:simpleType name="tGroup"> 681
 <xsd:restriction base="xsd:string" /> 682
</xsd:simpleType> 683
 684
<xsd:element name="groups" type="tGrouplist" /> 685
<xsd:complexType name="tGrouplist"> 686
 <xsd:sequence> 687
 <xsd:element ref="group" minOccurs="0" maxOccurs="unbounded" /> 688
 </xsd:sequence> 689
</xsd:complexType> 690

3.3 Task Rendering 691

Humans require a presentation interface to interact with a machine. This specification covers the service 692
interfaces that enable this to be accomplished, and enables this in different constellations of software 693
from different parties. The key elements are the task list client, the task engine and the applications 694
invoked when a task is executed. 695

It is assumed that a single task instance can be rendered by different task list clients so the task engine 696
does not depend on a single dedicated task list client. Similarly it is assumed that one task list client can 697
present tasks from several task engines in one homogenous list and can handle the tasks in a consistent 698
manner. The same is assumed for notifications. 699

A distinction is made between the rendering of the meta-information associated with the task or 700
notification (task-description UI and task list UI) (see section 4.3 for more details on presentation 701
elements) and the rendering of the task or notification itself (task-UI) used for task execution (see section 702
4.4 for more details on task rendering). For example, the task-description UI includes the rendering of a 703
summary list of pending or completed tasks and detailed meta-information such as a deadlines, priority 704
and description about how to perform the task. It is the task list client that deals with this. 705

The task-UI can be rendered by the task list client or delegated to a rendering application invoked by the 706
task list client. The task definition and notification definition can define different rendering information for 707
the task-UI using different rendering methodologies. 708

Versatility of deployment determines which software within a particular constellation performs the 709
presentation rendering. 710

The task-UI can be specified by a rendering method within the task definition or notification definition. The 711
rendering method is identified by a unique name attribute and specifies the type of rendering technology 712
being used. A task or a notification can have more than one such rendering method, e.g. one method for 713
each environment the task or notification is accessed from (e.g. workstation, mobile device). 714

The task-list UI encompasses all information crucial for understanding the importance of and details about 715
a given task or notification (e.g. task priority, subject and description) - typically in a table-like layout. 716
Upon selecting a task, i.e. an entry in case of a table-like layout, the user is given the opportunity to 717
launch the corresponding task-UI. The task-UI has access to the task instance data, and can comprise 718
and manipulate documents other than the task instance. It can be specified by a rendering method within 719
the task description. 720

3.4 Task Instance Data 721

Task instance data falls into three categories: 722

 Presentation data – The data is derived from the task definition or the notification definition such 723

as the name, subject or description. 724

 Context data - A set of dynamic properties, such as priority, task state, time stamps and values 725

for all generic human roles. 726

 Operational data – The data includes the input message, output message, attachments and 727

comments. 728

3.4.1 Presentation Data 729

The presentation data is used, for example, when displaying a task or a notification in the task list client. 730
The presentation data has been prepared for display such as by substituting variables. See section 4.3 731
“Presentation Elements” for more details. 732

3.4.2 Context Data 733

The task context includes the following: 734

 Task state 735

 Priority 736

 Values for all generic human roles, i.e. potential owners, actual owner and business 737

administrators 738

 Time stamps such as start time, completion time, defer expiration time, and expiration time 739

 Skipable indicator 740

A WS-HumanTask Processor MAY extend this set of properties available in the task context. For 741
example, the actual owner may might starts the execution of the a task but does not immediately 742
complete it immediately, in which case an. the task could be long-running task soAn intermediate state 743
could therefore be saved in the task context. 744

3.4.3 Operational Data 745

The operational data of a task consists of its input data and output data or fault data, as well as any ad-746
hoc attachments and comments. The operational data of a notification is restricted to its input data. 747
Operational data is accessed using the XPath extension functions and programming interface. 748

3.4.3.1 Ad-hoc Attachments 749

A WS-HumanTask Processor MAY allow arbitrary additional data to be attached to a task. This additional 750
data is referred to as task ad-hoc attachments. An ad-hoc attachment is specified by its name, its type 751

and its content. 752

The name element is used to specify attachment name. Several attachments MAY have the same name 753

and can then be retrieved as a collection. 754

The contentType of an attachment can be any valid XML schema type, including xsd:any, or any MIME 755

type. The attachment data is assumed to be of that specified content type. 756

The contentCategory of an attachment is a URI used to qualify the contentType. While contentType 757

contains the type of the attachment, the contentCategory specifies the type system used when defining 758
the contentType. Predefined values for contentCategory are 759

 "http://www.w3.org/2001/XMLSchema"; if XML Schema types are used for the 760

contentType 761

 "http://www.iana.org/assignments/media-types/"; if MIME types are used for the 762

contentType 763

The set of values is extensible. A WS-HumanTask Processor MUST support the use of XML Schema 764
types and MIME types as content categories, indicated by the predefined URI values shown above. 765

The accessType element indicates if the attachment is specified inline or by reference. In the inline case 766

it MUST contain the string constant “inline”. In this case the value of the attachment data type 767

contains the base64 encoded attachment. In case the attachment is referenced it MUST contain the 768

string “URL”, indicating that the value of the attachment data type contains a URL from where the 769

attachment can be retrieved. Other values of the accessType element are allowed for extensibility 770

reasons, for example to enable inclusion of attachment content from content management systems. 771

The attachedAt element indicates when the attachment is added. 772

The attachedBy element indicates who added the attachment. It could be a user, not a group or a list of 773

users or groups. 774

A tTask may have ad-hoc attachments. Aad-hoc attachments can be added, deleted and retrieved by 775
name. Deletion and retrieving affects all attachments of that name. 776

 777

Attachment Info Data Type 778

The following data type is used to return infos attachment information on ad-hoc attachments. 779

<xsd:element name="attachmentInfo" type="tAttachmentInfo" /> 780
<xsd:complexType name="tAttachmentInfo"> 781
 <xsd:sequence> 782
 <xsd:element name="name" type="xsd:string" /> 783
 <xsd:element name="accessType" type="xsd:string" /> 784

 <xsd:element name="contentType" type="xsd:string" /> 785
 <xsd:element name="contentCategory" type="xsd:anyURI" /> 786
 <xsd:element name="attachedAt" type="xsd:dateTime" /> 787
 <xsd:element name="attachedBy" type="htd:tUserhtt:tUser" /> 788
 <xsd:any namespace="##other" processContents="lax" 789
 minOccurs="0" maxOccurs="unbounded" /> 790
 </xsd:sequence> 791
</xsd:complexType> 792
 793

Attachment Data Type 794

The following data type is used to return ad-hoc attachments. 795

<xsd:element name="attachment" type="tAttachment" /> 796
<xsd:complexType name="tAttachment"> 797
 <xsd:sequence> 798
 <xsd:element ref="attachmentInfo" /> 799
 <xsd:element name="value" type="xsd:anyType" /> 800
 </xsd:sequence> 801
</xsd:complexType> 802

3.4.3.2 Comments 803

A WS-HumanTask Processor MAY allow tasks to have associated textual notes added by participants of 804
the task. These notes are collectively referred to as task comments. Comments are essentially a 805
chronologically ordered list of notes added by various users who worked on the task. A comment has the 806
text, user information and a timestamp. Comments are usually added individually, but retrieved as one 807
group. Comments usage is optional in a task. 808

The addedAt element indicates when the comment is added. 809

The addedBy element indicates who added the comment. It could be a user, not a group or a list of users 810

or groups. 811

 812

Comment Data Type 813

The following data type is used to return comments. 814

<xsd:element name="comment" type="tComment" /> 815
<xsd:complexType name="tComment"> 816
 <xsd:sequence> 817
 <xsd:element name="addedAt" type="xsd:dateTime" /> 818
 <xsd:element name="addedBy" type="htd:tUserhtt:tUser" /> 819
 <xsd:element name="text" type="xsd:string" /> 820
 <xsd:any namespace="##other" processContents="lax" 821
 minOccurs="0" maxOccurs="unbounded" /> 822
 </xsd:sequence> 823
</xsd:complexType> 824

 825

Comments can be added to a task and retrieved from a task. 826

3.4.4 Data Types for Task Instance Data 827

The following data types are used to represent instance data of a task or a notification. The data type 828

htt:tTaskAbstract is used to provide the summary data of a task or a notification that is displayed 829

on a task list. The data type htt:tTaskhtt:tTaskDetails contains the data of a task or a notification, 830

except ad-hoc attachments, comments and presentation description. The data that is not contained in 831

htt:tTaskhtt:tTaskDetails can be retrieved separately using the task API. 832

Contained presentation elements are in a single language (the context determines that language, e.g., 833
when a task abstract is returned in response to a simple query, the language from the locale of the 834
requestor is used). 835

The elements startByExists and completeByExists have a value of “true” if the task has at least 836

one start deadline or at least one completion deadline respectively. The actual times (startBy and 837

complete By) of the individual deadlines can be retrieved using the query operation (see section 6.1.3 838

“Advanced Query Operation”). 839

Note that elements that do not apply to notifications are defined as optional. 840

 841

TaskAbstract Data Type 842

<xsd:element name="taskAbstract" type="tTaskAbstract" /> 843
<xsd:complexType name="tTaskAbstract"> 844
 <xsd:sequence> 845
 <xsd:element name="id" 846
 type="xsd:string" /> 847
 <xsd:element name="taskType" 848
 type="xsd:string" /> 849
 <xsd:element name="name" 850
 type="xsd:QName" /> 851
 <xsd:element name="status" 852
 type="tStatus" /> 853
 <xsd:element name="priority" 854
 type="tPriority" minOccurs="0" /> 855
 <xsd:element name="createdOn" 856
 type="xsd:dateTime" /> 857
 <xsd:element name="activationTime" 858
 type="xsd:dateTime" minOccurs="0" /> 859
 <xsd:element name="expirationTime" 860
 type="xsd:dateTime" minOccurs="0" /> 861
 <xsd:element name="isSkipable" 862
 type="xsd:boolean" minOccurs="0" /> 863
 <xsd:element name="hasPotentialOwners" 864
 type="xsd:boolean" minOccurs="0" /> 865
 <xsd:element name="startByExists" 866
 type="xsd:boolean" minOccurs="0" /> 867
 <xsd:element name="completeByExists" 868
 type="xsd:boolean" minOccurs="0" /> 869
 <xsd:element name="presentationName" 870
 type="tPresentationName" minOccurs="0" /> 871
 <xsd:element name="presentationSubject" 872
 type="tPresentationSubject" minOccurs="0" /> 873
 <xsd:element name="renderingMethodExists" 874
 type="xsd:boolean" /> 875
 <xsd:element name="hasOutput" 876
 type="xsd:boolean" minOccurs="0" /> 877
 <xsd:element name="hasFault" 878
 type="xsd:boolean" minOccurs="0" /> 879
 <xsd:element name="hasAttachments" 880
 type="xsd:boolean" minOccurs="0" /> 881
 <xsd:element name="hasComments" 882
 type="xsd:boolean" minOccurs="0" /> 883
 <xsd:element name="escalated" 884
 type="xsd:boolean" minOccurs="0" /> 885
 <xsd:element name="outcome" 886
 type="xsd:string" minOccurs="0"/> 887
 <xsd:any namespace="##other" processContents="lax" 888
 minOccurs="0" maxOccurs="unbounded" /> 889
 </xsd:sequence> 890
</xsd:complexType> 891

 892

TaskDetails Data Type 893

<xsd:element name="taskDetails" type="tTaskDetails"/> 894
<xsd:complexType name="tTaskDetails"> 895
 <xsd:sequence> 896
 <xsd:element name="id" 897
 type="xsd:string"/> 898
 <xsd:element name="taskType" 899
 type="xsd:string"/> 900
 <xsd:element name="name" 901
 type="xsd:QName"/> 902
 <xsd:element name="status" 903
 type="tStatus"/> 904
 <xsd:element name="priority" 905
 type="htt:tPriority" minOccurs="0"/> 906
 <xsd:element name="taskInitiator" 907
 type="htd:tUserhtt:tUser" minOccurs="0"/> 908
 <xsd:element name="taskStakeholders" 909
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity" 910
minOccurs="0"/> 911
 <xsd:element name="potentialOwners" 912
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity" 913
minOccurs="0"/> 914
 <xsd:element name="businessAdministrators" 915
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity" 916
minOccurs="0"/> 917
 <xsd:element name="actualOwner" 918
 type="htd:tUserhtt:tUser" minOccurs="0"/> 919
 <xsd:element name="notificationRecipients" 920
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity" 921
minOccurs="0"/> 922
 <xsd:element name="createdOn" 923
 type="xsd:dateTime"/> 924
 <xsd:element name="createdBy" 925
 type="xsd:string" minOccurs="0"/> 926
 <xsd:element name="activationTime" 927
 type="xsd:dateTime" minOccurs="0"/> 928
 <xsd:element name="expirationTime" 929
 type="xsd:dateTime" minOccurs="0"/> 930
 <xsd:element name="isSkipable" 931
 type="xsd:boolean" minOccurs="0"/> 932
 <xsd:element name="hasPotentialOwners" 933
 type="xsd:boolean" minOccurs="0"/> 934
 <xsd:element name="startByExists" 935
 type="xsd:boolean" minOccurs="0"/> 936
 <xsd:element name="completeByExists" 937
 type="xsd:boolean" minOccurs="0"/> 938
 <xsd:element name="presentationName" 939
 type="tPresentationName" minOccurs="0"/> 940
 <xsd:element name="presentationSubject" 941
 type="tPresentationSubject" minOccurs="0"/> 942
 <xsd:element name="renderingMethodExists" 943
 type="xsd:boolean"/> 944
 <xsd:element name="hasOutput" 945
 type="xsd:boolean" minOccurs="0"/> 946
 <xsd:element name="hasFault" 947
 type="xsd:boolean" minOccurs="0"/> 948
 <xsd:element name="hasAttachments" 949
 type="xsd:boolean" minOccurs="0"/> 950
 <xsd:element name="hasComments" 951
 type="xsd:boolean" minOccurs="0"/> 952

 <xsd:element name="escalated" 953
 type="xsd:boolean" minOccurs="0"/> 954
 <xsd:element name="primarySearchBysearchBy" 955
 type="xsd:string" minOccurs="0"/> 956
 <xsd:element name="outcome" 957
 type="xsd:string" minOccurs="0"/> 958
 <xsd:any namespace="##other" processContents="lax" 959
 minOccurs="0" maxOccurs="unbounded"/> 960
 </xsd:sequence> 961
</xsd:complexType> 962

 963

Common Data Types 964

<xsd:simpleType name="tPresentationName"> 965
 <xsd:annotation> 966
 <xsd:documentation>length-restricted string</xsd:documentation> 967
 </xsd:annotation> 968
 <xsd:restriction base="xsd:string"> 969
 <xsd:maxLength value="64" /> 970
 <xsd:whiteSpace value="preserve" /> 971
 </xsd:restriction> 972
</xsd:simpleType> 973
 974
<xsd:simpleType name="tPresentationSubject"> 975
 <xsd:annotation> 976
 <xsd:documentation>length-restricted string</xsd:documentation> 977
 </xsd:annotation> 978
 <xsd:restriction base="xsd:string"> 979
 <xsd:maxLength value="254" /> 980
 <xsd:whiteSpace value="preserve" /> 981
 </xsd:restriction> 982
</xsd:simpleType> 983
 984
<xsd:simpleType name="tStatus"> 985
 <xsd:restriction base="xsd:string" /> 986
</xsd:simpleType> 987
 988
<xsd:simpleType name="tPredefinedStatus"> 989
 <xsd:annotation> 990
 <xsd:documentation>for documentation only</xsd:documentation> 991
 </xsd:annotation> 992
 <xsd:restriction base="xsd:string"> 993
 <xsd:enumeration value="CREATED" /> 994
 <xsd:enumeration value="READY" /> 995
 <xsd:enumeration value="RESERVED" /> 996
 <xsd:enumeration value="IN_PROGRESS" /> 997
 <xsd:enumeration value="SUSPENDED" /> 998
 <xsd:enumeration value="COMPLETED" /> 999
 <xsd:enumeration value="FAILED" /> 1000
 <xsd:enumeration value="ERROR" /> 1001
 <xsd:enumeration value="EXITED" /> 1002
 <xsd:enumeration value="OBSOLETE" /> 1003
 </xsd:restriction> 1004
</xsd:simpleType> 1005

4 Human Tasks 1006

The <task> element is used to specify human tasks. The section below introduces the syntax for the 1007

element, and individual properties are explained in subsequent sections. 1008

4.1 Overall Syntax 1009

Definition of human tasks: 1010

<htd:task name="NCName"> 1011
 1012
 <htd:interface portType="QName" operation="NCName" 1013
 responsePortType="QName"? responseOperation="NCName"? /> 1014
 1015
 <htd:priority expressionLanguage="anyURI"? >? 1016
 integer-expression 1017
 </htd:priority> 1018
 1019
 <htd:peopleAssignments>...</htd:peopleAssignments> 1020
 1021
 <htd:delegation 1022
 potentialDelegatees="anybody|nobody|potentialOwners|other" />? 1023
 <htd:from>? 1024
 ... 1025
 </htd:from> 1026
 </htd:delegation> 1027
 1028
 <htd:presentationElements>...</htd:presentationElements> 1029
 1030
 <htd:outcome part="NCName" queryLanguage="anyURI">? 1031
 queryContent 1032
 </htd:outcome> 1033
 1034
 <htd:searchBy expressionLanguage="anyURI"? >? 1035
 expression 1036
 </htd:searchBy> 1037
 1038
 <htd:renderings>? 1039
 <htd:rendering type="QName">+ 1040
 ... 1041
 </htd:rendering> 1042
 </htd:renderings> 1043
 1044
 <htd:deadlines>? 1045
 1046
 <htd:startDeadline>* 1047
 ... 1048
 </htd:startDeadline> 1049
 1050
 <htd:completionDeadline>* 1051
 ... 1052
 </htd:completionDeadline> 1053
 1054
 </htd:deadlines> 1055
 1056
</htd:task> 1057

4.2 Properties 1058

The following attributes and elements are defined for tasks: 1059

 name: This attribute is used to specify the name of the task. The name combined with the target 1060

namespace MUST uniquely identify a task element enclosed in the task definition. This attribute 1061

is mandatory. It is not used for task rendering. 1062

 interface: This element is used to specify the operation used to invoke the task. The operation 1063

is specified using WSDL, that is, a WSDL port type and WSDL operation are defined. The 1064

element and its portType and operation attributes are mandatory. The interface is specified 1065

in one of the following forms: 1066

The WSDL operation is a one-way operation and the task asynchronously returns output data. In this 1067
case, a WS-HumanTask Definition MUST specify a callback one-way operation, using the 1068

responsePortType and responseOperation attributes. This callback operation is invoked when the 1069

task has finished. The Web service endpoint address of the callback operation is provided at runtime 1070
when the task’s one-way operation is invoked (for details, see section 8 “ 1071

 1072

Providing Callback Information for Human Tasks 1073

 1074

 Providing Callback Information for Human Tasks”). 1075

 The WSDL operation is a request-response operation. In this case, the 1076

responsePortType and responseOperation attributes MUST NOT be 1077

specified. 1078

 priority: This element is used to specify the priority of the task. It is an optional element which 1079

value is an integer expression. If present, the WS-HumanTask Definition MUST specify a value 1080

between 0 and 10, where 0 is the highest priority and 10 is the lowest. If not present, the priority 1081

of the task is considered as 5. The result of the expression evaluation is of type 1082

htt:tPriority. The expressionLanguage attribute specifies the language used in the 1083

expression. The attribute is optional. If not specified, the default language as inherited from the 1084

closest enclosing element that specifies the attribute is used. 1085

 peopleAssignments: This element is used to specify people assigned to different generic 1086

human roles, i.e. potential owners, and business administrator. The element is mandatory. See 1087

section 3.2 for more details on people assignments. 1088

 delegation: This element is used to specify constraints concerning delegation of the task. 1089

Attribute potentialDelegatees defines to whom the task can be delegated. One of the 1090

following values MUST be specified: 1091

 anybody: It is allowed to delegate the task to anybody 1092

 potentialOwners: It is allowed to delegate the task to potential owners 1093

previously selected 1094

 other: It is allowed to delegate the task to other people, e.g. authorized owners. 1095

The element <from> is used to determine the people to whom the task can be 1096

delegated. 1097

 nobody: It is not allowed to delegate the task. 1098

The delegation element is optional. If this element is not present the task is allowed to be 1099
delegated to anybody. 1100

 presentationElements: This element is used to specify different information used to display 1101

the task in a task list, such as name, subject and description. See section 4.3 for more details on 1102

presentation elements. The element is mandatory. 1103

 outcome: This optional element identifies the field (of an xsd simple type) in the output message 1104

which reflects the business result of the task. A conversion takes place to yield an outcome of 1105

type xsd:string. The optional attribute queryLanguage specifies the language used for 1106

selection. If not specified, the default language as inherited from the closest enclosing element 1107

that specifies the attribute is used. 1108

 searchBy: This optional element is used to search for task instances based on a custom search 1109

criterion. The result of the expression evaluation is of type xsd:string. The 1110

expressionLanguage attribute specifies the language used in the expression. The attribute is 1111

optional. If not specified, the default language as inherited from the closest enclosing element that 1112

specifies the attribute is used. 1113

 rendering: This element is used to specify the rendering method. It is optional. If not present, 1114

task rendering is implementation dependent. See section 4.4 for more details on rendering tasks. 1115

 deadlines: This element specifies different deadlines. It is optional. See section 4.6 for more 1116

details on timeouts and escalations. 1117

4.3 Presentation Elements 1118

Information about human tasks or notifications needs to be made available in a human-readable way to 1119
allow users dealing with their tasks and notifications via a user interface, which could be based on various 1120
technologies, such as Web browsers, Java clients, Flex-based clients or .NET clients. For example, a 1121
user queries for her tasks, getting a list of tasks she should could work on, displaying a short description 1122
of each task. Upon selection of one of the tasks, more complete information about the task is displayed 1123
by the user interface. 1124

Alternatively, a task or notification could be sent directly to a user’s inbox, in which case the same 1125
information would be used to provide a human readable rendering there. 1126

The same human readable information could also be used in reports on all the human tasks executed by 1127
a particular human task management system. 1128

Human readable information can be specified in multiple languages. 1129

 1130

Syntax: 1131

<htd:presentationElements> 1132
 1133
 <htd:name xml:lang="xsd:language"? >* 1134
 Text 1135
 </htd:name> 1136
 1137
 <!-- For the subject and description only, 1138
 replacement variables can be used. --> 1139
 <htd:presentationParameters expressionLanguage="anyURI"? >? 1140
 <htd:presentationParameter name="NCName" type="QName">+ 1141
 expression 1142
 </htd:presentationParameter> 1143
 </htd:presentationParameters> 1144
 1145
 <htd:subject xml:lang="xsd:language"? >* 1146
 Text 1147
 </htd:subject> 1148
 1149

<htd:description xml:lang="xsd:language"? 1150
 contentType="mimeTypeString"? >* 1151

 <xsd:any minOccurs="0" maxOccurs="unbounded" /> 1152
 </htd:description> 1153
 1154
</htd:presentationElements> 1155
 1156

Properties 1157

The following attributes and elements are defined for the htd:presentationElements element. 1158

 name: This element is the short title of a task. It uses xml:lang, a standard XML attribute, to 1159

define the language of the enclosed information. This attribute uses tags according to RFC 1766 1160

(see [RFC1766]). There could be zero or more name elements. A WS-HumanTask Definition 1161

MUST NOT specify multiple name elements having the same value for attribute xml:lang. 1162

 presentationParameters: This element specifies parameters used in presentation elements 1163

subject and description. Attribute expressionLanguage identifies the expression 1164

language used to define parameters. This attribute is optional. If not specified, the default 1165

language as inherited from the closest enclosing element that specifies the attribute is used. 1166

Element presentationParameters is optional and if present then the WS-HumanTask 1167

Definition MUST specify at least one element presentationParameter. Element 1168

presentationParameter has attribute name, which uniquely identifies the parameter 1169

definition within the presentationParameters element, and attribute type which defines its 1170

type. A WS-HumanTask Definition MUST specify parameters of XSD simple types. When a 1171

presentationParameter is used within subject and description, the syntax is 1172

{$parameterName}. The pair "{{" represents the character "{" and the pair "}}" represents 1173

the character "}". Only the defined presentation parameters are allowed, that is, a WS-1174

HumanTask Definition MUST NOT specify arbitrary expressions embedded in this syntax. 1175

 subject: This element is a longer text that describes the task. It uses xml:lang to define the 1176

language of the enclosed information. There could be zero or more subject elements. A WS-1177

HumanTask Definition MUST NOT specify multiple subject elements having the same value for 1178

attribute xml:lang. 1179

 description: This element is a long description of the task. It uses xml:lang to define the 1180

language of the enclosed information. The optional attribute contentType uses content types 1181

according to RFC 2046 (see [RFC 2046]). The default value for this attribute is “text/plain”. A WS-1182

HumanTask Processor MUST support the content type “text/plain”. The WS-HumanTask 1183

Processor SHOULD support HTML (such as “text/html” or “application/xml+xhtml”). There could 1184

be zero or more description elements. As descriptions can exist with different content types, it 1185

is allowed to specify multiple description elements having the same value for attribute 1186

xml:lang, but the WS-HumanTask Definition MUST specify different content types. 1187

 1188

Example: 1189

<htd:presentationElements> 1190
 1191
 <htd:name xml:lang="en-US">Approve Claim</htd:name> 1192
 <htd:name xml:lang="de-DE"> 1193
 Genehmigung der Schadensforderung 1194
 </htd:name> 1195
 1196
 <htd:presentationParameters> 1197
 <htd:presentationParameter name="firstname" type="xsd:string"> 1198
 htd:getInput("ClaimApprovalRequest")/cust/firstname 1199
 </htd:presentationParameter> 1200
 <htd:presentationParameter name="lastname" type="xsd:string"> 1201
 htd:getInput("ClaimApprovalRequest")/cust/lastname 1202
 </htd:presentationParameter> 1203
 <htd:presentationParameter name="euroAmount" type="xsd:double"> 1204
 htd:getInput("ClaimApprovalRequest")/amount 1205
 </htd:presentationParameter> 1206
 </htd:presentationParameters> 1207
 1208
 <htd:subject xml:lang="en-US"> 1209
 Approve the insurance claim for €{$euroAmount} on behalf of 1210

 {$firstname} {$lastname} 1211
 </htd:subject> 1212
 <htd:subject xml:lang="de-DE"> 1213
 Genehmigung der Schadensforderung über €{$euroAmount} für 1214
 {$firstname} {$lastname} 1215
 </htd:subject> 1216
 1217
 <htd:description xml:lang="en-US" contentType="text/plain"> 1218
 Approve this claim following corporate guideline #4711.0815/7 ... 1219
 </htd:description> 1220
 <htd:description xml:lang="en-US" contentType="text/html"> 1221
 <p> 1222
 Approve this claim following corporate guideline 1223
 #4711.0815/7 1224
 ... 1225
 </p> 1226
 </htd:description> 1227
 <htd:description xml:lang="de-DE" contentType="text/plain"> 1228
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie Nr. 1229
 4711.0815/7 ... 1230
 </htd:description> 1231
 <htd:description xml:lang="de-DE" contentType="text/html"> 1232
 <p> 1233
 Genehmigen Sie diese Schadensforderung entsprechend Richtlinie 1234
 Nr. 4711.0815/7 1235
 ... 1236
 </p> 1237
 </htd:description> 1238
 1239
</htd:presentationElements> 1240

 1241

4.4 Elements for Rendering Tasks 1242

Human tasks and notifications need to be rendered on user interfaces like forms clients, portlets, e-mail 1243
clients, etc. The rendering element provides an extensible mechanism for specifying UI renderings for 1244
human tasks and notifications (task-UI). The element is optional. One or more rendering methods can be 1245
provided in a task definition or a notification definition. A task or notification can be deployed on any WS-1246
HumanTask Processor, irrespective of the fact whether the implementation supports specified rendering 1247
methods or not. The rendering method is identified using a QName. 1248

Unlike for presentation elements, language considerations are opaque for the rendering element because 1249
the rendering applications typically provide multi-language support. Where this is not the case, providers 1250
of certain rendering types can decide to extend the rendering method in order to provide language 1251
information for a given rendering. 1252

The content of the rendering element is not defined by this specification. For example, when used in the 1253
rendering element, XPath extension functions as defined in section 6.2 MAY be evaluated by a WS-1254
HumanTask Processor. 1255

 1256

Syntax: 1257

<htd:renderings> 1258
 <htd:rendering type="QName">+ 1259
 <xsd:any minOccurs="1" maxOccurs="1" /> 1260
 </htd:rendering> 1261
</htd:renderings> 1262

4.5 Elements for People Assignment 1263

The <peopleAssignments> element is used to assign people to the a task. For each generic human 1264

role, a people assignment element can be specified. A WS-HumanTask Definition MUST specify a people 1265

assignment for potential owners of a human task. An empty <potentialOwners> element is used to 1266

specify that If no potential owner is should be assigned by the human task's definition, but another 1267
means areis used, e.g. because nomination is used, then this is accomplished by adding an empty 1268

<potentialOwners> element. Specifying people assignments for task stakeholders, task initiators, 1269

excluded owners and business administrators is optional. Human tasks never specify recipients. A WS-1270
HumanTask Definition MUST NOT specify people assignments for actual owners. 1271

 1272

Syntax: 1273

<htd:peopleAssignments> 1274
 1275
 <htd:potentialOwners> 1276
 ... 1277
 </htd:potentialOwners> 1278
 1279
 <htd:excludedOwners>? 1280
 ... 1281
 </htd:excludedOwners> 1282
 1283
 <htd:taskInitiator>? 1284
 ... 1285
 </htd:taskInitiator> 1286
 1287
 <htd:taskStakeholders>? 1288
 ... 1289
 </htd:taskStakeholders> 1290
 1291
 <htd:businessAdministrators>? 1292
 ... 1293
 </htd:businessAdministrators> 1294
 1295
</htd:peopleAssignments> 1296

 1297

People assignments can result in a set of values or an empty set. In case people assignment results in an 1298
empty set then the task potentially requires administrative attention. This is out of scope of the 1299
specification, except for people assignments for potential owners (see section 4.7.1 “Normal processing 1300
of a Human Task” for more details). 1301

 1302

Example: 1303

<htd:peopleAssignments> 1304
 <htd:potentialOwners> 1305
 <htd:from logicalPeopleGroup="regionalClerks"> 1306
 <htd:argument name="region"> 1307
 htd:getInput("ClaimApprovalRequest")/region 1308
 </htd:argument> 1309
 </htd:from> 1310
 </htd:potentialOwners> 1311
 1312
 <htd:businessAdministrators> 1313
 <htd:from logicalPeopleGroup="regionalManager"> 1314
 <htd:argument name="region"> 1315
 htd:getInput("ClaimApprovalRequest")/region 1316
 </htd:argument> 1317
 </htd:from> 1318

 </htd:businessAdministrators> 1319
</htd:peopleAssignments> 1320

4.6 Elements for Handling Timeouts and Escalations 1321

Timeouts and escalations allow the specification of a date or time before which the task has to reach a 1322
specific state. If the timeout occurs a set of actions is performed as the response. The state of the task is 1323
not changed. Several deadlines are specified which differ in the point when the timer clock starts and the 1324
state which has to be reached with the given duration or by the given date. They are: 1325

 Start deadline: Specifies the time until the task has to start, i.e. it has to reach state InProgress. It 1326

is defined as either the period of time or the point in time until the task has to reach state 1327

inProgressInProgress. Since expressions are allowed, durations and deadlines can be calculated 1328

at runtime, which for example enables custom calendar integration. The time starts to be 1329

measured from the time at which the task enters the state Created. If the task does not reach 1330

state InProgress by the deadline an escalation action or a set of escalation actions is performed. 1331

Once the task is started, the timer becomes obsolete. 1332

 Completion deadline: Specifies the due time of the task. It is defined as either the period of time 1333

until the task gets due or the point in time when the task gets due. The time starts to be measured 1334

from the time at which the task enters the state Created. If the task does not reach one of the final 1335

states (Completed, Failed, Error, Exited, Obsolete) by the deadline an escalation action or a set 1336

of escalation actions is performed. 1337

The element <deadlines> is used to include the definition of all deadlines within the task definition. It is 1338

optional. If present then the WS-HumanTask Definition MUST specify at least one deadline. 1339

 1340

Syntax: 1341

<htd:deadlines> 1342
 1343
 <htd:startDeadline>* 1344
 1345
 <htd:documentation xml:lang="xsd:language"? >* 1346
 Text 1347
 </htd:documentation> 1348
 1349
 (<htd:for expressionLanguage="anyURI"? > 1350
 duration-expression 1351
 </htd:for> 1352
 | <htd:until expressionLanguage="anyURI"? > 1353
 deadline-expression 1354
 </htd:until> 1355
) 1356
 1357
 <htd:escalation name="NCName">* 1358
 ... 1359
 </htd:escalation> 1360
 1361
 </htd:startDeadline> 1362
 1363
 <htd:completionDeadline>* 1364
 ... 1365
 </htd:completionDeadline> 1366
 1367
</htd:deadlines> 1368

 1369

The language used in expressions is specified using the expressionLanguage attribute. This attribute 1370

is optional. If not specified, the default language as inherited from the closest enclosing element that 1371
specifies the attribute is used. 1372

For all deadlines if a status is not reached within a certain time then an escalation action, specified using 1373

element <escalation>, can be triggered. The <escalation> element is defined in the section below. 1374

When the task reaches a final state (Completed, Failed, Error, Exited, Obsolete) all deadlines are deleted. 1375

Escalations are triggered if 1376

1. The associated point in time is reached, or duration has elapsed, and 1377

2. The associated condition (if any) evaluates to true 1378

Escalations use notifications to inform people about the status of the task. Optionally, a task might be 1379
reassigned to some other person or group as part of the escalation. Notifications are explained in more 1380
detail in section 5 “Notifications”. For an escalation, a WS-HumanTask Definition MUST specify exactly 1381
one escalation action. 1382

When defining escalations, a notification can be either referred to, or defined inline. 1383

 A notification defined in the <humanInteractions> root element or imported from a different 1384

namespace can be referenced by specifying its QName in the reference attribute of a 1385

<localNotification> element. When referring to a notification, the priority and the people 1386

assignments of the original notification definition MAY be overridden using the elements 1387

<priority> and <peopleAssignments> contained in the <localNotification> element. 1388

 AAn inlined notification is defined by a <notification> element. 1389

Notifications used in escalations can use the same type of input data as the surrounding task, or different 1390
type of data. If the same type of data is used then the input message of the task is passed to the 1391

notification implicitly. If not, then the <toPart> elements are used to assign appropriate data to the 1392

notification, i.e. to explicitly create a multi-part WSDL message from the data. The part attribute refers to 1393

a part of the WSDL message. The expressionLanguage attribute specifies the language used in the 1394

expression. The attribute is optional. If not specified, the default language as inherited from the closest 1395
enclosing element that specifies the attribute is used. 1396

A WS-HumanTask Definition MUST specify a <toPart> element for every part in the WSDL message 1397

definition because parts not explicitly represented by <toPart> elements would result in uninitialized parts 1398

in the target WSDL message. The order in which parts are specified is not relevant. If multiple <toPart> 1399

elements are present, a WS-HumanTask Processor MUST execute them in an “all or nothing” manner. If 1400
any of the <toPart>s fails, the escalation action will not be performed and the execution of the task is not 1401
affected. 1402

Reassignments are used to replace the potential owners of a task when an escalation is triggered. The 1403

<reassignment> element is used to specify reassignment. If present then a WS-HumanTask Definition 1404

MUST specify potential owners. 1405

In the case where several reassignment escalations are triggered, the first reassignment (lexical order) 1406
MUST be considered for execution by the WS-HumanTask Processor. The task is set to state Ready after 1407

reassignment. Reassignments and notifications are performed in the lexical order. 1408

 1409

A task MAY have multiple start deadlines and completion deadlines associated with it. Each such 1410
deadline encompasses escalation actions each of which MAY send notifications to certain people. The 1411
corresponding set of people MAY overlap. 1412

As an example, the figure depicts a task that has been created at time T1. Its two start deadlines would 1413
be missed at time T2 and T3, respectively. The associated escalations whose conditions evaluate to 1414
“true” are triggered. Both, the escalations Esc-1 to Esc-n as well as escalations Esc-a to Esc-z can 1415
involve an overlapping set of people. The completion deadline would be missed at time T4. 1416

 1417

Syntax: 1418

<htd:deadlines> 1419
 1420
 <htd:startDeadline>* 1421
 ... 1422
 1423
 <htd:escalation name="NCName">* 1424
 1425
 <htd:condition expressionLanguage="anyURI"?>? 1426
 boolean-expression 1427
 </htd:condition> 1428
 1429
 <htd:toParts>? 1430
 <htd:toPart part="NCName" 1431
 expressionLanguage="anyURI"?>+ 1432
 expression 1433
 </htd:toPart> 1434
 </htd:toParts> 1435
 1436
 <!-- notification specified by reference --> 1437
 <htd:localNotification reference="QName">? 1438
 <htd:priority expressionLanguage="anyURI"?>? 1439
 integer-expression 1440
 </htd:priority> 1441
 <htd:peopleAssignments>? 1442
 <htd:recipients> 1443
 ... 1444
 </htd:recipients> 1445
 </htd:peopleAssignments> 1446

Esc-1

Esc-n

…

Esc-a

Esc-z

…

Esc-

Esc-

…

…

Start

Deadline 1

Start

Deadline 2

Completion

Deadline

T1 T2 T3 T4

Con-1

Con-n

Con-a

Con-z

Con-

Con-

 1447
 </htd:localNotification> 1448
 1449
 <!-- notification specified inline --> 1450
 <htd:notification name="NCName">? 1451
 ... 1452
 </htd:notification> 1453
 1454
 <htd:reassignment>? 1455
 1456
 <htd:potentialOwners> 1457
 ... 1458
 </htd:potentialOwners> 1459
 1460
 </htd:reassignment> 1461
 1462
 </htd:escalation> 1463
 1464
 </htd:startDeadline> 1465
 1466
 <htd:completionDeadline>* 1467
 ... 1468
 </htd:completionDeadline> 1469
 1470
</htd:deadlines> 1471

 1472

Example: 1473

The following example shows the specification of a start deadline with escalations. At runtime, the 1474
following picture depicts the result of what is specified in the example: 1475

The human task is created at T1. If it has not been started, i.e., no person is working on it until T2, then 1476
the escalation “reminder” is triggered that notifies the potential owners of the task that work is waiting for 1477
them. In case the task has high priority then at the same time the regional manager is informed. If the 1478
task amount is greater than or equal 10000 the task is reassigned to Alan. 1479

In case that task has been started before T2 was reached, then the start deadline is deactivated, no 1480
escalation occurs. 1481

 1482

<htd:startDeadline> 1483
 <htd:documentation xml:lang="en-US"> 1484

Escalation:

“reminder”

Escalation:

“highPrio”

Start Deadline

T1 T2

prio <= 2

3 Days

 If not started within 3 days, - escalation notifications are sent 1485
 if the claimed amount is less than 10000 - to the task's potential 1486
 owners to remind them or their todo - to the regional manager, if 1487
 this approval is of high priority (0,1, or 2) - the task is 1488
 reassigned to Alan if the claimed amount is greater than or equal 1489
 10000 1490
 </htd:documentation> 1491
 <htd:for>P3D</htd:for> 1492
 1493
 <htd:escalation name="reminder"> 1494
 1495
 <htd:condition> 1496
 <![CDATA[1497
 htd:getInput("ClaimApprovalRequest")/amount < 10000 1498
]]> 1499
 </htd:condition> 1500
 1501
 <htd:toParts> 1502
 <htd:toPart name="firstname"> 1503
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /firstname 1504
 </htd:toPart> 1505
 <htd:toPart name="lastname"> 1506
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /lastname 1507
 </htd:toPart> 1508
 </htd:toParts> 1509
 1510
 <htd:localNotification reference="tns:ClaimApprovalReminder"> 1511
 1512
 <htd:documentation xml:lang="en-US"> 1513
 Reuse the predefined notification "ClaimApprovalReminder". 1514
 Overwrite the recipients with the task's potential owners. 1515
 </htd:documentation> 1516
 1517
 <htd:peopleAssignments> 1518
 <htd:recipients> 1519
 <htd:from>htd:getPotentialOwners("ApproveClaim")</htd:from> 1520
 </htd:recipients> 1521
 </htd:peopleAssignments> 1522
 1523
 </htd:localNotification> 1524
 1525
 </htd:escalation> 1526
 1527
 <htd:escalation name="highPrio"> 1528
 1529
 <htd:condition> 1530
 <![CDATA[1531
 (htd:getInput("ClaimApprovalRequest")/amount < 10000 1532
 && htd:getInput("ClaimApprovalRequest")/prio <= 2) 1533
]]> 1534
 </htd:condition> 1535
 1536
 <!-- task input implicitly passed to the notification --> 1537
 1538
 <htd:notification name="ClaimApprovalOverdue"> 1539
 <htd:documentation xml:lang="en-US"> 1540
 An inline defined notification using the approval data as its 1541
 input. 1542
 </htd:documentation> 1543
 1544

 <htd:interface portType="tns:ClaimsHandlingPT" 1545
 operation="escalate" /> 1546
 1547
 <htd:peopleAssignments> 1548
 <htd:recipients> 1549
 <htd:from logicalPeopleGroup="regionalManager"> 1550
 <htd:argument name="region"> 1551
 htd:getInput("ClaimApprovalRequest")/region 1552
 </htd:argument> 1553
 </htd:from> 1554
 </htd:recipients> 1555
 </htd:peopleAssignments> 1556
 1557
 <htd:presentationElements> 1558
 <htd:name xml:lang="en-US">Claim approval overdue</htd:name> 1559
 <htd:name xml:lang="de-DE"> 1560
 Überfällige Schadensforderungsgenehmigung 1561
 </htd:name> 1562
 </htd:presentationElements> 1563
 1564
 </htd:notification> 1565
 1566
 </htd:escalation> 1567
 1568
 <htd:escalation name="highAmountReassign"> 1569
 1570
 <htd:condition> 1571
 <![CDATA[1572
 htd:getInput("ClaimApprovalRequest")/amount >= 10000 1573
]]> 1574
 </htd:condition> 1575
 1576
 <htd:reassignment> 1577
 <htd:documentation> 1578
 Reassign task to Alan if amount is greater than or equal 1579
 10000. 1580
 </htd:documentation> 1581
 1582
 <htd:potentialOwners> 1583
 <htd:from> 1584
 <htd:literal> 1585
 <htd:organizationalEntityhtt:organizationalEntity> 1586
 <htd:usershtt:users> 1587
 <htd:userhtt:user>Alan</htd:userhtt:user> 1588
 </htd:usershtt:users> 1589
 </htd:organizationalEntityhtt:organizationalEntity> 1590
 </htd:literal> 1591
 </htd:from> 1592
 </htd:potentialOwners> 1593
 1594
 </htd:reassignment> 1595
 1596
 </htd:escalation> 1597
 1598
</htd:startDeadline> 1599

4.7 Human Task Behavior and State Transitions 1600

Human tasks can have a number of different states and substates. The state diagram for human tasks 1601
below shows the different states and the transitions between them. 1602

 1603

4.7.1 Normal processing of a Human Task 1604

Upon creation, a task goes into its initial state Created. Task creation starts with the initialization of its 1605

properties in the following order: 1606

1. Input message 1607

Created

Inactive

Closed

Reserved

Ready

InProgress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activate ||

nomination performed) &&

single potential owner

[Task created, coord context obtained]

Register task with coordinator

(activate || nomination performed) &&

(multiple potential owners || work queue)

claim || delegate

startstart

revoke || forward

stop || delegate

revoke || forward

delegate

[Completion with response]

Send result

[Completion with fault response]

Send application fault

forward

[Non-recoverable error]

Send "WS-HT fault"

[WS-HT exit]

Exit task

[Skip && isSkippable]

Send „WS-HT skipped“

suspend

suspend

suspend

resume

resume

resume

Created

Inactive

Closed

Reserved

Ready

InProgress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activation || nomination performed) &&

single potential owner

[Task created, coord context obtained]

Register task with coordinator

(activation || nomination performed) &&

(multiple potential owners || work queue)

claim || delegate

startstart

release || forward

stop || delegate

release || forward

delegate

[Completion with response]

Send result

[Completion with fault response]

Send application fault

forward

[Non-recoverable error]

Send "WS-HT fault"

[WS-HT exit]

Exit task

[Skip && isSkippable]

Send „WS-HT skipped“

suspend

suspend

suspend

resume

resume

resume

2. Priority 1608

3. Generic human roles (such as excluded owners, potential owners and business administrators) 1609

are made available in the lexical order of their definition in the people assignment definition with 1610

the constraint that excluded owners are taken into account when evaluating the potential owners. 1611

4. All other properties are evaluated after these properties in an implementation dependent order. 1612

Task creation succeeds irrespective of whether the people assignment returns a set of values or an 1613
empty set. People queries that cannot be executed successfully are treated as if they were returning an 1614
empty set. 1615

If potential owners were not assigned automatically during task creation then they MUST be assigned 1616
explicitly using nomination, which is performed by the task’s business administrator. The result of 1617
evaluating potential owners removes the excluded owners from results. The task remains in the state 1618
Created until it is activated (i.e., an activation timer has been specified) and has potential owners. 1619

When the task has a single potential owner, it transitions into the Reserved state, indicating that it is 1620
assigned to a single actual owner. Otherwise (i.e., when it has multiple potential owners or is assigned to 1621
a work queue), it transitions into the Ready state, indicating that it can be claimed by one of its potential 1622
owners. Once a potential owner claims the task, it transitions into the Reserved state, making that 1623

potential owner the actual owner. 1624

Once work is started on a task that is in state Ready or Reserved, it goes into the InProgress state, 1625
indicating that it is being worked on – if the transition is from Ready, the user starting the work becomes 1626

its actual owner. 1627

On successful completion of the work, the task transitions into the Completed final state. On unsuccessful 1628
completion of the work (i.e., with an exception), the task transitions into the Failed final state. 1629

4.7.2 Releasing a Human Task 1630

The current actual owner of a human task can release a task to again make it available for all potential 1631
owners. A task can be released from active states that have an actual owner (Reserved, InProgress), 1632
transitioning it into the Ready state. Business data associated with the task (intermediate result data, ad-1633
hoc attachments and comments) is kept. 1634

A task that is currently InProgress can be stopped by the actual owner, transitioning it into state 1635
Reserved. Business data associated with the task as well as its actual owner is kept. 1636

4.7.3 Delegating or forwarding a Human Task 1637

Task’s potential owners, actual owner or business administrator can delegate a task to another user, 1638
making that user the actual owner of the task, and also adding her to the list of potential owners in case 1639
she is not, yet. A task can be delegated when it is in an active state (Ready, Reserved, InProgress), and 1640
transitions the task into the Reserved state. Business data associated with the task is kept. 1641

Similarly, task’s potential owners, actual owner or business administrator can forward an active task to 1642
another person or a set of people, replacing himself by those people in the list of potential owners. 1643
Potential owners can only forward tasks that are in the Ready state. Forwarding is possible if the task has 1644
a set of individually assigned potential owners, not if its potential owners are assigned using one or many 1645
groups. If the task is in the Reserved or InProgress state then the task is implicitly released first, that is, 1646
the task is transitioned into the Ready state. Business data associated with the task is kept. The user 1647
performing the forward is removed from the set of potential owners of the task, and the forwardee is 1648
added to the set of potential owners. 1649

4.7.4 Suspending and resuming a Human Task 1650

In any of its active states (Ready, Reserved, InProgress), a task can be suspended, transitioning it into 1651
the Suspended state. The Suspended state has sub-states to indicate the original state of the task. 1652

On resumption of the task, it transitions back to the original state from which it had been suspended. 1653

4.7.5 Skipping a Human Task 1654

A person working on a human task or a business administrator can decide that a task is no longer 1655
needed, and hence skip this task. This transitions the task into the Obsolete state. This is considered a 1656
“good” outcome of a task, even though an empty result is returned. The enclosing environment can be 1657
notified of that transition as described in section 5.3. 1658

The task can only be skipped if this capability is specified during the task invocation. A side-effect of this 1659
is that a task which is invoked using basic Web service protocols is not skipable. 1660

4.7.6 Termination of a Human Task 1661

The enclosing environment of a human task (such as the calling application or business process) can 1662
decide that a task is no longer needed and terminate it, either because a timeout has reached in that 1663
enclosing context (i.e., the task has expired), or because the enclosing environment itself is terminated. 1664
These events transition the task into the Obsolete state. 1665

4.7.7 Error handling for Human Task 1666

If a human task encounters a non-recoverable error in any of its state (for example, it executes a divide 1667
by zero in an XPath expression), it transitions into the Error state. This is considered a “bad” outcome of 1668
the task and no result is returned. The enclosing environment can be notified of that transition as 1669
described in section 5.3. 1670

5 Notifications 1671

Notifications are used to notify a person or a group of people of a noteworthy business event, such as 1672
that a particular order has been approved, or a particular product is about to be shipped. They are also 1673
used in escalation actions to notify a user that a task is overdue or a task has not been started yet. The 1674
person or people to whom the notification will be assigned to could be provided, for example, as result of 1675
a people query to organizational model. 1676

Notifications are simple human interactions that do not block the progress of the caller, that is, the caller 1677
does not wait for the notification to be completed. Moreover, the caller cannot influence the execution of 1678
notifications, e.g. notifications are not terminated if the caller terminates. The caller, i.e. an application, a 1679
business process or an escalation action, initiates a notification passing the required notification data. The 1680
notification appears on the task list of all notification recipients. After a notification recipient removes it, 1681
the notification disappears from the recipient’s task list. 1682

A notification MAY have multiple recipients and optionally one or many business administrators. The 1683
generic human roles task initiator, task stakeholders, potential owners, actual owner and excluded 1684
owners play no role. 1685

Presentation elements and task rendering, as described in sections 4.3 and 4.4 respectively, are used for 1686
notifications also. In most cases the subject line and description are sufficient information for the 1687
recipients, especially if the notifications are received in an e-mail client or mobile device. But in some 1688
cases the notifications can be received in a proprietary client so the notification can support a proprietary 1689
rendering format to enable this to be utilized to the full, such as for rendering data associated with the 1690
caller invoking the notification. For example, the description could include a link to the process audit trail 1691
or a button to navigate to business transactions involved in the underlying process. 1692

Notifications do not have ad-hoc attachments, comments or deadlines. 1693

5.1 Overall Syntax 1694

Definition of notifications 1695

<htd:notification name="NCName"> 1696
 1697
 <htd:interface portType="QName" operation="NCName"/> 1698
 1699
 <htd:priority expressionLanguage="anyURI"?>? 1700
 integer-expression 1701
 </htd:priority> 1702
 1703
 <htd:peopleAssignments> 1704
 1705
 <htd:recipients> 1706
 ... 1707
 </htd:recipients> 1708
 1709
 <htd:businessAdministrators>? 1710
 ... 1711
 </htd:businessAdministrators> 1712
 1713
 </htd:peopleAssignments> 1714
 1715
 <htd:presentationElements> 1716
 ... 1717
 </htd:presentationElements> 1718
 1719
 <htd:renderings>? 1720
 ... 1721
 </htd:renderings> 1722

 1723
</htd:notification> 1724

5.2 Properties 1725

The following attributes and elements are defined for notifications: 1726

 name: This attribute is used to specify the name of the notification. The name combined with the 1727

target namespace MUST uniquely identify a notification in the notification definition. The attribute 1728

is mandatory. It is not used for notification rendering. 1729

 interface: This element is used to specify the operation used to invoke the notification. The 1730

operation is specified using WSDL, that is a WSDL port type and WSDL operation are defined. 1731

The element and its portType and operation attributes are mandatory. In the operation 1732

attribute, a WS-HumanTask Definition MUST reference a one-way WSDL operation. 1733

 priority: This element is used to specify the priority of the notification. It is an optional 1734

element which value is an integer expression. If present then the WS-HumanTask Definition 1735

MUST specify a value between 0 and 10, where 0 is the highest priority and 10 is the lowest. If 1736

not present, the priority of the notification is considered as 5. The result of the expression 1737

evaluation is of type htt:tPriority. The expressionLanguage attribute specifies the 1738

language used in the expression. The attribute is optional. If not specified, the default language 1739

as inherited from the closest enclosing element that specifies the attribute is used. 1740

 peopleAssignments: This element is used to specify people assigned to the notification. The 1741

element is mandatory. A WS-HumanTask Definition MUST include a people assignment for 1742

recipients and MAY include a people assignment for business administrators. 1743

 presentationElements: The element is used to specify different information used to display 1744

the notification, such as name, subject and description, in a task list. The element is mandatory. 1745

See section 4.3 for more information on presentation elements. 1746

 rendering: The element is used to specify rendering method. It is optional. If not present, 1747

notification rendering is implementation dependent. See section 4.4 for more information on 1748

rendering. 1749

5.3 Notification Behavior and State Transitions 1750

Same as human tasks, notifications are in pseudo-state Inactive before they are activated. Once they are 1751
activated they move to the Ready state. This state is observable, that is, when querying for notifications 1752
then all notifications in state Ready are returned. When a notification is removed then it moves into the 1753
final pseudo-state Removed. 1754

6 Programming Interfaces 1800

6.1 Operations for Client Applications 1801

 1802

A number of applications are involved in the life cycle of a task. These comprise: 1803

 The task list client, i.e. a client capable of displaying information about the task under 1804

consideration 1805

 The requesting application, i.e. any partner that has initiated the task 1806

 The supporting application, i.e. an application launched by the task list client to support 1807

processing of the task. 1808

 1809

The task infrastructure provides access to a given task. It is important to understand that what is meant 1810
by task list client is the software that presents a UI to one authenticated user, irrespective of whether this 1811
UI is rendered by software running on server hardware (such as in a portals environment) or client 1812
software (such as a client program running on a users workstation or PC). 1813

A given task exposes a set of operations to this end. A WS-HumanTask Processor MUST provide the 1814
operations listed below and a WS-HumanTask Clientan application (such as a task list client) may MAY 1815
use these operations to manipulate the task. All operations MUST be executed in a synchronous fashion 1816
and MUST return a fault if certain preconditions do not hold. For operations that are not expected to 1817
return a response they MAY return a void message. The above applies to notifications also. 1818

An operation takes a well-defined set of parameters as its input. Passing an illegal parameter or an illegal 1819

number of parameters MUST result in the hta:illegalArgumentFault being returned. Invoking an 1820

operation that is not allowed in the current state of the task MUST result in an 1821

hta:illegalStateFault. 1822

By default, the identity of the person on behalf of which the operation is invoked is passed to the task. 1823

When the person is not authorized to perform the operation the hta:illegalAccessFault and 1824

hta:recipientNotAllowed MUST be returned in the case of tasks and notifications respectively. 1825

Invoking an operation that does not apply to the task type (e.g., invoking claim on a notification) MUST 1826

result in an hta:illegalOperationFault. 1827

The language of the person on behalf of which the operation is invoked is assumed to be available to 1828
operations requiring that information, e.g., when accessing presentation elements. 1829

For an overview of which operations are allowed in what state, refer to section 4.7 “Human Task Behavior 1830
and State Transitions”. For a formal definition of the allowed operations, see WS-HumanTask Data Types 1831
Schema 1832

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately 1833
maintained in artifact 1834

 ws-humantask-types.xsd 1835

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 1836
as a committee draft. 1837

WS-HumanTask API WS-HumanTask Data Types Schema 1838

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately 1839
maintained in artifact 1840

 ws-humantask-types.xsd 1841

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 1842
as a committee draft. 1843

WS-HumanTask API . 1844

Formatted: Normal

Formatted: Bullets and Numbering

Formatted: Font: Courier New

For information which generic human roles are authorized to perform which operations, refer to section 1845
6.1.5 “Operation Authorizations”. 1846

This specification does not stipulate the authentication, language passing, addressing, and binding 1847
scheme employed when calling an operation. This can be achieved using different mechanisms (e.g. WS-1848
Security, WS-Addressing). 1849

6.1.1 Participant Operations 1850

Operations are executed by end users, i.e. actual or potential owners. The identity of the user is implicitly 1851
passed when invoking any of the operations listed in the table below. The participant operations listed 1852
below only apply to tasks unless explicitly noted otherwise. 1853

If the task is in a predefined state listed as valid pre-state before the operation is invoked then, upon 1854
successful completion, the task MUST be in the post state defined for the operation. If the task is in a 1855
predefined state that is not listed as valid pre-state before the operation is invoked then the operation 1856
MUST be rejected and MUST NOT cause a task state transition. 1857

 1858

Operation
Name

Description Parameters Pre-State Post-State

Claimclaim Claim
responsibility for
a task, i.e. set
the task to status
Reserved

In

 task

identifier

Out

 void

Ready Reserved

Startstart Start the
execution of the
task, i.e. set the
task to status
InProgress.

In

 task

identifier

Out

 void

Ready

Reserved

InProgress

Stopstop Cancel/stop the
processing of
the task. The
task returns to
the Reserved

state.

In

 task

identifier

Out

 void

InProgress Reserved

release Release the
task, i.e. set the
task back to
status Ready.

In

 task

identifier

Out

 void

InProgress

Reserved

Ready

suspend Suspend the
task.

In

 task

identifier

Out

 void

Ready

Reserved

InProgress

Suspended/Rea
dy (from Ready)

Suspended/Res
erved (from
Reserved)

Suspended/InPr
ogress (from
InProgress)

suspendUntil Suspend the
task for a given
period of time or
until a fixed point
in time. The WS-
HumanTask
Client MUST
specify either a
period of time or
a fixed point in
time.

In

 task

identifier

 time

period

 point of

time

Out

 void

Ready

Reserved

InProgress

Suspended/Rea
dy (from Ready)

Suspended/Res
erved (from
Reserved)

Suspended/InPr
ogress (from
InProgress)

resume Resume a
suspended task.

In

 task

identifier

Out

 void

Suspended/Rea
dy

Suspended/Res
erved

Suspended/InPr
ogress

Ready (from
Suspended/Rea
dy)

Reserved (from
Suspended/Res
erved)

InProgress (from
Suspended/InPr
ogress)

complete Execution of the
task finished
successfully. If
no output data is
set the operation
MUST return
hta:illegalA

rgumentFault

.

In

 task

identifier

 output

data of

task

Out

 void

InProgress Completed

remove Applies to
notifications
only.

Used by
notification
recipients to
remove the
notification
permanently
from their task
list client. It will
not be returned
on any
subsequent
retrieval
operation
invoked by the
same user.

In

 task

identifier

Out

 void

Ready
(Notification
state)

Removed
(Notification
state)

fail Actual owner
completes the
execution of the
task raising a

In

 task

identifier

fault –

InProgress Failed

fault.

The fault
hta:illegalO

perationFaul

t MUST be

returned if the
task interface
defines no faults.

If fault name or
fault data is not
set the operation
MUST return
hta:illegalA

rgumentFault

.

contains

the fault

name

and fault

datafault

name

 fault

data

Out

 void

setPriority Change the
priority of the
task. The WS-
HumanTask
Client MUST
specify the
integer value of
the new priority.

In

 task

identifier

 priority

(htt:tP

riorit

y)

Out

 void

(any state) (no state
transition)

addAttachment Add attachment
to a task.

In

 task

identifier

 attachm

ent

name

 access

type

 content

type

 attachm

ent

Out

 void

(any state) (no state
transition)

getAttachmentInf
os

Get attachment
information for
all attachments
associated with
the task.

In

 task

identifier

Out

 list of

attachm

ent data

(list of

htt:at

tachme

(any state) (no state
transition)

ntInfo)

getAttachments Get all
attachments of a
task with a given
name.

In

 task

identifier

 attachm

ent

name

Out

 list of

attachm

ents (list

of

htt:at

tachme

nt)

(any state) (no state
transition)

deleteAttachmen
ts

Delete the
attachments with
the specified
name from the
task (if multiple
attachments with
that name exist,
all MUST be
deleted).

Attachments
provided by the
enclosing
context MUST
not NOT be
affected by this
operation.

In

 task

identifier

 attachm

ent

name

Out

 void

(any state) (no state
transition)

addComment Add a comment
to a task.

In

 task

identifier

 plain

text

Out

 void

(any state) (no state
transition)

getComments Get all
comments of a
task

In

 task

identifier

Out

 list of

commen

ts (list of

htt:co

mment)

(any state) (no state
transition)

skip Skip the task. In Created Obsolete

If the task is not
skipable then the
fault
hta:illegalO

perationFaul

t MUST be

returned.

 task

identifier

Out

 void

Ready

Reserved

InProgress

forward Forward the task
to another
organization
entity. The WS-
HumanTask
Client MUST
specify the
receiving
organizational
entity.

Potential owners
can only forward
a task while the
task is in the
Ready state.

For details on
forwarding
human tasks
refer to section
4.7.3.

In

 task

identifier

 organiza

tional

entity

(htd:tO

rganiz

ationa

lEntit

yhtt:t

Organi

zation

alEnti

ty)

Out

 void

Ready

Reserved

InProgress

Ready

delegate Assign the task
to one user and
set the task to
state Reserved.
If the recipient
was not a
potential owner
then this person
MUST be added
to the set of
potential owners.

For details on
delegating
human tasks
refer to section
4.7.3.

In

 task

identifier

 organiza

tional

entity

(htd:tO

rganiz

ationa

lEntit

yhtt:t

Organi

zation

alEnti

ty)

Out

 void

Ready

Reserved

InProgress

Reserved

getRendering Applies to both
tasks and
notifications.

Returns the
rendering
specified by the
type parameter.

In

 task

identifier

 renderin

g type

Out

(any state) (no state
transition)

 any type

getRenderingTy
pes

Applies to both
tasks and
notifications.

Returns the
rendering types
available for the
task or
notification.

In

 task

identifier

Out

 list of

QNames

(any state) (no state
transition)

getTaskInfogetT
askDetails

Applies to both
tasks and
notifications.

Returns a data
object of type
htt:tTaskhtt

:tTaskDetail

s

In

 task

identifier

Out

 task

(htt:tT

askhtt

:tTask

Detail

s)

(any state) (no state
transition)

getTaskDescripti
on

Applies to both
tasks and
notifications.
Returns the
presentation
description in the
specified mime
type.

In

 task

identifier

 content

type –

optional,

default

is

text/plai

n

Out

 string

(any state) (no state
transition)

getTaskOperatio
ns

Applies to tasks.
Returns list of
operations that
are available to
the authorized
user given the
user's role and
the state of the
task.

In

 task

identifier

Out

 List of

available

operatio

n.

(any state) (no state
transition)

setOutput Set the data for
the part of the
task's output
message.

In

 task

identifier

 part

name

(optional

for

single

InProgress (no state
transition)

part

messag

es)

 output

data of

task

Out

 void

deleteOutput Deletes the
output data of
the task.

In

 task

identifier

Out

 void

InProgress (no state
transition)

setFault Set the fault data
of the task.

The fault
hta:illegalO

perationFaul

t MUST be

returned if the
task interface
defines no faults.

In

 task

identifier

fault –

contains

the fault

name

and fault

datafault

name

 fault

data of

task

Out

 void

InProgress (no state
transition)

deleteFault Deletes the fault
name and fault
data of the task.

In

 task

identifier

Out

 void

InProgress (no state
transition)

getInput Get the data for
the part of the
task's input
message.

In

 task

identifier

 part

name

(optional

for

single

part

messag

es)

Out

(any state) (no state
transition)

 any type

getOutput Get the data for
the part of the
task's output
message.

In

 task

identifier

 part

name

(optional

for

single

part

messag

es)

Out

 any type

(any state) (no state
transition)

getFault Get the fault
data of the task.

In

 task

identifier

Out

 fault –

contains

the fault

name

and fault

data

(any state) (no state
transition)

getOutcome Get the outcome
of the task

In

 task
identifier

Out

 string

(any state) (no state
transition)

 1859

6.1.2 Simple Query Operations 1860

Simple query operations allow retrieving task data. These operations MUST be supported by a WS-1861
HumanTask Processor. The identity of the user is implicitly passed when invoking any of the following 1862
operations. 1863

 1864

Operation Name Description Parameters Authorization

getMyTaskAbstracts Retrieve the
task abstracts.
This operation is
used to obtain
the data
required to
display a task
list.

If no work

In

 task type (“ALL” | “TASKS” |

“NOTIFICATIONS”)

 generic human role

 work queue

 status list

 where clause

Any

queue has been
specified then
only personal
tasks MUST be
returned. If the
work queue is
specified then
only tasks of
that work queue
MUST be
returned.

The where
clause MUST
reference
exactly one
column using
the following
operators:
equals (“=”), not
equals (“<>”),
less than (“<”),
greater than
(“>”), less than
or equals (“<=”),
and greater than
or equals (“>=”),
e.g.,
“Task.Priority =
1”).

The where
clause is
logically ANDed
with the
created-on
clause, which
MUST reference
the column
Task.CreatedOn
with operators
as described
above.
The
combination of
the two clauses
enables simple
but restricted
paging in a task
list client.

If maxTasks is
specified, then
the number of
task abstracts
returned for this
query MUST not
NOT exceed
this limit. The
taskIndexOffset
can be used to

 order-by clause

 created-on clause

 maxTasks

 taskIndexOffset

Out

 list of tasks (list of

htt:tTaskAbstract)

perform multiple
identical queries
and iterate over
result sets
where the
maxTasks size
exceeds the
query limit.

getMyTasksgetMyTaskDetails Retrieve the
task details.
This operation is
used to obtain
the data
required to
display a task
list, as well as
the details for
the individual
tasks.

If no work
queue has been
specified then
only personal
tasks MUST be
returned. If the
work queue is
specified then
only tasks of
that work queue
MUST be
returned.

The where
clause MUST
reference
exactly one
column using
the following
operators:
equals (“=”), not
equals (“<>”),
less than (“<”),
greater than
(“>”), less than
or equals (“<=”),
and greater than
or equals
(“>=”),e.g.,
“Task.Priority =
1”.

The where
clause is
logically ANDed
with the
created-on
clause, which
MUST reference
the column

In

 task type (“ALL” | “TASKS” |

“NOTIFICATIONS”)

 generic human role

 work queue

 status list

 where clause

 created-on clause

 maxTasks

Out

 list of tasks (list of

htt:tTaskhtt:tTaskDeta

ils)

Any

Task.CreatedOn
with operators
as described
above.
The
combination of
the two clauses
enables simple
but restricted
paging in the
task list client.

If maxTasks is
specified, then
the number of
task details
returned for this
query MUST not
NOT exceed
this limit.

 1865

The return types tTaskAbstract and tTaskDetails are defined in section 3.4.4 “Data Types for Task 1866

Instance Data”. 1867

 1868

Simple Task View 1869

The table below lists the task attributes available to the simple query operations. This view is used when 1870
defining the where clause of any of the above query operations. 1871

 1872

Column Name Type

ID xsd:string

TaskType Enumeration

Name xsd:QnameQName

Status Enumeration (for values see 4.7 “Human Task Behavior and
State Transitions”)

Priority htt:tPriority

CreatedOn xsd:dateTime

ActivationTime xsd:dateTime

ExpirationTime xsd:dateTime

HasPotentialOwners xsd:boolean

StartByExists xsd:boolean

CompleteByExists xsd:boolean

RenderMethExists xsd:boolean

Escalated xsd:boolean

PrimarySearchBySearchBy xsd:string

Outcome xsd:string

 1873

6.1.3 Advanced Query Operation 1874

The advanced query operation is used by the task list client to perform queries not covered by the simple 1875
query operations defined in 6.1.2. A WS-HumanTask Processor MAY support this operation. An 1876
implementation MAY restrict the results according to authorization of the invoking user. 1877

 1878

Operation Name Description Parameters

query Retrieve task data. All
clauses assume a
(pseudo-) SQL syntax. If
maxTasks is specified,
then the number of task
returned by the query
MUST not NOT exceed
this limit. The
taskIndexOffset can be
used to perform multiple
identical queries and
iterate over result sets
where the maxTasks size
exceeds the query limit.

In

 select clause

 where clause

 order-by clause

 maxTasks

 taskIndexOffset

Out

 query result

(htt:tTaskQueryResultSe

t)

 1879

 1880

 1881

ResultSet Data Type 1882

This is the result set element that is returned by the query operation. 1883

<xsd:element name="taskQueryResultSet" type="tTaskQueryResultSet" /> 1884
<xsd:complexType name="tTaskQueryResultSet"> 1885
 <xsd:sequence> 1886
 <xsd:element name="row" type="tTaskQueryResultRow" 1887
 minOccurs="0" maxOccurs="unbounded" /> 1888
 </xsd:sequence> 1889
</xsd:complexType> 1890
 1891

The following is the type of the row element contained in the result set. The value in the row are returned 1892
in the same order as specified in the select clause of the query. 1893

<xsd:complexType name="tTaskQueryResultRow"> 1894
 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 1895
 <xsd:element name="id" type="xsd:string"/> 1896
 <xsd:element name="taskType" type="xsd:string"/> 1897
 <xsd:element name="name" type="xsd:QName"/> 1898

 <xsd:element name="status" type="tStatus"/> 1899
 <xsd:element name="priority" type="htt:tPriority"/> 1900
 <xsd:element name="taskInitiator" 1901
 type="htd:tUserhtt:tUser"/> 1902
 <xsd:element name="taskStakeholders" 1903
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity"/> 1904
 <xsd:element name="potentialOwners" 1905
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity"/> 1906
 <xsd:element name="businessAdministrators" 1907
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity"/> 1908
 <xsd:element name="actualOwner" type="htd:tUserhtt:tUser"/> 1909
 <xsd:element name="notificationRecipients" 1910
 type="htd:tOrganizationalEntityhtt:tOrganizationalEntity"/> 1911
 <xsd:element name="createdOn" type="xsd:dateTime"/> 1912
 <xsd:element name="createdBy" type="xsd:string"/> 1913
 <xsd:element name="activationTime" type="xsd:dateTime"/> 1914
 <xsd:element name="expirationTime" type="xsd:dateTime"/> 1915
 <xsd:element name="isSkipable" type="xsd:boolean"/> 1916
 <xsd:element name="hasPotentialOwners" type="xsd:boolean"/> 1917
 <xsd:element name="startByExists" type="xsd:boolean"/> 1918
 <xsd:element name="completeByExists" type="xsd:boolean"/> 1919
 <xsd:element name="presentationName" type="tPresentationName"/> 1920
 <xsd:element name="presentationSubject" 1921
 type="tPresentationSubject"/> 1922
 <xsd:element name="renderingMethodExists" type="xsd:boolean"/> 1923
 <xsd:element name="hasOutput" type="xsd:boolean"/> 1924
 <xsd:element name="hasFault" type="xsd:boolean"/> 1925
 <xsd:element name="hasAttachments" type="xsd:boolean"/> 1926
 <xsd:element name="hasComments" type="xsd:boolean"/> 1927
 <xsd:element name="escalated" type="xsd:boolean"/> 1928
 <xsd:element name="primarySearchBysearchBy" type="xsd:string"/> 1929
 <xsd:element name="outcome" type="xsd:string"/> 1930
 <xsd:any namespace="##other" processContents="lax"/> 1931
 </xsd:choice> 1932
</xsd:complexType> 1933

 1934

Complete Task View 1935

The table below is the set of columns used when defining select clause, where clause, and order-by 1936
clause of query operations. Conceptually, this set of columns defines a universal relation. As a result the 1937
query can be formulated without specifying a from clause. A WS-HumanTask Processor MAY extend this 1938
view by adding columns. 1939

 1940

Column Name Type Constraints

ID xsd:string

TaskType Enumeration Identifies the task type. The
following values are allowed:

 “TASK” for a human task

 “NOTIFICATION” for

notifications

Note that notifications are simple
tasks that do not block the
progress of the caller,

Name xsd:Qname

Status Enumeration For values see section 4.7
“Human Task Behavior and State
Transitions”

Priority htt:tPriority

UserId xsd:string

Group xsd:string

GenericHumanRole xsd:string

CreatedOn xsd:dateTime The time in UTC when the task
has been created.

ActivationTime xsd:dateTime The time in UTC when the task
has been activated.

ExpirationTime xsd:dateTime The time in UTC when the task
will expire.

Skipable xsd:boolean

StartBy xsd:dateTime The time in UTC when the task
needs to should have beenbe
started. This time corresponds to
the respective start deadline.

CompleteBy xsd:dateTime The time in UTC when the task
should have beenneeds to be
completed. This time
corresponds to the respective
end deadline.

PresentationName xsd:string The task’s presentation name.

PresentationSubject xsd:string The task’s presentation subject.

RenderingMethodName xsd:Qname The task’s rendering method
name.

FaultMessage xsd:any

InputMessage xsd:any

OutputMessage xsd:any

AttachmentName xsd:string

AttachmentType xsd:string

Escalated xsd:boolean

PrimarySearchBySearchBy xsd:string

Outcome xsd:string

 1941

6.1.4 Administrative Operations 1942

Operations to be executed for administrative purposes. Actual definition of authorization for operations is 1943
outside the scope of this specification. 1944

 1945

Operation Name Description Parameters

activate Activate the task, i.e. set the task
to status Ready.

In

 task identifier

Out

 void

nominate Nominate an organization entity to
process the task. If it is
nominated to one person then the
new state of the task is Reserved.
If it is nominated to several people
then the new state of the task is
Ready. This can only be
performed when the task is in the
state Created.

In

 task identifier

 organizational entity

(htd:tOrganizationa

lEntityhtt:tOrgani

zationalEntity)

Out

 void

setGenericHumanRol
e

Replace the organizational
assignment to the task in one
generic human role.

In

 task identifier

 generic human role

 organizational entity

(htd:tOrganizationa

lEntityhtt:tOrgani

zationalEntity)

Out

 void

 1946

6.1.5 Operation Authorizations 1947

This section defines the required authorizations in terms of generic human roles to execute participant, 1948
query and administrative operations. Thus, it is a precise definition of the generic human roles as well. 1949

 Role
Role
Operation

Task
Initiato

r

Task
Stakeh
olders

Potential
Owners

Actual
Owner

Exclud
ed

Owner
s

Busine
ss

Admini
strator

Notific
ation

Recipie
nts

claim x x x

start

x
(only in state

Ready) x

stop x x x

release x x x

suspend x x x

suspendUntil x x x

resume x x x

complete x

remove x

fail x

setPriority x

x
(only in state

Ready) x x

addAttachment x

x
(only in state

Ready) x x

getAttachmentIn
fos x x x x

getAttachments x x x x

deleteAttachme
nts x x x

addComment x x x x

getComments x x x x

skip x x x x

forward x x x x

delegate x

x
(only in state

Ready) x x

getRendering x x x x x x x

getRenderingTyp
es x x x x x x x

getTaskInfogetTa
skDetails x x x x x x x

getTaskDescripti
on x x x x x x x

getTaskOperatio
ns x x x x x x x

setOutput x

deleteOutput x

setFault x

deleteFault x

getInput x x x x

getOutput x x x

getFault x x x

getOutcome x x x x x x
getMyTaskAbstr
acts x x x x x x x
getMyTasksget
MyTaskDetails x x x x x x x

activate x

nominate x

setGenericHuma
nRole x

 1950

6.2 XPath Extension Functions 1951

This section introduces XPath extension functions that are provided to be used within the definition of a 1952
human task or notification. A WS-HumanTask Processor MUST support the Xpath XPath Functions listed 1953
below. When defining properties using these XPath functions, note the initialization order in section 4.7.1. 1954

Definition of these XPath extension functions is provided in the table below. Input parameters that specify 1955
task name, message part name or logicalPeopleGroup name MUST be literal strings. This restriction 1956
does not apply to other parameters. Because XPath 1.0 functions do not support returning faults, an 1957
empty node set is returned in the event of an error. 1958

XPath functions used for notifications in an escalation can access context from the enclosing task by 1959
specifying that task’s name. 1960

 1961

Operation Name Description Parameters

getPotentialOwners Returns the potential
owners of the task. It
MUST evaluate to an
empty
htd:organizationalE

ntityhtt:organizati

onalEntity in case of an

error.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 potential owners

(htd:organizationalEn

tityhtt:organizationa

lEntity)

getActualOwner Returns the actual owner
of the task. It MUST
evaluate to an empty

htd:userhtt:user in

case there is no actual
owner.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 the actual owner

(user id as

htd:userhtt:user)

getTaskInitiator Returns the initiator of the
task. It MUST evaluate to
an empty

htd:userhtt:user in

case there is no initiator.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 the task initiator

(user id as

htd:userhtt:user)

getTaskStakeholders Returns the stakeholders
of the task.

It MUST evaluate to an
empty

In

 task name (optional)

Out

htd:organizationalE

ntityhtt:organizati

onalEntity in case of an

error.

If the task name is not
present the current task
MUST be considered.

 task stakeholders

(htd:organizationalEn

tityhtt:organizationa

lEntity)

getBusinessAdministrator
s

Returns the business
administrators of the task.

It MUST evaluate to an
empty
htd:organizationalE

ntityhtt:organizati

onalEntity in case of an

error.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 business administrators

(htd:organizationalEn

tityhtt:organizationa

lEntity)

getExcludedOwners Returns the excluded
owners. It MUST evaluate
to an empty
htd:organizationalE

ntityhtt:organizati

onalEntity in case of an

error.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 excluded owners

(htd:organizationalEn

tityhtt:organizationa

lEntity)

getTaskPriority Returns the priority of the
task.

It MUST evaluate to “5” in
case the priority is not
explicitly set.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 priority (htt:tPriority)

getInput Returns the part of the
task’s input message.

If the task name is not
present the current task
MUST be considered.

In

 part name

 task name (optional)

Out

 input message

getLogicalPeopleGroup Returns the value of a
logical people group. In
case of an error (e.g.,
when referencing a non
existing logical people
group) the
htd:organizationalE

ntityhtt:organizati

onalEntity MUST

In

 name of the logical people

group

 The optional parameters

that follow MUST appear in

pairs. Each pair is defined

as:

contain an empty user list.

If the task name is not
present the current task
MUST be considered.

o the qualified name

of a logical people

group parameter

o the value for the

named logical

people group

parameter; it can be

an XPath

expression

Out

 the value of the logical

people group

(htd:organizationalEn

tityhtt:organizationa

lEntity)

getOutcome Returns the outcome of
the task. It MUST evaluate
to an empty string in case
there is no outcome
specified for the task.

If the task name is not
present the current task
MUST be considered.

In

 task name (optional)

Out

 the task outcome

(xsd:string)

Unionunion Constructs an
organizationalEntity
containing every user that
occurs in either set1 or
set2, eliminating duplicate

users.

In

 set1

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

 set2

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

Out

 result

(htd:organizationalEn

tityhtt:organizationa

lEntity)

Intersectintersect Constructs an
organizationalEntity
containing every user that
occurs in both set1 and
set2, eliminating duplicate

users.

In

 set1

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

 set2

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

Out

 result

(htd:organizationalEn

tityhtt:organizationa

lEntity)

Exceptexcept Constructs an
organizationalEntity
containing every user that
occurs in set1 but not in
set2.

Note: This function is
required to allow enforcing
the separation of duties
(“4-eyes principle”).

In

 set1

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

 set2

(htd:organizationalEn

tityhtt:organizationa

lEntity

|htd:usershtt:users

|htd:userhtt:user)

Out

 result

(htd:organizationalEn

tityhtt:organizationa

lEntity)

 1962

7 Interoperable Protocol for Advanced Interaction 1963

with Human Tasks 1964

Previous sections describe how to define standard invokable Web services that happen to be 1965
implemented by human tasks or notifications. Additional capability results from an application that is 1966
human task aware, and can control the autonomy and life cycle of the human tasks. To address this in an 1967
interoperable manner, a coordination protocol, namely the WS-HumanTask coordination protocol, is 1968
introduced to exchange life-cycle command messages between an application and an invoked human 1969
task. A simplified protocol applies to notifications. 1970

 1971

 1972

While we do not make any assumptions about the nature of the application in the following scenarios, in 1973
practice it would be hosted by an infrastructure that actually deals with the WS-HumanTask coordination 1974
protocol on the application’s behalf. 1975

In case of human tasks the following message exchanges are possible. 1976

Scenario 1: At some point in time, the application invokes the human task through its service interface. In 1977
order to signal to the WS-HumanTask Processor that an instance of the human task can be created 1978
which is actually coordinated by the parent application, this request message contains certain control 1979
information. This control information consists of a coordination context of the WS-HumanTask 1980
coordination protocol, and optional human task attributes that are used to override aspects of the human 1981
task definition. 1982

 The coordination context (see [WS-C] for more details on Web services coordination framework 1983

used here) contains the element CoordinationType that MUST specify the WS-HumanTask 1984

coordination type http://docs.oasis-open.org/ns/bpel4people/ws-1985

humantask/protocol/200803. The inclusion of a coordination context within the request 1986

message indicates that the life cycle of the human tasks is managed via corresponding protocol 1987
messages from outside the WS-HumanTask Processor. The coordination context further contains 1988

Figure 1: Message Exchange between Application and WS-HumanTask Processor

Request ing

Applicat ion

(Task Parent)

(1)requestMessage

(HT coordination context,

overriding task attributes,

attachments, callback EPR)

(2) Coor Register

(EPR of task

protocol handler)

(3) Coor RegisterResponse

(EPR of requesting application

protocol handler)

(4a) responseMessage

(attachments)

(4b) Skipped

Task

×

Credit Requestor: Joe Rich

Credit Amount : 1M€

Risk Rat ing: ____

Submit Skip. . .

Risk Assessment

Coordinator

Applicat ion

Logic

in its RegistrationService element an endpoint reference that the WS-HumanTask 1989

Processor MUST use to register the task as a participant of that coordination type. 1990
Note: In a typical implementation, the parent application or its environment will create that 1991
coordination context by issuing an appropriate request against the WS-Coordination (WS-C) 1992

activation service, followed by registering the parent application as a TaskParent participant in 1993

that protocol. 1994

 The optional human task attributes allow overriding aspects of the definition of the human task 1995
from the calling application. The WS-HumanTask Parent MAY set values of the following 1996
attributes of the task definition: 1997

o Priority of the task 1998

o Actual people assignments for each of the generic human roles of the human task 1999

o The skipable indicator which determines whether a task can actually be skipped at 2000
runtime. 2001

o The amount of time by which the task activation is deferred. 2002

o The expiration time for the human task after which the calling application is no longer 2003
interested in its result. 2004

After having created this request message, it is sent to the WS-HumanTask Processor (step (1) in Figure 2005
1). The WS-HumanTask Processor receiving that message MUST extract the coordination context and 2006
callback information, the human task attributes (if present) and the application payload. Before applying 2007
this application payload to the new human task, the WS-HumanTask Processor MUST register the human 2008
task to be created with the registration service passed as part of the coordination context (step (2) in 2009

Figure 1). The corresponding WS-C Register message MUST include the endpoint reference (EPR) of 2010

the protocol handler of the WS-HumanTask Processor that the WS-HumanTask Parent MUST use to 2011
send all protocol messages to WS-HumanTask Processor. This EPR is the value contained in the 2012

ParticipantProtocolService element of the Register message. Furthermore, the registration 2013

MUST be as a HumanTask participant by specifying the corresponding value in the 2014

ProtocolIdentifier element of the Register message. The WS-HumanTask Parent reacts to that 2015

message by sending back a RegisterResponse message. This message MUST contain in its 2016

CoordinatorProtocolService element the EPR of the protocol handler of the parent application, 2017

which MUST be used by the WS-HumanTask Processor for sending protocol messages to the parent 2018
application (step (3) in Figure 1). 2019

Now the instance of the human task is activated by the WS-HumanTask Processor, so the assigned 2020
person can perform the task (e.g. the risk assessment). Once the human task is successfully completed, 2021
a response message MUST be passed back to the parent application (step (4a) in Figure 1) by WS-2022
HumanTask Processor. 2023

 2024

Scenario 2: If the human task is not completed with a result, but the assigned person determines that the 2025

task can be skipped (and hence reaches its Obsolete final state), then a “skipped” coordination protocol 2026

message MUST be sent from the WS-HumanTask Processor to its parent application (step (4b) in Figure 2027
1). No response message is passed back. 2028

 2029

Scenario 3: If the WS-HumanTask Parent needs to end prematurely before the invoked human task has 2030

been completed, it MUST send an exit coordination protocol message to the WS-HumanTask 2031

Processor causing the WS-HumanTask Processor to end its processing. A Rresponse message 2032
SHOULD NOT be passed back by WS-HumanTask Processor. 2033

 2034

In case of notifications to WS-HumanTask Processor, only some of the overriding attributes are 2035
propagated with the request message. Only priority and people assignments MAY be overridden for a 2036
notification, and the elements isSkipable, expirationTime and attachments MUST be ignored if present by 2037
WS-HumanTask Processor. Likewise, the WS-HumanTask coordination context, attachments and the 2038
callback EPR do not apply to notifications and MUST be ignored as well by WS-HumanTask Processor. 2039
Finally, a notification SHOULD NOT return WS-HumanTask coordination protocol messages. There 2040

SHOULD NOT be no a message exchange beyond the initiating request message between the WS-2041
HumanTask Processor and WS-HumanTask Parent.. 2042

7.1 Human Task Coordination Protocol Messages 2043

The following section describes the behavior of the human task with respect to the protocol messages 2044
exchanged with its requesting application which is human task aware. In particular, we describe which 2045
state transitions trigger which protocol message and vice versa. WS-HumanTask Parent MUST support 2046
WS-HumanTask Coordination protocol messages in addition to application requesting, responding and 2047
fault messages. 2048

See diagram in section 4.7 “Human Task Behavior and State Transitions”. 2049

1. The initiating message containing a WS-HumanTask coordination context is received by the WS-2050
HumanTask Processor. This message MAY include ad hoc attachments that are to be made 2051
available to the WS-HumanTask Processor. A new task is created. As part of the context, an EPR 2052
of the registration service MUST be passed by WS-HumanTask Parent. This registration service 2053
MUST be used by the hosting WS-HumanTask Processor to register the protocol handler 2054
receiving the WS-HumanTask protocol messages sent by the requesting Application. If an error 2055

occurs during the task instantiation the final state Error is reached and protocol message fault 2056

MUST be sent to the requesting application by WS-HumanTask Processor. 2057

2. On successful completion of the task an application level response message MUST be sent and 2058
the task moved to state Completed. When this happens, attachments created during the 2059
processing of the task MAY be added to the response message. Attachments that had been 2060
passed in the initiating message MUST NOT be returned. The response message outcome 2061
MUST be set to the outcome of the task. 2062

3. On unsuccessful completion (completion with a fault message), an application level fault 2063
message MUST be sent and the task moved to state Failed. When this happens, attachments 2064
created during the processing of the task MAY be added to the response message. Attachments 2065
that had been passed in the initiating message MUST NOT be returned. 2066

4. If the task experiences a non-recoverable error protocol message fault MUST be sent and 2067

the task moved to state Error. Attachments MUST NOT be returned. 2068

5. If the task is skipable and is skipped then the WS-HumanTask Processor MUST send the 2069

protocol message skipped and task MUST be moved to state Obsolete. No aAttachments 2070

MUST NOT be returned. 2071

6. On receipt of protocol message exit the task MUST be moved to state Exited. This indicates 2072

that the requesting application is no longer interested in any result produced by the task. 2073

The following table summarizes this behavior, the messages sent, and their direction, i.e., whether a 2074
message is sent from the requesting application to the task (“out” in the column titled Direction) or vice 2075
versa (“in”). 2076

 2077

Message Direction
Human Task Behavior (and
Protocol messages)

application request with WS-HT
coordination context

in Create task (Register)

application response out Successful completion with response

application fault response out Completion with fault response

htcp:Fault out Non-recoverable error

htcp:Exit in
Requesting application is no longer
interested in the task output

htcp:Skipped out Task moves to state Obsolete

7.2 Protocol Messages 2078

All WS-HumanTask protocol messages have the following type: 2079

<xsd:complexType name="ProtocolMsgTypetProtocolMsgType"> 2080
 <xsd:sequence> 2081
 <xsd:any namespace="##other" processContents="lax" 2082
 minOccurs="0" maxOccurs="unbounded" /> 2083
 </xsd:sequence> 2084
 <xsd:anyAttribute namespace="##other" processContents="lax" /> 2085
</xsd:complexType> 2086

 2087

This message type is extensible and any implementation MAY use this extension mechanism to define 2088
proprietary attributes and content which are out of the scope of this specification. 2089

7.2.1 Protocol Messages Received by a Task Parent 2090

The following is the definition of the htcp:skipped message. 2091

<xsd:element name="skipped" type="htcp:ProtocolMsgTypetProtocolMsgType" /> 2092
<wsdl:message name="skipped"> 2093
 <wsdl:part name="parameters" element="htcp:skipped" /> 2094
</wsdl:message> 2095

The htcp:skipped message is used to inform the task parent (i.e. the requesting application) that the 2096

invoked task has been skipped. The task does not return any result. 2097

The following is the definition of the htcp:fault message. 2098

<xsd:element name="fault" type="htcp:ProtocolMsgTypetProtocolMsgType" /> 2099
<wsdl:message name="fault"> 2100
 <wsdl:part name="parameters" element="htcp:fault" /> 2101
</wsdl:message> 2102

The htcp:fault message is used to inform the task parent that the task has ended abnormally. The 2103

task does not return any result. 2104

7.2.2 Protocol Messages Received by a Task 2105

Upon receipt of the following htcp:exit message the task parent informs the task that it is no longer 2106

interested in its results. 2107

<xsd:element name="exit" type="htcp:ProtocolMsgTypetProtocolMsgType" /> 2108
<wsdl:message name="exit"> 2109
 <wsdl:part name="parameters" element="htcp:exit" /> 2110
</wsdl:message> 2111

7.3 WSDL of the Protocol Endpoints 2112

Protocol messages are received by protocol participants via operations of dedicated ports called protocol 2113
endpoints. In this section we specify the WSDL port types of the protocol endpoints needed to run the 2114
WS-HumanTask coordination protocol. 2115

7.3.1 Protocol Endpoint of the Task Parent 2116

An application that wants to create a task and wants to become a task parent MUST provide an endpoint 2117
implementing the following port type. This endpoint is the protocol endpoint of the task parent receiving 2118
protocol messages of the WS-HumanTask coordination protocol from a task. The operation used by the 2119
task to send a certain protocol message to the task parent is named by the message name of the protocol 2120

message concatenated by the string Operation. For example, the skipped message MUST be passed 2121

to the task parent by using the operation named skippedOperation. 2122

<wsdl:portType name="clientParticipantPortType"> 2123
 <wsdl:operation name="skippedOperation"> 2124

 <wsdl:input message="htcp:skipped" /> 2125
 </wsdl:operation> 2126
 <wsdl:operation name="faultOperation"> 2127
 <wsdl:input message="htcp:fault" /> 2128
 </wsdl:operation> 2129
</wsdl:portType> 2130

7.3.2 Protocol Endpoint of the Task 2131

For a WS-HumanTask Definition a task MUST provide an endpoint implementing the following port type. 2132
This endpoint is the protocol endpoint of the task receiving protocol messages of the WS-HumanTask 2133
coordination protocol from a task parent. The operation used by the task parent to send a certain protocol 2134
message to a task is named by the message name of the protocol message concatenated by the string 2135

Operation. For example, the exit protocol message MUST be passed to the task by using the 2136

operation named exitOperation. 2137

<wsdl:portType name="humanTaskParticipantPortType"> 2138
 <wsdl:operation name="exitOperation"> 2139
 <wsdl:input message="htcp:exit" /> 2140
 </wsdl:operation> 2141
</wsdl:portType> 2142

7.4 Providing Human Task Context 2143

The task context information is exchanged between the requesting application and a task or a notification. 2144
In case of tasks, this information is passed as header fields of the request and response messages of the 2145
task’s operation. In case of notifications, this information is passed as header fields of the request 2146
message of the notification’s operation. 2147

7.4.1 SOAP Binding of Human Task Context 2148

In general, a SOAP binding specifies for message header fields how they are bound to SOAP headers. In 2149

case of WS-HumanTask , the humanTaskContext element is simply mapped to a single SOAP header 2150

as a whole. The following listing shows the SOAP binding of the human task context in an infoset 2151
representation. 2152

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2153
 xmlns:htc="http://docs.oasis-open.org/ns/bpel4people/ws-2154
humantask/context/200803"> 2155
 <S:Header> 2156
 <htc:humanTaskContext> 2157
 <htc:priority>...</htc:priority>? 2158
 <htc:peopleAssignments>...</htc:peopleAssignments>? 2159
 <htc:isSkipable>...</htc:isSkipable>? 2160
 <htc:expirationTime>...</htc:expirationTime>? 2161
 <htc:outcome>...</htc:outcome>? 2162
 <htc:attachments>...</htc:attachments>? 2163
 </htc:humanTaskContext> 2164
 </S:Header> 2165
 <S:Body> 2166
 ... 2167
 </S:Body> 2168
</S:Envelope> 2169

 2170

The following listing is an example of a SOAP message containing a human task context. 2171

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2172
 xmlns:htc="http://docs.oasis-open.org/ns/bpel4people/ws-2173
humantask/context/200803"> 2174
 <S:Header> 2175
 <htc:humanTaskContext> 2176

 <htc:priority>0</htc:priority> 2177
 <htc:peopleAssignments> 2178
 <htc:potentialOwners> 2179
 <htd:organizationalEntityhtt:organizationalEntity> 2180
 <htd:usershtt:users> 2181
 <htd:userhtt:user>Alan</htd:userhtt:user> 2182
 <htd:userhtt:user>Dieter</htd:userhtt:user> 2183
 <htd:userhtt:user>Frank</htd:userhtt:user> 2184
 <htd:userhtt:user>Gerhard</htd:userhtt:user> 2185
 <htd:userhtt:user>Ivana</htd:userhtt:user> 2186
 <htd:userhtt:user>Karsten</htd:userhtt:user> 2187
 <htd:userhtt:user>Matthias</htd:userhtt:user> 2188
 <htd:userhtt:user>Patrick</htd:userhtt:user> 2189
 </htd:usershtt:users> 2190
 </htd:organizationalEntityhtt:organizationalEntity> 2191
 </htc:potentialOwners> 2192
 </htc:peopleAssignments> 2193
 </htc:humanTaskContext> 2194
 </S:Header> 2195
 <S:Body>...</S:Body> 2196
</S:Envelope> 2197

2198

 2199

7.5 Human Task Policy Assertion 2200

In order to support discovery of Web services that support the human task contract that are available for 2201
coordination by another service, a human task policy assertion is defined by WS-HumanTask. This policy 2202
assertion can be associated with the business operation used by the invoking component (recall that the 2203
human task is restricted to have exactly one business operation). In doing so, the provider of a human 2204
task can signal whether or not the corresponding task can communicate with an invoking component via 2205
the WS-HumanTask coordination protocol. 2206

The following describes the policy assertion used to specify that an operation can be used to instantiate a 2207
human task with the proper protocol in place: 2208

<htp:HumanTaskAssertion wsp:Optional="true"? ...> 2209
 ... 2210
</htp:HumanTaskAssertion> 2211

 2212

/htp:HumanTaskAssertion 2213

This policy assertion specifies that the WS-HumanTask Parent, in this case the sender, MUST 2214
include context information for a human task coordination type passed with the message. The 2215
receiving human task MUST be instantiated with the WS-Human Task protocol in place by the 2216
WS-HumanTask Processor. 2217

 2218

/htp:HumanTaskAssertion/@wsp:Optional="true" 2219

As defined in WS-Policy [WS-Policy], this is the compact notation for two policy alternatives, one 2220
with and one without the assertion. Presence of both policy alternatives indicates that the 2221
behavior indicated by the assertion is optional, such that a WS-HumanTask coordination context 2222
MAY be passed with an input message. If the context is passed the receiving human task MUST 2223
be instantiated with the WS-HumanTask protocol in place. The absence of the assertion is 2224
interpreted to mean that a WS-HumanTask coordination context SHOULD NOT be passed with 2225
an input message. 2226

 2227

The human task policy assertion indicates behavior for a single operation, thus the assertion has an 2228
Operation Policy Subject. WS-PolicyAttachment [WS-PolAtt] defines two policy attachment points with 2229
Operation Policy Subject, namely wsdl:portType/wsdl:operation and wsdl:binding/wsdl:operation. 2230

The <htp:HumanTaskAssertion> policy assertion can also be used for notifications. In that case it 2231

means that the WS-HumanTask Parent, in this case the sender, MAY pass the human task context 2232
information with the message. Other headers, including headers with the coordination context are 2233
ignored. 2234

 2235

8 Providing Callback Information for Human Tasks 2236

WS-HumanTask extends the information model of a WS-Addressing endpoint reference (EPR) defined in 2237
[WS-Addr-Core] (see [WS-Addr-SOAP] and [WS-Addr-WSDL] for more details). This extension is needed 2238
to support passing information to human tasks about ports and operations of a caller receiving responses 2239
from such human tasks. 2240

Passing this callback information from a WS-HumanTask Parent (i.e. a requesting application) to the 2241
aWS-HumanTask Processor human task MAY override static deployment information that may have 2242
been set. 2243

8.1 EPR Information Model Extension 2244

Besides the properties of an endpoint reference (EPR) defined by [WS-Addr-Core] WS-HumanTask 2245
defines the following abstract properties: 2246

 2247

[response action] : xsd:anyURI (0..1) 2248

 2249

This property contains the value of the [action] message addressing property to be sent within the 2250
response message. 2251

 2252

[response operation] : xsd:NCName (0..1) 2253
 2254

This property contains the name of a WSDL operation. 2255

 2256

Each of these properties is a child element of the [metadata] property of an endpoint reference. An 2257
endpoint reference passed by a caller to a WS-HumanTask Processor MUST contain the [metadata] 2258
property. Furthermore, this [metadata] property MUST contain either a [response action] property or a 2259
[response operation] property. 2260

If present, the value of the [response action] property MUST be used by the WS-HumanTask Processor 2261
hosting the responding human task to specify the value of the [action] message addressing property of 2262
the response message sent back to the caller. Furthermore, the [destination] property of this response 2263
message MUST be copied from the [address] property of the EPR contained in the original request 2264
message by the WS-HumanTask Processor. 2265

If present, the value of the [response operation] property MUST be the name of an operation of the port 2266
type implemented by the endpoint denoted by the [address] property of the EPR. The corresponding port 2267
type MUST be included as a WSDL 1.1 definition nested within the [metadata] property of the EPR (see 2268
[WS-Addr-WSDL]). The WS-HumanTask Processor hosting the responding human task MUST use the 2269
value of the [response operation] property as operation of the specified port type at the specified endpoint 2270
to send the response message. Furthermore, the [metadata] property MUST contain WSDL 1.1 binding 2271
information corresponding to the port type implemented by the endpoint denoted by the [address] 2272
property of the EPR. 2273

The EPR sent from the caller to the WS-HumanTask Processor MUST identify the instance of the caller. 2274
This MUST be done by the caller in one of the two ways: First, the value of the [address] property can 2275
contain a URL with appropriate parameters uniquely identifying the caller instance. Second, appropriate 2276
[reference parameters] properties are specified within the EPR. The values of these [reference 2277
parameters] uniquely identify the caller within the scope of the URI passed within the [address] property. 2278

8.2 XML Infoset Representation 2279

The following describes the infoset representation of the EPR extensions introduced by WS-HumanTask: 2280

<wsa:EndpointReference> 2281
 <wsa:Address>xsd:anyURI</wsa:Address> 2282

 <wsa:ReferenceParameters>xsd:any*</wsa:ReferenceParameters>? 2283
 <wsa:Metadata> 2284
 <htcp:responseAction>xsd:anyURI</htcp:responseAction>? 2285
 <htcp:responseOperation>xsd:NCName</htcp:responseOperation>? 2286
 </wsa:Metadata> 2287
</wsa:EndpointReference> 2288

 2289

/wsa:EndpointReference/wsa:Metadata 2290

This element of the EPR MUST be sent by WS-HumanTask Parent, the caller, to the WS-2291
HumanTask Processor . It MUST either contain WSDL 1.1 metadata specifying the information to 2292
access the endpoint (i.e. its port type, bindings or ports) according to [WS-Addr-WSDL] as well as 2293

a <htcp:responseOperation> element, or it MUST contain a <htcp:responseAction> 2294

element. 2295

/wsa:EndpointReference/wsa:Metadata/htcp:responseAction 2296

This element (of type xsd:anyURI) specifies the value of the [action] message addressing 2297

property to be used by the receiving WS-HumanTask Processor when sending the response 2298
message from the WS-HumanTask Processor back to the caller. If this element is specified the 2299

<htcp:responseOperation> element MUST NOT be specified by the caller. 2300

/wsa:EndpointReference/wsa:Metadata/htcp:responseOperation 2301

This element (of type xsd:NCName) specifies the name of the operation that MUST be used by 2302

the receiving WS-HumanTask Processor to send the response message from the WS-2303
HumanTask Processor back to the caller. The value of this element is taken from the 2304

htd:remoteTask/@responseOperation attribute. If this element is specified the 2305

<htcp:responseAction> element MUST NOT be specified by the WS-HumanTask Parent. 2306

Effectively, WS-HumanTask defines two ways to pass callback information from the caller to the human 2307
task. First, the EPR contains just the value of the [action] message addressing property that MUST be 2308
used by the WS-HumanTask Processor within the response message (i.e. the 2309

<htcp:responseAction> element). Second, the EPR contains the WSDL 1.1 metadata for the port 2310

receiving the response operation. In this case, for the callback information the WS-HumanTask Parent 2311

MUST specify which operation of that port is to be used (i.e. the <htcp:responseOperation> 2312

element). In both cases, the response is typically sent to the address specified in the <wsa:Address> 2313

element of the EPR contained in the original request message; note, that [WS-Addr-WSDL] does not 2314
exclude redirection to other addresses than the one specified, but the corresponding mechanisms are out 2315
of the scope of the specification. 2316

The following example of an endpoint reference shows the usage of the <htcp:responseAction> 2317

element. The <wsa:Metadata> elements contain the <htcp:responseAction> element that 2318

specifies the value of the [action] message addressing property to be used by the WS-HumanTask 2319
Processor when sending the response message back to the caller. This value is 2320

http://example.com/LoanApproval/approvalResponse. The value of the [destination] message 2321

addressing property to be used is given in the <wsa:Address> element, namely 2322

http://example.com/LoanApproval/loan?ID=42. Note that this URL includes the HTTP search 2323

part with the parameter ID=42 which uniquely identifies the instance of the caller. 2324

<wsa:EndpointReference 2325
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2326
 2327
 <wsa:Address>http://example.com/LoanApproval/loan?ID=42</wsa:Address> 2328
 2329
 <wsa:Metadata> 2330
 <htcp:responseAction> 2331
 http://example.com/LoanApproval/approvalResponse 2332
 </htcp:responseAction> 2333
 </wsa:Metadata> 2334
 2335
</wsa:EndpointReference> 2336

http://example.com/LoanApproval/loan?ID=42

 2337

The following example of an endpoint reference shows the usage of the <htcp:responseOperation> 2338

element and corresponding WSDL 1.1 metadata. The port type of the caller that receives the response 2339

message from the WS-HumanTask Processor is defined using the <wsdl:portType> element. In our 2340

example it is the LoanApprovalPT port type. The definition of the port type is nested in a corresponding 2341

WSLD 1.1 <wsdl:definitions> element in the <wsa:Metadata> element. This 2342

<wsdl:definitions> element also contains a binding for this port type as well as a corresponding 2343

port definition nested in a <wsdl:service> element. The <htcp:responseOperation> element 2344

specifies that the approvalResponse operation of the LoanApprovalPT port type is used to send the 2345

response to the caller. The address of the actual port to be used which implements the 2346

LoanApprovalPT port type and thus the approvalResponse operation is given in the 2347

<wsa:Address> element, namely the URL http://example.com/LoanApproval/loan. The 2348

unique identifier of the instance of the caller is specified in the <xmp:MyInstanceID> element nested in 2349

the <wsa:ReferenceParameters> element. 2350

<wsa:EndpointReference 2351
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2352
 2353
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2354
 2355
 <wsa:ReferenceParameters> 2356
 <xmp:MyInstanceID>42</xmp:MyInstanceID> 2357
 </wsa:ReferenceParameters> 2358
 2359
 <wsa:Metadata> 2360
 2361
 <wsdl:definitions ...> 2362
 2363
 <wsdl:portType name="LoanApprovalPT"> 2364
 <wsdl:operation name="approvalResponse">...</wsdl:operation> 2365
 ... 2366
 </wsdl:portType> 2367
 2368
 <wsdl:binding name="LoanApprovalSoap" type="LoanApprovalPT"> 2369
 ... 2370
 </wsdl:binding> 2371
 2372
 <wsdl:service name="LoanApprovalService"> 2373
 <wsdl:port name="LA" binding="LoanApprovalSoap"> 2374
 <soap:address 2375
 location="http://example.com/LoanApproval/loan" /> 2376
 </wsdl:port> 2377
 ... 2378
 </wsdl:service> 2379
 2380
 </wsdl:definitions> 2381
 2382
 <htcp:responseOperation>approvalResponse</htcp:responseOperation> 2383
 2384
 </wsa:Metadata> 2385
 2386
</wsa:EndpointReference> 2387

8.3 Message Addressing Properties 2388

Message addressing properties provide references for the endpoints involved in an interaction at the 2389
message level. For this case, WS-HumanTask Processor uses the message addressing properties 2390
defined in [WS-Addr-Core] for the request message as well as for the response message. 2391

The request message sent by the caller (i.e. the requesting application) to the human task uses the 2392
message addressing properties as described in [WS-Addr-Core]. WS-HumanTask refines the use of the 2393
following message addressing properties: 2394

 The [reply endpoint] message addressing property MUST contain the EPR to be used by the WS-2395
HumanTask Processor to send its response to. 2396

Note that the [fault endpoint] property MUST NOT be used by WS-HumanTask Processor. This is 2397
because via one-way operation no application level faults are returned to the caller. 2398

The response message sent by the WS-HumanTask Processor to the caller uses the message 2399
addressing properties as defined in [WS-Addr-Core] and refines the use of the following properties: 2400

 The value of the [action] message addressing property is set as follows: 2401

 If the original request message contains the <htcp:responseAction> element in the 2402

<wsa:Metadata> element of the EPR of the [reply endpoint] message addressing property, 2403

the value of the former element MUST be copied into the [action] property of the response 2404
message by WS-HumanTask Processor. 2405

 If the original request message contains the <htcp:responseOperation> element (and, 2406

thus, WSDL 1.1 metadata) in the <wsa:Metadata> element of the EPR of the [reply 2407

endpoint] message addressing property, the value of the [action] message addressing 2408
property of the response message is determined as follows: 2409

 Assume that the WSDL 1.1 metadata specifies within the binding chosen a value for the 2410

soapaction attribute on the soap:operation element of the response operation. 2411

Then, this value MUST be used as value of the [action] property by WS-HumanTask 2412
Processor. 2413

 If no such soapaction attribute is provided, the value of the [action] property MUST be 2414

derived as specified in [WS-Addr-WSDL] by WS-HumanTask Processor. 2415

 Reference parameters are mapped as specified in [WS-Addr-SOAP]. 2416

8.4 SOAP Binding 2417

A SOAP binding specifies how abstract message addressing properties are bound to SOAP headers. In 2418
this case, WS-HumanTask Processor MUST use the mappings as specified by [WS-Addr-SOAP]. 2419

The following is an example of a request message sent from the caller to the WS-HumanTask Processor 2420

containing the <htcp:responseAction> element in the incoming EPR. The EPR is mapped to SOAP 2421

header fields as follows: The endpoint reference to be used by the human task for submitting its response 2422

message to is contained in the <wsa:ReplyTo> element. The address of the endpoint is contained in the 2423

<wsa:Address> element. The identifier of the instance of the caller to be encoded as reference 2424

parameters in the response message is nested in the <wsa:ReferenceParameters> element. The 2425

value of the <wsa:Action> element to be set by the human task in its response to the caller is in the 2426

<htcp:responseAction> element nested in the <wsa:Metadata> element of the EPR. 2427

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2428
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2429
 xmlns:htcp="http://docs.oasis-open.org/ns/bpel4people/ws-2430
humantask/protocol/200803"> 2431
 2432
 <S:Header> 2433
 <wsa:ReplyTo> 2434
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2435
 <wsa:ReferenceParameters> 2436
 <xmp:MyInstanceID>42</xmp:MyInstanceID> 2437
 </wsa:ReferenceParameters> 2438
 <wsa:Metadata> 2439
 <htcp:responseAction> 2440
 http://example.com/LoanApproval/approvalResponse 2441
 </htcp:responseAction> 2442
 </wsa:Metadata> 2443

 </wsa:ReplyTo> 2444
 </S:Header> 2445
 2446
 <S:Body>...</S:Body> 2447
</S:Envelope> 2448

The following is an example of a response message corresponding to the request message discussed 2449

above. This response is sent from the WS-HumanTask Processor back to the caller. The <wsa:To> 2450

element contains a copy of the <wsa:Address> element of the original request message. The 2451

<wsa:Action> element is copied from the <htcp:responseAction> element of the original request 2452

message. The reference parameters are copied as standalone elements (the <xmp:MyInstanceID> 2453

element below) out of the <wsa:ReferenceParameters> element of the request message. 2454

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2455
 xmlns:wsa="http://www.w3.org/2005/08/addressing"> 2456
 <S:Header> 2457
 <wsa:To> 2458
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2459
 </wsa:To> 2460
 <wsa:Action> 2461
 http://example.com/LoanApproval/approvalResponse 2462
 </wsa:Action> 2463
 <xmp:MyInstanceID wsa:IsReferenceParameter='true'> 2464
 42 2465
 </xmp:MyInstanceID> 2466
 </S:Header> 2467
 <S:Body>...</S:Body> 2468
</S:Envelope> 2469

The following is an example of a request message sent from the caller to the WS-HumanTask Processor 2470

containing the <htcp:responseOperation> element and corresponding WSDL metadata in the 2471

incoming EPR. The EPR is mapped to SOAP header fields as follows: The endpoint reference to be used 2472
by the WS-HumanTask Processor for submitting its response message to is contained in the 2473

<wsa:ReplyTo> element. The address of the endpoint is contained in the <wsa:Address> element. 2474

The identifier of the instance of the caller to be encoded as reference parameters in the response 2475

message is nested in the <wsa:ReferenceParameters> element. The WSDL metadata of the 2476

endpoint is contained in the <wsdl:definitions> element. The name of the operation of the endpoint 2477

to be used to send the response message to is contained in the <htcp:responseOperation> 2478

element. Both elements are nested in the <wsa:Metadata> element of the EPR. These elements 2479

provide the basis to determine the value of the action header field to be set by the WS-HumanTask 2480
Processor in its response to the caller. 2481

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2482
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2483
 xmlns:htcp="http://docs.oasis-open.org/ns/bpel4people/ws-2484
humantask/protocol/200803"> 2485
 <S:Header> 2486
 <wsa:ReplyTo> 2487
 2488
 <wsa:Address>http://example.com/LoanApproval/loan</wsa:Address> 2489
 2490
 <wsa:ReferenceParameters> 2491
 <xmp:MyInstanceID>42</xmp:MyInstanceID> 2492
 </wsa:ReferenceParameters> 2493
 2494
 <wsa:Metadata> 2495
 2496
 <wsdl:definitions 2497
 targetNamespace="http://example.com/loanApproval" 2498
 xmlns:wsdl="..." xmlns:soap="..."> 2499
 2500

 <wsdl:portType name="LoanApprovalPT"> 2501
 <wsdl:operation name="approvalResponse"> 2502
 <wsdl:input name="approvalInput" ... /> 2503
 </wsdl:operation> 2504
 ... 2505
 </wsdl:portType> 2506
 2507
 <wsdl:binding name="LoanApprovalSoap" 2508
 type="LoanApprovalPT"> 2509
 ... 2510
 </wsdl:binding> 2511
 2512
 <wsdl:service name="LoanApprovalService"> 2513
 <wsdl:port name="LA" binding="LoanApprovalSoap"> 2514
 <soap:address 2515
 location="http://example.com/LoanApproval/loan" /> 2516
 </wsdl:port> 2517
 ... 2518
 </wsdl:service> 2519
 </wsdl:definitions> 2520
 2521
 <htcp:responseOperation> 2522
 approvalResponse 2523
 </htcp:responseOperation> 2524
 2525
 </wsa:Metadata> 2526
 </wsa:ReplyTo> 2527
 2528
 </S:Header> 2529
 <S:Body>...</S:Body> 2530
</S:Envelope> 2531

The following is an example of a response message corresponding to the request message before; this 2532

response is sent from the WS-HumanTask Processor back to the caller. The <wsa:To> element contains 2533

a copy of the <wsa:Address> field of the original request message. The reference parameters are 2534

copied as standalone element (the <xmp:MyInstanceID> element below) out of the 2535

<htcp:ReferenceParameters> element of the request message. The value of the <wsa:Action> 2536

element is composed according to [WS-Addr-WSDL] from the target namespace, port type name, name 2537
of the response operation to be used, and name of the input message of this operation given in the code 2538
snippet above. 2539

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope" 2540
 xmlns:wsa="http://www.w3.org/2005/08/addressing" 2541
 xmlns:htd="http://docs.oasis-open.org/ns/bpel4people/ws-humantask/200803"> 2542
 <S:Header> 2543
 <wsa:To>http://example.com/LoanApproval/loan</wsa:To> 2544
 <wsa:Action> 2545
 http://example.com/loanApproval/... 2546
 ...LoanApprovalPT/approvalResponse/ApprovalInput 2547
 </wsa:Action> 2548
 <xmp:MyInstanceID wsa:IsReferenceParameter='true'> 2549
 42 2550
 </xmp:MyInstanceID> 2551
 </S:Header> 2552
 <S:Body>...</S:Body> 2553
</S:Envelope> 2554

9 Security Considerations 2555

WS-HumanTask does not mandate the use of any specific mechanism or technology for client 2556
authentication. However, a client MUST provide a principal or the principal MUST be obtainable by the 2557
infrastructureWS-HumanTask Processor. 2558

When using task APIs via SOAP bindings, compliance with the WS-I Basic Security Profile 1.0 is 2559
RECOMMENDED. 2560

10 Conformance 2561

(tbd.) 2562

11 References 2563

[RFC 1766] 2564

Tags for the Identification of Languages, RFC 1766, available via 2565
http://www.ietf.org/rfc/rfc1766.txt 2566

[RFC 2046] 2567

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, RFC 2046, available via 2568
http://www.isi.edu/in-notes/rfc2046.txt (or http://www.iana.org/assignments/media-types/) 2569

[RFC 2119] 2570

Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, available via 2571
http://www.ietf.org/rfc/rfc2119.txt 2572

[RFC 2396] 2573

Uniform Resource Identifiers (URI): Generic Syntax, RFC 2396, available via 2574
http://www.faqs.org/rfcs/rfc2396.html 2575

[RFC 3066] 2576

Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001, available via 2577
http://www.isi.edu/in-notes/rfc3066.txt 2578

[WSDL 1.1] 2579

Web Services Description Language (WSDL) Version 1.1, W3C Note, available via 2580
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 2581

[WS-Addr-Core] 2582

Web Services Addressing 1.0 - Core, W3C Recommendation, May 2006, available via 2583
http://www.w3.org/TR/ws-addr-core 2584

[WS-Addr-SOAP] 2585

Web Services Addressing 1.0 – SOAP Binding, W3C Recommendation, May 2006, available via 2586
http://www.w3.org/TR/ws-addr-soap 2587

[WS-Addr-WSDL] 2588

Web Services Addressing 1.0 – WSDL Binding, W3C Working Draft, February 2006, available via 2589
http://www.w3.org/TR/ws-addr-wsdl 2590

[WS-C] 2591

Web Services Coordination (WS-Coordination) Version 1.1, OASIS Committee Specification, 2592
February 2007, available via http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-2593
1.1-spec.html 2594

[WS-Policy] 2595

Web Services Policy 1.5 - Framework, W3C Candidate Recommendation 30 March 2007, 2596
available via http://www.w3.org/TR/ws-policy/ 2597

[WS-PolAtt] 2598

Web Services Policy 1.5 - Attachment, W3C Candidate Recommendation 30 March 2007, 2599
available via http://www.w3.org/TR/2007/CR-ws-policy-attach-20070330/ 2600

[XML Infoset] 2601

XML Information Set, W3C Recommendation, available via http://www.w3.org/TR/2001/REC-xml-2602
infoset-20011024/ 2603

[XML Namespaces] 2604

Namespaces in XML 1.0 (Second Edition), W3C Recommendation, available via 2605
http://www.w3.org/TR/REC-xml-names/ 2606

[XML Schema Part 1] 2607

http://www.ietf.org/rfc/rfc1766.txt
http://www.isi.edu/in-notes/rfc2046.txt
http://www.iana.org/assignments/media-types/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
RFC%202396
http://www.isi.edu/in-notes/rfc3066.txt
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-core
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-soap
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/ws-addr-wsdl
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec/wstx-wscoor-1.1-spec.html
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

XML Schema Part 1: Structures, W3C Recommendation, October 2004, available via 2608
http://www.w3.org/TR/xmlschema-1/ 2609

[XML Schema Part 2] 2610

XML Schema Part 2: Datatypes, W3C Recommendation, October 2004, available via 2611
http://www.w3.org/TR/xmlschema-2/ 2612

[XMLSpec] 2613

XML Specification, W3C Recommendation, February 1998, available via 2614
http://www.w3.org/TR/1998/REC-xml-19980210 2615

[XPATH 1.0] 2616

XML Path Language (XPath) Version 1.0, W3C Recommendation, November 1999, available via 2617
http://www.w3.org/TR/1999/REC-xpath-19991116 2618

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xpath-19991116

A. Portability and Interoperability Considerations 2619

This section illustrates the portability and interoperability aspects addressed by WS-HumanTask: 2620

 Portability - The ability to take human tasks and notifications created in one vendor's environment 2621
and use them in another vendor's environment. 2622

 Interoperability - The capability for multiple components (task infrastructure, task list clients and 2623
applications or processes with human interactions) to interact using well-defined messages and 2624
protocols. This enables combining components from different vendors allowing seamless 2625
execution. 2626

Portability requires support of WS-HumanTask artifacts. 2627

Interoperability between task infrastructure and task list clients is achieved using the operations for client 2628
applications. 2629

Interoperability between applications and task infrastructure from different vendors subsumes two 2630
alternative constellations depending on how tightly the life-cycles of the task and the invocating 2631
application are coupled with each other. This is shown in the figure below: 2632

Tight Life-Cycle Constellation: Applications are human task aware and control the life cycle of tasks. 2633
Interoperability between applications and WS-HumanTask Processors is achieved using the WS-2634
HumanTask coordination protocol. 2635

Loose Life-Cycle Constellation: Applications use basic Web services protocols to invoke Web services 2636
implemented as human tasks. In this case standard Web services interoperability is achieved and 2637
applications do not control the life cycle of tasks. 2638

Standalone Human
Task

Callable
WSDL

Interface

HT-Protocol
Interface

Tight Life-Cycle
Constellation

Web service

invocation

Standalone Human
Task

Callable WSDL
Interface

Application

Loose Life-Cycle
Constellation

Application

Task

invocation

B. WS-HumanTask Language Schema 2639

Note to specification editors: the WS-HumanTask XML Schema definition is separately maintained in an 2640
artifact 2641

 ws-humantask.xsd 2642

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2643
as a committee draft. 2644

C. WS-HumanTask Data Types Schema 2645

Note to specification editors: the WS-HumanTask data types XML Schema definition is separately 2646
maintained in artifact 2647

 ws-humantask-types.xsd 2648

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2649
as a committee draft. 2650

D. WS-HumanTask API Port Types 2651

Note to specification editors: the WS-HumanTask API WSDL definition is separately maintained in artifact 2652

 ws-humantask-api.wsdl 2653

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2654
as a committee draft. 2655

E. WS-HumanTask Protocol Handler Port Types 2656

Note to specification editors: the WS-HumanTask protocol WSDL definition is separately maintained in an 2657
artifact 2658

 ws-humantask-protocol.wsdl 2659

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2660
as a committee draft. 2661

F. WS-HumanTask Context Schema 2662

Note to specification editors: the WS-HumanTask context XML Schema definition is separately 2663
maintained in an artifact 2664

 ws-humantask-context.xsd 2665

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2666
as a committee draft. 2667

G. WS-HumanTask Policy Assertion Schema 2668

Note to specification editors: the WS-HumanTask policy assertion XML Schema definition is separately 2669
maintained in an artifact 2670

 ws-humantask-policy.xsd 2671

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2672
as a committee draft. 2673

H. Sample 2674

This appendix contains the full sample used in this specification. 2675

 2676

WSDL Definition 2677

Note to specification editors: the WS-HumanTask example WSDL definition is separately maintained in 2678
an artifact 2679

 ws-humantask-example-claim-approval.wsdl 2680

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2681
as a committee draft. 2682

 2683

Human Interaction Definition 2684

Note to specification editors: the WS-HumanTask example Human Task definition is separately 2685
maintained in an artifact 2686

 ws-humantask-example-claim-approval.tel 2687

The contents of this artifact shall be copied back into this section before publishing the specification, e.g., 2688
as a committee draft. 2689

I. Acknowledgements 2690

The following individuals have participated in the creation of this specification and are gratefully 2691
acknowledged: 2692

 2693

Members of the BPEL4People Technical Committee: 2694

Ashish Agrawal, Adobe Systems 2695

Mike Amend, BEA Systems, Inc. 2696

Stefan Baeuerle, SAP AG 2697

Charlton Barreto, Adobe Systems 2698

Justin Brunt, TIBCO Software Inc. 2699

Martin Chapman, Oracle Corporation 2700

James Bryce Clark, OASIS 2701

Luc Clément, Active Endpoints, Inc. 2702

Manoj Das, Oracle Corporation 2703

Mark Ford, Active Endpoints, Inc. 2704

Sabine Holz, SAP AG 2705

Dave Ings, IBM 2706

Gershon Janssen, Individual 2707

Diane Jordan, IBM 2708

Anish Karmarkar, Oracle Corporation 2709

Ulrich Keil, SAP AG 2710

Oliver Kieselbach, SAP AG 2711

Matthias Kloppmann, IBM 2712

Dieter König, IBM 2713

Marita Kruempelmann, SAP AG 2714

Frank Leymann, IBM 2715

Mark Little, Red Hat 2716

Ashok Malhotra, Oracle Corporation 2717

Mike Marin, IBM 2718

Mary McRae, OASIS 2719

Vinkesh Mehta, Deloitte Consulting LLP 2720

Jeff Mischkinsky, Oracle Corporation 2721

Ralf Mueller, Oracle Corporation 2722

Krasimir Nedkov, SAP AG 2723

Benjamin Notheis, SAP AG 2724

Michael Pellegrini, Active Endpoints, Inc. 2725

Gerhard Pfau, IBM 2726

Karsten Ploesser, SAP AG 2727

Ravi Rangaswamy, Oracle Corporation 2728

Alan Rickayzen, SAP AG 2729

Michael Rowley, BEA Systems, Inc. 2730

Ron Ten-Hove, Sun Microsystems 2731

Ivana Trickovic, SAP AG 2732

Alessandro Triglia, OSS Nokalva 2733

Claus von Riegen, SAP AG 2734

Peter Walker, Sun Microsystems 2735

Franz Weber, SAP AG 2736

Prasad Yendluri, Software AG, Inc. 2737

 2738

WS-HumanTask 1.0 Specification Contributors: 2739

Ashish Agrawal, Adobe 2740

Mike Amend, BEA 2741

Manoj Das, Oracle 2742

Mark Ford, Active Endpoints 2743

Chris Keller, Active Endpoints 2744

Matthias Kloppmann, IBM 2745

Dieter König, IBM 2746

Frank Leymann, IBM 2747

Ralf Müller, Oracle 2748

Gerhard Pfau, IBM 2749

Karsten Plösser, SAP 2750

Ravi Rangaswamy, Oracle 2751

Alan Rickayzen, SAP 2752

Michael Rowley, BEA 2753

Patrick Schmidt, SAP 2754

Ivana Trickovic, SAP 2755

Alex Yiu, Oracle 2756

Matthias Zeller, Adobe 2757

 2758

The following individuals have provided valuable input into the design of this specification: Dave Ings, 2759
Diane Jordan, Mohan Kamath, Ulrich Keil, Matthias Kruse, Kurt Lind, Jeff Mischkinsky, Bhagat Nainani, 2760
Michael Pellegrini, Lars Rueter, Frank Ryan, David Shaffer, Will Stallard, Cyrille Waguet, Franz Weber, 2761
and Eric Wittmann. 2762

J. Non-Normative Text 2763

K. Revision History 2764

[optional; should not be included in OASIS Standards] 2765

 2766

Revision Date Editor Changes Made

WD-01 2008-03-12 Dieter König First working draft created from submitted
specification

WD-02 2008-03-13 Dieter König Added specification editors

Moved WSDL and XSD into separate
artifacts

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #4 incorporated into
the document/section 2.4.2

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #4 incorporated into
the ws-humantask.xsd

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #8 incorporated into
the document/section 6.2

WD-02 2008-06-25 Ivana Trickovic Resolution of Issue #9 incorporated into
the document/section 4.6 (example), and
ws-humantask “ClaimApproval” example
and WSDL file

WD-02 2008-06-28 Dieter König Resolution of Issue #13 applied to
complete document and all separate XML
artifacts

WD-02 2008-06-28 Dieter König Resolution of Issue #21 applied to section
2

WD-02 2008-07-08 Ralf Mueller Resolution of Issue #14 applied to section
6,

ws-humantask-api.wsdl and ws-
humantask-types.xsd

WD-02 2008-07-15 Luc Clément Updated Section 6.2 specifying
(xsd:nonNegativeInteger) as the type for
priority

WD-02 2008-07-25 Krasimir Nedkov Resolution of Issue #18 applied to this
document and all related XML artifacts.

Completed the resolution of Issue #7 by
adding the attachmentType input
parameter to the addAttachment operation
in section 6.1.1.

WD-02 2008-07-29 Ralf Mueller Update of resolution of issue #14 applied
to section 3.4.4, 6.1.2 and ws-humantask-
types.xsd

CD-01-rev-1 2008-09-24 Dieter König Resolution of Issue #25 applied to section
3.4.3.1 and ws-humantask-types.xsd

CD-01-rev-2 2008-10-02 Ralf Mueller Resolution of Issue #17 applied to section
2.3

Resolution of Issue #24 applied to section
7 and ws-humantask-context.xsd

CD-01-rev-3 2008-10-20 Dieter König Resolution of Issue #23 applied to section
3.2.1

Resolution of Issue #6 applied to section
6.2

Resolution of Issue #15 applied to section
6.2

Formatting (Word Document Map)

CD-01-rev-4 2008-10-29 Michael Rowley Resolution of Issue #2

Resolution of Issue #40

CD-01-rev-5 2008-11-09 Vinkesh Mehta Issue-12, Removed section 7.4.1,
Modified XML artifacts in bpel4people.xsd,
humantask.xsd, humantask-context.xsd

CD-01-rev-6 2008-11-10 Vinkesh Mehta Issue-46, Section 6.1.1 wrap
getFaultResponse values into single
element

CD-01-rev-7 2008-11-10 Vinkesh Mehta Issue-35, section 6.1.1 remove potential
owners from the authorized list of
suspended, suspendUntil and resume

CD-01-rev-8 2008-11-21 Ivana Trickovic Issue-16, sections 1, 2, 3, and 6

CD-01-rev-9 2008-11-21 Dieter König Issue-16, sections 4, 5

CD-01-rev10 2008-11-30 Vinkesh Mehta Issue-16, sections 7,8,9,10,11 Appendix A
through H

CD-01-rev11 2008-12-15 Vinkesh Mehta Issue-16, Updates based upon Dieter’s
comments

CD-01-rev-12 2008-12-17 Ivana Trickovic Issue-16, sections 1, 2, 3, and 6 updates
based on comments

CD-01-rev-13 2008-12-17 Dieter König Issue-16, sections 4, 5 updates based on
comments

CD-01-rev-14 2008-12-23 Vinkesh Mehta Issue-16, Updates based upon Ivana’s
comments

CD-01-rev-15 2009-01-06 Krasimir Nedkov Issue-43. Added section 6.1.5, column
“Authorization” removed from the tables in
section 6.1, edited texts in section 6.1.

CD-02 2009-02-18 Luc Clément Committee Draft 2

CD-02-rev-1 2009-02-20 Dieter König Issue 20, sections 4, 4.7 and 6.1.1

Issue 50, sections 3, 4, 6, 7 (htd:htt:)

Issue 55, section 2.5.2 (import type xsd)

Issue 56, section 7.2 (tProtocolMsgType)

Issue 60, section 6.1.1 (API fault type)

Issue 61, sections 3.4.4, 6.1 (taskDetails)

CD-02-rev-2 2009-02-22 Luc Clément Issue 68, section 8.2 (XML Infoset) –
removal of erroneous statement regarding
the source of the value for the

responseOperation

CD-02-rev-3 2009-02-22 Michael Rowley Issue 44, section 6.1.1 plus ws-
humantask.xsd and ws-humantask-
api.wsdl

CD-02-rev-4 2009-03-05 Dieter König Action Item 17

CD-02-rev-5 2009-03-09 Ralf Mueller Issue 70, section 6.1.2

CD-02-rev-6 2009-03-13 Dieter König Issue 71, section 3.4 and 6.1

CD-02-rev-7 2009-03-18 Ivana Trickovic Issue 77

CD-02-rev-8 2009-03-21 Luc Clément Issue 78

 2767

