1 Human Tasks

The <task> element is used to specify human tasks. The section below introduces the syntax for the element, and individual properties are explained in subsequent sections.

1.1 Overall Syntax

Definition of human tasks:

<htd:task name="NCName" actualOwnerRequired="yes|no"?>
 <htd:interface portType="QName" operation="NCName"
 responsePortType="QName"? responseOperation="NCName"? />
 <htd:priority expressionLanguage="anyURI"? >?
 integer-expression
 </htd:priority>
 <htd:peopleAssignments>?
 ...

 </htd:peopleAssignments>
 <htd:completionBehavior>?
 ...

 </htd:completionBehavior>
 <htd:delegation
 potentialDelegatees="anybody|nobody|potentialOwners|other" />?
 <htd:from>?
 ...
 </htd:from>
 </htd:delegation>
 <htd:presentationElements>?
 ...

 </htd:presentationElements>

 <htd:possibleOutcomes>?
 ...

 </htd:possibleOutcomes>
 <htd:outcome part="NCName" queryLanguage="anyURI">?
 queryContent
 </htd:outcome>
 <htd:searchBy expressionLanguage="anyURI"? >?
 expression
 </htd:searchBy>
 <htd:renderings>?
 <htd:rendering type="QName">+
 ...
 </htd:rendering>
 </htd:renderings>
 <htd:deadlines>?
 <htd:startDeadline>*
 ...
 </htd:startDeadline>
 <htd:completionDeadline>*
 ...
 </htd:completionDeadline>
 </htd:deadlines>
 <htd:composition>?
 ...

 </htd:composition>

</htd:task>
1.2 Properties

The following attributes and elements are defined for tasks:

· name: This attribute is used to specify the name of the task. The name combined with the target namespace MUST uniquely identify a task element enclosed in the task definition. This attribute is mandatory. It is not used for task rendering.

· actualOwnerRequired: This optional attribute specifies if an actual owner is required for the task. Setting the value to "no" is used for composite tasks where subtasks should be activated automatically, without user interaction. For routing tasks his attribute MUST be set to "no". For tasks that have been defined to not have subtasks, an actual owner is always required either by defining potential owners or by using nomination. In this case the attribute value MUST be "yes". The default value for the attribute is "yes".

· interface: This element is used to specify the operation used to invoke the task. The operation is specified using WSDL, that is, a WSDL port type and WSDL operation are defined. The element and its portType and operation attributes MUST be present for normal tasks. The schema only marks it optional so that Lean Tasks can make it prohibited. The interface is specified in one of the following forms:

· The WSDL operation is a one-way operation and the task asynchronously returns output data. In this case, a WS-HumanTask Definition MUST specify a callback one-way operation, using the responsePortType and responseOperation attributes. This callback operation is invoked when the task has finished. The Web service endpoint address of the callback operation is provided at runtime when the task’s one-way operation is invoked (for details, see section Fehler! Verweisquelle konnte nicht gefunden werden. “Fehler! Verweisquelle konnte nicht gefunden werden.”).

· The WSDL operation is a request-response operation. In this case, the responsePortType and responseOperation attributes MUST NOT be specified.

· priority: This element is used to specify the priority of the task. It is an optional element which value is an integer expression. If present, the WS-HumanTask Definition MUST specify a value between 0 and 10, where 0 is the highest priority and 10 is the lowest. If not present, the priority of the task is considered as 5. The result of the expression evaluation is of type htt:tPriority. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

· peopleAssignments: This element is used to specify people assigned to different generic human roles, i.e. potential owners, and business administrator. The element is mandatory. See section Fehler! Verweisquelle konnte nicht gefunden werden. for more details on people assignments.
· completionBehavior: This element is used to specify completion conditions of the task. It is optional. See section 1.5 for more details on completion behavior.
· delegation: This element is used to specify constraints concerning delegation of the task. Attribute potentialDelegatees defines to whom the task can be delegated. One of the following values MUST be specified:

· anybody: It is allowed to delegate the task to anybody

· potentialOwners: It is allowed to delegate the task to potential owners previously selected

· other: It is allowed to delegate the task to other people, e.g. authorized owners. The element <from> is used to determine the people to whom the task can be delegated.

· nobody: It is not allowed to delegate the task.

The delegation element is optional. If this element is not present the task is allowed to be delegated to anybody.

· presentationElements: This element is used to specify different information used to display the task in a task list, such as name, subject and description. See section Fehler! Verweisquelle konnte nicht gefunden werden. for more details on presentation elements. The element is mandatory.

· outcome: This optional element identifies the field (of an xsd simple type) in the output message which reflects the business result of the task. A conversion takes place to yield an outcome of type xsd:string. The optional attribute queryLanguage specifies the language used for selection. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

· searchBy: This optional element is used to search for task instances based on a custom search criterion. The result of the expression evaluation is of type xsd:string. The expressionLanguage attribute specifies the language used in the expression. The attribute is optional. If not specified, the default language as inherited from the closest enclosing element that specifies the attribute is used.

· rendering: This element is used to specify the rendering method. It is optional. If not present, task rendering is implementation dependent. See section ‎1.3 for more details on rendering tasks.

· deadlines: This element specifies different deadlines. It is optional. See section ‎1.6 for more details on timeouts and escalations.

· composition: This element is used to specify subtasks of a composite task. It is optional. See section ‎1.4 for more details on composite tasks.

1.3 Task Possible Outcomes

The <possibleOutcomes> element provides a way for a task to define which values are usable for the outcome value of a task. Having a separate definition allows a tool for building tasks to provide support that understands exactly which outcomes are possible for a particular task.

<htd:possibleOutcomes>

 <htd:possibleOutcome name="NCName">+
 <htd:outcomeName xml:lang="xsd:language"?>+
 Language specific display

 </htd:outcomeName>

 </htd:possibleOutcome>

</htd:possibleOutcomes>

Each <possibleOutcome> element represents one possible outcome. For the typical example of an expense report approval, the two outcomes might be ‘Approve’ and ‘Reject’. In addition to the other data being collected by the rendering in the WS-HumanTask Client, this represents the most important information about how to proceed in a process that contains multiple tasks. Therefore, a rendering and client using HTML might choose to show this as a dropdown list, list box with single selection, a set of submit buttons, or a radio button group.

For each <possibleOutcome>, it is possible to have an <outcomeName> element to specify a per-language display name. It uses xml:lang, a standard XML attribute, to define the language of the enclosed information. This attribute uses tags according to RFC 1766 (see [RFC1766]). There could be zero or more <outcomeName> elements. A <possibleOutcome> MUST NOT specify multiple <outcomeName> elements having the same value for attribute xml:lang.

1.4 Elements for Composite Tasks

A composite task is defined as a <htd:task> element with the <htd:composition> element enclosed in it. The following are attributes and elements defined for the composition element.

· type: This optional attribute specifies the order in which enclosed sub-tasks are executed. If the value is set to “sequential” the sub-tasks MUST be executed in lexical order. Otherwise they MUST be executed in parallel. The default value for this attribute is “sequential”.

· instantiationPattern: This optional attribute specifies the way how sub-tasks are instantiated. If the value is set to “manual” the task client triggers instantiation of enclosed sub-tasks. Otherwise, they are automatically instantiated at the time the composite task itself turns into status “inProgress”. The default value for this attribute is “manual”.
· Subtask: This element specifies a task that will be executed as part of the composite task execution. The composition element MUST enclose at least one subtask element. The subtask element has the following attributes and elements. The name attribute specifies the name of the sub-task. The name MUST be unique among the names of all sub-tasks within the composition element. The htd:task element is used to define the task inline. The htd:localTask element is used to reference a task that will be executed as a sub-task. The htd:localTask element MAY define values for standard overriding attributes: priority and people assignments. The toParts element is used to assign values to input message of the sub-task. The enclosed XPath expression MAY refer to the input message of the composite task or the output message of other sub-task enclosed in the same composition element. The part attribute refers to a part of the WSDL message type of the message used in the XPath. The expressionLanguage attribute specifies the expression language used in the enclosing elements. The default value for this attribute is urn:ws-ht:sublang:xpath1.0 which represents the usage of XPath 1.0 within human interactions definition. A WS-HumanTask Definition that uses expressions MAY override the default expression language for individual expressions.

When composition is defined on a task, the composition MUST be applied for each of the potential owners defined in the task's people assignment.

Syntax:

<htd:task>

 ...

 <htd:composition type="sequential|parallel"
 instantiationPattern="manual|automatic">

 <htd:subtask name="NCName">+

(<htd:task/> |

 <htd:localTask reference="QName">
 standard-overriding-elements
 …

 </htd:localTask>)

 <htd:toParts>?
 <htd:toPart part="NCName" expressionLanguage="anyURI">+
 XPath expression
 </htd:toPart>

 </htd:toParts>

 </htd:subtask>

 </htd:composition>

 ...
</htd:task>
Standard-overriding-elements is used in the syntax above as a shortened form of the following list of elements:
<htd:priority expressionLanguage="anyURI"? >
 integer-expression
</htd:priority>
<htd:peopleAssignments>?
 <htd:genericHumanRole>
 <htd:from>...</htd:from>
 </htd:genericHumanRole>
</htd:peopleAssignments>
1.4.1 Routing Patterns

Tasks can be assigned to people in sequence and parallel. Elements htd:sequence and htd:parallel elements in htd:potentialOwners are used to represent such assignments.

1.4.1.1 Parallel Pattern

A task can be assigned to people in parallel using the htd:parallel element. . The htd:parallel element is defined as follows:

· The htd:from element defines the parallel potential owners. This can evaluate to multiple users/groups.

· The attribute ‘type’ in htd:parallel identifies how parallel assignments are created for the multiple users/groups returned from htd:from. If type is ‘all’ then an assignment MUST be created for each user returned by htd:from. If type is ‘single’ then an assignment MUST be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.

· The htd:parallel and htd:sequence elements define nested routing patterns within the parallel routing pattern

· The htd:completionBehavior defines when the routing pattern completes. The completion criteria also define how the result is constructed for the parent task when a parallel routing pattern is complete.

Each parallel assignment MUST result in a separate sub task. Sub tasks created for each parallel assignment MSUT identify the parent task using the htd:parentTaskId.

Syntax:
<htd:potentialOwners>
 <htd:parallel type="all|single"?>

 <htd:completionBehavior>
 <htd:from>...</htd:from>*
 pattern*
 </htd:parallel>

</htd:potentialOwners>
Example:
<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:parallel type=”all: >

 <htd:from>

 htd:getInput("ClaimApprovalRequest")/claimAgent

 </htd:from>

 </htd:parallel>
 </htd:potentialOwners>
</htd:peopleAssignments/>
1.4.1.2 Sequential Pattern

A task can be assigned to people in sequence using the htd:sequence element. The htd:sequence is defined as follows:

· The htd:from element can evaluate to multiple users/groups.

· The attribute ‘type’ in htd:sequence identifies how sequential assignments are created for the multiple users/groups returned from htd:from. If type is ‘all’ an assignment MUST be created for each user returned by htd:from. If type is ‘single’, an assignment MUST be created for each htd:from clause (this assignment could have with n potential owners). The default value of type is ‘all’.

· The htd:parallel and htd:sequence elements define nested routing patterns within the sequential routing pattern.

· The htd:completionBehavior defines when the routing pattern completes. The completion criteria also define how the result is constructed for the parent task when a sequential routing pattern is complete.

Sequential routing patterns MUST use a separate sub task for each step in a sequential pattern. Sub tasks created for each sequential assignment MUST identify the parent task using the htd:parentTaskId.

Syntax:
<htd:potentialOwners>
 <htd:sequence type="all|single"?>
 <htd:completionBehavior>?
 <htd:from>...</htd:from>*
 pattern*
 </htd:sequence>
</htd:potentialOwners>
Example:
<htd:peopleAssignments>
 <htd:potentialOwners>
 <htd:sequence type="all">
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 <htd:from logicalPeopleGroup="regionalManager">
 <htd:argument name="region">
 htd:getInput("ClaimApprovalRequest")/region
 </htd:argument>
 </htd:from>
 </htd:sequence>

 </htd:potentialOwners>
</htd:peopleAssignments/>
1.5 Completion Behavior

The completion behavior of a task, routing pattern or composite task can be influenced by a specification of completion conditions and the result construction for tasks, routing patterns, or composite tasks. For this purpose, the task, routing pattern or composite task contains a htd:completionBehavior element.

Multiple completion conditions can be specified as nested htd:completion elements. They are evaluated in lexical order. When one of the specified completion conditions is met then the task is considered to be completed; in case of routing patterns and composite tasks all remaining running sub tasks MUST be skipped (i.e., set to the "Obsolete" state) and the associated result construction MUST be applied.

In case of composite tasks and routing patterns the following applies: At most one default completion MUST be specified with no completion condition in order to specify the result construction after regular completion of all sub tasks.
If no result construction is applied, e.g. because no “default” result construction is specified and none of the specified completion conditions is met, then the parent task’s output is not created, i.e., it remains uninitialized.
Moreover, note that a completion condition can be specified without referencing sub task output data, which allows the parent task to be considered completed even without creating any sub tasks. When output data from sub tasks is referenced by completion conditions or result constructions, only output data of already finished sub tasks MUST be considered.
If none of the specified completion conditions is met then the state of the task or the parent task remains unchanged.
<htd:completionBehavior completionAction=”manual|automatic”?>?
 <htd:completion name="NCName">*
 <htd:condition ... >

 ...

 </htd:condition>

 <htd:result>?
 ...

 <htd:result>

 </htd:completion>

 <htd:defaultCompletion>?
 <htd:result>

 ...

 <htd:result>

 </htd:defaultCompletion>

</htd:completionBehavior>

The completionBehavior element has optional attribute completionAction. This optional attribute specifies how the task, routing pattern, or composite task is completed. If the value is set to "manual" the task or parent task MUST be completed explicitly by the actual owner as soon as the completion conditions evaluate to true. If the value is set to "automatic" the task or parent task MUST be set to complete as soon as the completion conditions evaluate to true. For routing patterns, the completionAction attribute MUST have value "automatic". The default value for this attribute is “automatic”.
1.5.1 Completion Conditions

A completion condition defines when a task or a set of sub tasks associated with the parent task is considered completed. It is specified Boolean expression which can refer to input data of the task, the parent task or its sub tasks, output data produced by already finished sub tasks, or other data obtained from WS-HumanTask API calls (e.g. the number of sub tasks), or functions that test that some designated amount of time has passed.

The completion condition MUST be defined using an htd:condition element.

<htd:condition expressionLanguage="anyURI"?>

 boolean expression

</htd:condition>

Within the Boolean expression of a completion condition, aggregation functions can be used to evaluate output data produced by the already finished sub tasks of the parent task.

If an error (e.g. division by zero) occurs during the condition evaluation then the condition MUST be considered to have evaluated to “false”.

The time functions that are available are defined as follows:

· boolean htd:waitFor(string)
· The parameter is an XPath expression evaluating to a string conforming to the definition of the XML Schema type duration
· The return value is true after the specified duration has elapsed, otherwise false
· boolean htd:waitUntil(string)
· The parameter is an XPath expression evaluating to a string conforming to the definition of the XML Schema type dateTime
The return value is true after the specified absolute time has passed, otherwise false
Completion conditions of a task MUST use only time functions.
1.5.1.1 Evaluating the Completion Condition

The time functions in the completion condition are be evaluated with respect to the beginning of execution of the task or parent task on which the completion is defined. To achieve this, the evaluation of the htd:waitFor and htd:waitUntil calls within the condition are treated differently from the rest of the expression. When the containing task or parent task is created, the actual parameter expression for any htd:waitFor and htd:waitUntil calls MUST be evaluated and the completion condition should be rewritten to replace these calls with only htd:waitUntil calls with constant parameters. The durations calculated for any htd:waitFor calls MUST be converted into absolute times and rewritten as htd:waitUntil calls. The result of these replacements is called the preprocessed completion condition.

For parent tasks, the preprocessed completion condition MUST be evaluated at the following times:
· Before starting the first subtask (it may be complete before it starts)

· Whenever a subtask completes

· Whenever a duration specified in a htd:waitFor call has elapsed

· Whenever an absolute time specified in a htd:waitUntil call is passed.

For tasks, the preprocessed completion condition MUST be evaluated at the following times:

· Before starting the task (it may be complete before it starts)

· Whenever a duration specified in a htd:waitFor call has elapsed

· Whenever an absolute time specified in a htd:waitUntil call is passed.

Example:

The first completion condition may be met even without starting sub tasks. When both parts of the second completion condition are met, that is, 7 days have expired and more than half of the finished sub tasks have an outcome of “Rejected”, then the parallel routing pattern is considered completed.

<htd:parallel>

 ...

 <htd:completionBehavior>

 <htd:completion>

 <htd:condition>

 htd:getInput("ClaimApprovalRequest")/amount < 1000

 </htd:condition>

 <htd:result> ... </htd:result>
 </htd:completion>

 <htd:completion>

 <htd:condition>

 (htd:getCountOfSubtasksWithOutcome("Rejected") /

 htd:getCountOfSubtasks() > 0.5)

 and htd:waitFor("P7D")

 </htd:condition>

 <htd:result> ... </htd:result>
 </htd:completion>

 </htd:completionBehavior>

 ...

</htd:parallel>

1.5.2 Result Construction from Parallel Subtasks

ws-humantask-spec-cd-05-rev6
8 August 2009

Copyright © OASIS® 2009. All Rights Reserved.
Page 1 of 9
PAGE
ws-humantask-spec-cd-05-rev6
2 September 2009

Copyright © OASIS® 2009. All Rights Reserved.
Page 7 of 9

