1.1 Elements for Handling Timeouts and Escalations

Timeouts and escalations allow the specification of a date or time before which the task or sub task has to reach a specific state. If the timeout occurs a set of actions is performed as the response. The state of the task is not changed. Several deadlines are specified which differ in the point when the timer clock starts and the state which has to be reached with the given duration or by the given date. They are:

· Start deadline: Specifies the time until the task has to start, i.e. it has to reach state InProgress. It is defined as either the period of time or the point in time until the task has to reach state InProgress. Since expressions are allowed, durations and deadlines can be calculated at runtime, which for example enables custom calendar integration. The time starts to be measured from the time at which the task enters the state Created. If the task does not reach state InProgress by the deadline an escalation action or a set of escalation actions is performed. Once the task is started, the timer becomes obsolete.

· Completion deadline: Specifies the due time of the task. It is defined as either the period of time until the task gets due or the point in time when the task gets due. The time starts to be measured from the time at which the task enters the state Created. If the task does not reach one of the final states (Completed, Failed, Error, Exited, Obsolete) by the deadline an escalation action or a set of escalation actions is performed.

The element <deadlines> is used to include the definition of all deadlines within the task definition. It is optional. If present then the WS-HumanTask Definition MUST specify at least one deadline. Deadlines defined in ad-hoc sub tasks created at runtime MUST NOT contradict the deadlines of their parent task. A Business Administrator MAY choose to create sub tasks to defer the completion deadline of a task to a later time.
Syntax:

<htd:deadlines>
 <htd:startDeadline>*
 <htd:documentation xml:lang="xsd:language"? >*
 Text
 </htd:documentation>
 (<htd:for expressionLanguage="anyURI"? >
 duration-expression
 </htd:for>
 | <htd:until expressionLanguage="anyURI"? >
 deadline-expression
 </htd:until>
)
 <htd:escalation name="NCName">*
 ...
 </htd:escalation>
 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
</htd:deadlines>
The language used in expressions is specified using the expressionLanguage attribute. This attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

For all deadlines if a status is not reached within a certain time then an escalation action, specified using element <escalation>, can be triggered. The <escalation> element is defined in the section below. When the task reaches a final state (Completed, Failed, Error, Exited, Obsolete) all deadlines are deleted.

Escalations are triggered if

1. The associated point in time is reached, or duration has elapsed, and

2. The associated condition (if any) evaluates to true

Escalations use notifications to inform people about the status of the task. Optionally, a task might be reassigned to some other person or group as part of the escalation. Notifications are explained in more detail in section 6 “Notifications”. For an escalation, a WS-HumanTask Definition MUST specify exactly one escalation action.

When defining escalations, a notification can be either referred to, or defined inline.

· A notification defined in the <humanInteractions> root element or imported from a different namespace can be referenced by specifying its QName in the reference attribute of a <localNotification> element. When referring to a notification, the priority and the people assignments of the original notification definition MAY be overridden using the elements <priority> and <peopleAssignments> contained in the <localNotification> element.

· An inlined notification is defined by a <notification> element.

Notifications used in escalations can use the same type of input data as the surrounding task or sub task, or different type of data. If the same type of data is used then the input message of the task or sub task is passed to the notification implicitly. If not, then the <toPart> elements are used to assign appropriate data to the notification, i.e. to explicitly create a multi-part WSDL message from the data. The part attribute refers to a part of the WSDL message. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

A WS-HumanTask Definition MUST specify a <toPart> element for every part in the WSDL message definition because parts not explicitly represented by <toPart> elements would result in uninitialized parts in the target WSDL message. The order in which parts are specified is not relevant. If multiple <toPart> elements are present, a WS-HumanTask Processor MUST execute them in an “all or nothing” manner. If any of the <toPart>s fails, the escalation action will not be performed and the execution of the task is not affected.

Reassignments are used to replace the potential owners of a task or sub task when an escalation is triggered. The <reassignment> element is used to specify reassignment. If present then a WS-HumanTask Definition MUST specify potential owners. A reassignment triggered by a sub task escalation MUST apply to the sub task only. A reassignment MAY comprise of a complex people assignment using Routing Patterns.
In the case where several reassignment escalations are triggered, the first reassignment (lexical order) MUST be considered for execution by the WS-HumanTask Processor. The task is set to state Ready after reassignment. Reassignments and notifications are performed in lexical order.

[image: image1.wmf]Esc

-

1

Esc

-

n

…

Esc

-

a

Esc

-

z

…

Esc

-

a

Esc

-

z

…

…

Start

Deadline 1

Start

Deadline 2

Completion

Deadline

T1

T2

T3

T4

Con

-

1

Con

-

n

Con

-

a

Con

-

z

Con

-

a

Con

-

z

A task or sub task MAY have multiple start deadlines and completion deadlines associated with it. Each such deadline encompasses escalation actions each of which MAY send notifications to certain people. The corresponding set of people MAY overlap.

As an example, the figure depicts a task that has been created at time T1. Its two start deadlines would be missed at time T2 and T3, respectively. The associated escalations whose conditions evaluate to “true” are triggered. Both, the escalations Esc-1 to Esc-n as well as escalations Esc-a to Esc-z can involve an overlapping set of people. The completion deadline would be missed at time T4.

Syntax:

<htd:deadlines>
 <htd:startDeadline>*
 ...
 <htd:escalation name="NCName">*
 <htd:condition expressionLanguage="anyURI"?>?
 boolean-expression
 </htd:condition>
 <htd:toParts>?
 <htd:toPart part="NCName"
 expressionLanguage="anyURI"?>+
 expression
 </htd:toPart>
 </htd:toParts>
 <!-- notification specified by reference -->
 <htd:localNotification reference="QName">?
 <htd:priority expressionLanguage="anyURI"?>?
 integer-expression
 </htd:priority>
 <htd:peopleAssignments>?
 <htd:recipients>
 ...
 </htd:recipients>
 </htd:peopleAssignments>
 </htd:localNotification>
 <!-- notification specified inline -->
 <htd:notification name="NCName">?
 ...
 </htd:notification>
 <htd:reassignment>?
 <htd:potentialOwners>
 ...
 </htd:potentialOwners>
 </htd:reassignment>
 </htd:escalation>

 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
</htd:deadlines>
Example:

The following example shows the specification of a start deadline with escalations. At runtime, the following picture depicts the result of what is specified in the example:

[image: image2.wmf]Escalation:

“

reminder

”

Escalation:

“

highPrio

”

Start Deadline

T1

T2

prio

<= 2

3 Days

The human task is created at T1. If it has not been started, i.e., no person is working on it until T2, then the escalation “reminder” is triggered that notifies the potential owners of the task that work is waiting for them. In case the task has high priority then at the same time the regional manager is informed. If the task amount is greater than or equal 10000 the task is reassigned to Alan.

In case that task has been started before T2 was reached, then the start deadline is deactivated, no escalation occurs.

<htd:startDeadline>
 <htd:documentation xml:lang="en-US">
 If not started within 3 days, - escalation notifications are sent
 if the claimed amount is less than 10000 - to the task's potential
 owners to remind them or their todo - to the regional manager, if
 this approval is of high priority (0,1, or 2) - the task is
 reassigned to Alan if the claimed amount is greater than or equal
 10000
 </htd:documentation>
 <htd:for>P3D</htd:for>
 <htd:escalation name="reminder">
 <htd:condition>
 <![CDATA[
 htd:getInput("ClaimApprovalRequest")/amount < 10000
]]>
 </htd:condition>
 <htd:toParts>
 <htd:toPart name="firstname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /firstname
 </htd:toPart>
 <htd:toPart name="lastname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim") /lastname
 </htd:toPart>
 </htd:toParts>
 <htd:localNotification reference="tns:ClaimApprovalReminder">
 <htd:documentation xml:lang="en-US">
 Reuse the predefined notification "ClaimApprovalReminder".
 Overwrite the recipients with the task's potential owners.
 </htd:documentation>
 <htd:peopleAssignments>
 <htd:recipients>
 <htd:from>htd:getPotentialOwners("ApproveClaim")</htd:from>
 </htd:recipients>
 </htd:peopleAssignments>
 </htd:localNotification>
 </htd:escalation>
 <htd:escalation name="highPrio">
 <htd:condition>
 <![CDATA[
 (htd:getInput("ClaimApprovalRequest")/amount < 10000
 && htd:getInput("ClaimApprovalRequest")/prio <= 2)
]]>
 </htd:condition>
 <!-- task input implicitly passed to the notification -->
 <htd:notification name="ClaimApprovalOverdue">
 <htd:documentation xml:lang="en-US">
 An inline defined notification using the approval data as its
 input.
 </htd:documentation>
 <htd:interface portType="tns:ClaimsHandlingPT"
 operation="escalate" />
 <htd:peopleAssignments>
 <htd:recipients>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:recipients>
 </htd:peopleAssignments>
 <htd:presentationElements>
 <htd:name xml:lang="en-US">Claim approval overdue</htd:name>
 <htd:name xml:lang="de-DE">
 Überfällige Schadensforderungsgenehmigung
 </htd:name>
 </htd:presentationElements>
 </htd:notification>
 </htd:escalation>
 <htd:escalation name="highAmountReassign">
 <htd:condition>
 <![CDATA[
 htd:getInput("ClaimApprovalRequest")/amount >= 10000
]]>
 </htd:condition>
 <htd:reassignment>
 <htd:documentation>
 Reassign task to Alan if amount is greater than or equal
 10000.
 </htd:documentation>
 <htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <htt:organizationalEntity>
 <htt:users>
 <htt:user>Alan</htt:user>
 </htt:users>
 </htt:organizationalEntity>
 </htd:literal>
 </htd:from>
 </htd:potentialOwners>
 </htd:reassignment>
 </htd:escalation>
</htd:startDeadline>

ws-humantask-spec-cd-05-rev2
18 July 2009

Copyright © OASIS® 2009. All Rights Reserved.
Page 1 of 7
PAGE
ws-humantask-spec-cd-05-rev2
18 July 2009

Copyright © OASIS® 2009. All Rights Reserved.
Page 7 of 7

