DRAFT for BTP model section

BTP Model draft

Status

Draft for text to replace the “overview” section in the BTP specification.

Text like this is drafting note

Somet of the diagrams haven’t been drawn yet. Diagrams assumed are flagged [like this]
The convention about putting the first occurrence of a glossary phrase in bold will be followed here (even though the glossary hasn’t been updated yet). This may not yet be entirely consistent.

Structure of this specification

This specification document includes, in Part 1, an explanation and model description that introduces the concepts of BTP and, in Part 2, a fully normative specification of the protocol.

The use and definition of terms in the model can be regarded as authoritative but should not be taken to restrict implementations or uses of BTP. In case of (unintended) disagreement between the parts, Part 2 takes precedence over Part 1.

Part 1 contains

· Executive Summary

· Document Information

· Model

Part 2 contains the following sections:

· Actors, roles and relationships: defines the model entities involved in BTP, their relationships to each other and the correspondence of these to real implementation constructs; this section also lists which messages are sent and received for each role.

· Abstract message set: defines a set of abstract messages that are exchanged between software agents performing the various roles to create, progress and complete the relationships between those roles. For each abstract message the parameters are defined and the associated “contract” is stated – the contract defines the meaning of the message in terms of what the receiver can infer of the sender’s state and the intended effect on the receiver. This section does not itself specify a particular encoding or representation of the messages nor a single mechanism for communicating the messages

· State tables: specifies the state transitions for particular roles, when it is permitted to send particular messages and make internal decisions that affect the externally visible state

· XML representation: defines an XML representation of the message set. Other representations of the message set, or parts of it are possible – these may or may not be suitable for interoperation between heterogeneous implementations.

· Carrier protocol bindings: defines a “carrier binding proforma” that details the information required to specify the mapping to a particular carrier protocol such that independent implementations can interoperate. The proforma requires an identification for the binding, the nature of the addressing information used with the binding, how the messages are represented and encoded and how they are carried (e.g. which carrier protocol messages or fields they are in) and may also include requirements. Using the proforma, this section fully specifies bindings to SOAP 1.1, using the XML representation of the abstract message set.

· Conformance definitions: defines combinations of features that an implementation can declare it supports

Part 3 contains a glossary that provides succinct definitions of terms used in the rest of the document.

Model
This section introduces the concepts of BTP. Its use and definition of terms can be regarded as authoritative but should not be taken to restrict implementations or uses of BTP. Part 2 of the specification is fully normative and in case of disagreement takes precedence over statements or examples in this section.

BTP is designed to make minimal assumptions about the implementation structure and the properties of the carrier protocols. This allows BTP to be bound to more than one carrier protocol. BTP implementations built on very different patterns should be able to interoperate if they are bound to the same carrier protocol. This flexibility requires that much of the text is abstract and may be difficult to visualise in the absence of a particular implementation pattern or carrier protocol. To aid understanding some possible implementation examples are presented in the following text.

Example Core

An advanced manufacturing company (Manufacturer A) orders all the parts and services it needs on-line. It has existing relationships with parts suppliers and providers of services such as shipping and insurance. All of the communications between these organizations is via XML messages. Below we describe some of the interactions of these business transactions.

1. Manufacturer A’s production scheduling system sends an Order message to a Supplier.
2. The Supplier’s order processing system sends back an order confirmation with the details of the order.

3. Manufacturer A orders delivery from a Shipper for the ordered parts.

4. The Shipper evaluates the request and based on its truck schedule it sends back a positive or negative reply.

5. Some shipments need to be insured based on their value, where they are shipped from, and method of transportation. Manufacturer A sends an Order message to an Insurer when this is necessary.

6. The Insurer responds with a bid or a no-bid response.

Problems have arisen with some of these interactions.

· Manufacturer A had ordered parts from a supplier and contacted shipper M about delivering the goods. Shipper M was busy and agreed to the contract but only for a scheduled delivery the day after the parts were needed. By the time this was addressed it was too late to schedule alternate shipping.

· There were communications problems with supplier Z that resulted in an order not being confirmed. The shipper arrived to pick up the order and supplier Z knew nothing about it.

· Goods have been shipped without insurance when company policy dictated that insurance was required.

These problems occur because of the unreliable nature of the Internet and the lack of visibility a company has into the workings and state of an outside organization. By using BTP in support of this supply application, these problems can be ameliorated.

BTP is a protocol, that is, a set of specific messages that get exchanged between computer systems supporting an application, with rules about the meaning and use of the messages. The computer systems will also exchange application-specific messages. Thus, within the example, the Manufacturer’s system and the Supplier’s system (say), will exchange messages detailing what the goods are, how many, what price and will also exchange BTP messages. The parts of the application in both systems that handle these different sets of messages can be distinguished, as in Error! Reference source not found.. In each BTP-using party there is an application element and a BTP actor. The BTP actors which send and receive the BTP messages perform specific roles in the protocol. These BTP actors assist the application in getting the work of the application done.

[image: image1.png]N
M anufac{urer

applice tion

ele ment

S“I"F/fc.

2pp licdian

TP

Licaty
oorlioti
eloment

Business transactions

A Business Transaction can be defined as a consistent change in the state of a business relationship
 between two or more parties. These changes are initiated by a request from one party to another and then confirmed by a response back to the initiator. For some types of interaction this exchange is adequate. As organizations move more of their business on-line, depend more on the outcome of these requests, and establish dependencies between requests a higher level of guarantee and coordination becomes necessary. This is what BTP provides.

The Business Transaction Protocol (BTP) helps coordinate the relationship changes to ensure a consistent understanding by the involved parties.
BTP assumes that for a given business transaction, state changes occur, or are desired, in computer systems controlled by some set of parties, and that these changes are related in some business-defined manner. BTP further allows that the parties involved in a business transaction will be separate organisations, which limits the knowledge each has of the others internal state to what is explicitly made visible. The state changes that BTP is concerned with are only those affecting the immediate business relationship. Although these externally visible changes will typically correspond to internal state changes of the parties, use of BTP does not itself imply any constraints or requirements on the internal state. BTP coordinates a service request and the agreement by a service provider to satisfy the request. The actual ability of the service provider to satisfy the request must be established by outside means for example, existing business relationship, past record, or referral.

External Effects

BTP coordinates the state changes caused by the exchange of application messages. These state changes are part of the contract between BTP-using parties. In the manufacturing example, an interaction between the manufacturer and the supplier might involve the supplier receiving the order (an application message), checking to ensure that it had enough product on hand, reserving the product in the manufacturer’s name and replying. When the manufacturer agrees to the purchase (assuming the shipping and insurance are also reserved), BTP messages are sent to confirm the purchase. In this case, the supplier is offering a BTP-enabled service – the application element and its supporting BTP actor together offer this service.

In general, to be able to satisfy such contracts a BTP-enabled service must support in some manner provisional or tentative state changes (the transaction’s provisional effect) and completion either through confirmation (final effect) or cancellation (counter-effect). The meaning of provisional, final, and counter-effect are specific to the application and to the implementation of the application. In the example, the reservation of the order is the provisional effect, the completion of the purchase is the final effect.

Some of the implementation approaches are shown in Table 1. From the perspective of BTP and the initiator application, all these are considered equivalent. Outside of BTP the underlying business relationship (or contract) between the parties can constrain the way in which the effects are achieved.

Table 1 Some alternatives for provisional, final and counter effects

	provisional effect
	final effect
	counter effect
	Comment

	Store intended changes without performing them
	Perform the changes
	Delete the stored changes, unperformed
	Provisional effect may include checking for validity

	Perform the changes, making them visible; store information to undo the changes
	Delete undo information
	Perform undo action
	One form of compensation approach

	Store original state, prevent outside access, perform changes
	Allow access
	Restore original state; allow access
	a typical database approach

These alternatives are not the only ones – they can be combined or varied. The visible state of the application information prior to confirmation or cancellation may be different from both the original state and the final state.

Especially in the compensation approach, if the changes are cancelled, the counter-effect may be a precise inversion or removal of provisional changes, or it may be the processing of operations that in some way compensate for, make good, alleviate or supplement their effect.

Two-phase outcome

The BTP protocol coordinates the transitions into and out of the event states described above by sending messages between the transaction parties. This involves a two-phase exchange. Generally there is a request to the application element within a BTP-enabled service asking for the performance of the provisional effect; then a second message to, to the BTP actor, asking for the performance of the final or the counter effect.

In general, the systems involved having first communicated the application messages, then each system that has to make changes in its own state:

· determines whether it is able achieve its provisional effect and then ensure it will be able either to cancel (counter-effect) its operation or to confirm (give final effect to) its operation, whichever is subsequently instructed, and

· reports its ability to confirm-or-cancel (its preparedness) to a central coordinating entity.

And, after receiving these reports, the coordinating entity:

· determines which of the systems should be instructed to confirm and which should be instructed to cancel

· informs each system whether it should confirm or cancel (the “outcome”).

When there is more than one participant such a two-phase exchange mediated by a coordinator is required to achieve a consistent outcome for a set of operations. A BTP transaction encompases the entire set of participants that the initiator of the transaction has asked to join
. The two-phases of the BTP protocol is used to ensure that either the entire attempted transaction is abandoned or a consistent set of participants is confirmed.

Actors and roles

BTP centres on the bilateral relationship between the computer systems of the coordinating entity and those of one of the parties in the overall business transaction. For each bilateral relationship in a business transaction, a software agent within the coordinating entity’s systems plays the BTP role of Superior and a software agent within the systems of the party play the BTP role of Inferior. The concept “role” refers strictly to the participation in a particular relationship in a particular business transaction. The software agent performing a role is termed an Actor. An Actor is distinguished from other Actors by being distinguishably addressable. The same Actor may perform multiple roles in the same business transaction (including the case where a Superior is also an Inferior), and may also perform the same or different roles in multiple business transactions, either concurrently or consecutively.

Superior:Inferior relationship

A basic case of a single Superior:Inferior relationship, including the association with application elements, is illustrated in Figure 1. In many cases
, the application element associated with the superior will directly initiate the application exchanges –as application client to a server, for example – but this is not invariably the case. An Inferior or its corresponding service application can enlist the aid of other participants. These secondary participants can then enroll with the Superior. In this way it is possible that the first direct communication between the application elements is from an inferior to the superior.In all cases the topmost application element in a tree or subtree will be aware of the business transaction first. How the identity of the transaction and the address of the BTP Superior are communicated to the secondary application element is not part of BTP.

[image: image2.wmf]

Initiating

application

BTP

Superior

Service

application

BTP

Inferior

BTP messages

Application

messages

Figure 1 Basic Superior:Inferior relationship for BTP

An Inferior is associated with some set of application activities that create effects within the party, for a given business transaction. Commonly, though not invariably, this application activity within the party will be a result of some operation invocations from elsewhere (a “first
application element”), associated with the Superior to a “second application element” associated with the Inferior. The second application element determines what activities the Inferior is responsible for, and then the Inferior is responsible for reporting to the Superior whether the associated operations’ provisional effect can be confirmed/cancelled – this is called “becoming prepared”, because the Inferior has to remain prepared to receive whichever order eventually arrives (subject to various exceptions and exclusions, detailed below).

Business transaction trees

There are many patterns in which the service provider participants involved in a business transaction may be arranged in respect of the two-phase exchange and the determination of which are eventually confirmed. The simplest is shown in Figure 2involving only two parties – one (B)
passing the decision of confirm-or-cancel to the other (A). This basic bilateral relationship, in which one side makes itself inferior to the other, is the building block used in all business transaction patterns. In this simplest case, the “coordination” by the superior, A, is just that A can be sure whether the operations at the inferior, B were eventually cancelled or confirmed.

[image: image3.wmf]

Figure 2 Simple two-party business transaction

In the next simplest case, as in figure Figure 3, a bilateral, Superior:Inferior relationship appears twice, with two Inferiors, D and E, both making themselves inferior to a single Superior, C. From the perspective of either D or E, they are in the same position as B in the previous case –they are unaware of and unaffected (directly) by each other. It is only within C that there is any linkage between the confirm-or-cancel outcomes that apply to D and E.

[image: image4.png]

Figure 3 Business transaction with two inferiors

The same Superior:Inferior relationship is used in business transaction trees that are both “wider” – with more Inferiors reporting their preparedness to be confirm-or-canceled to a single Superior – and “deeper”. In a “deeper” tree, as in figure Figure 4, an entity (G) that is Superior to one or more Inferiors (H, J), is itself Inferior to another entity (F) – it is said to be interposed or is an Intermediate (either term can be used). In this case, G will collect the information on preparedness of its Inferiors before passing on its own report to its Superior, F, and awaiting the outcome as advised by F.

[image: image5.png]Ti

@%

Figure 4 Business transaction with an Intermediate (interpostion)

A business transaction tree, made up of these bilateral Superior:Inferior relationships can, in theory, be arbitrarily “wide” or “deep” – there are no fixed limits to how many Inferiors a single Superior can have, or how many levels of intermediates there are between the top-most Superior (that is Inferior to none) and the bottom-most leaf Inferior. The actual creation of the tree depends on the behaviour and requirements of the application. Given the (potentially) inter-organisational nature of business transactions, there may be no overall design or control of the structure of the tree.

Each Inferior has only one Superior. However, a single Superior may (and commonly does) have multiple relationships with Inferiors, and may have such relationships with multiple Inferiors within each party to the transaction, and with Inferiors within multiple parties.

Atoms and Cohesions

As described in the previous section, the Superior receives reports from its Inferiors as to whether they are prepared. It gathers these reports in order to ascertain which Inferiors should be cancelled and which confirmed - those that cannot prepare will have already cancelled themselves. This determined, directly or indirectly, by the application element responsible of the creation and control of the Superior, which determines the nature of the Superior. There are two dimensions of variation in the Superior: is it an Inferior to another Superior; does it treat its own Inferiors atomically or cohesively. The distinction between atomic and cohesive behaviour is whether the Superior will choose or allow some Inferiors to cancel while others confirm – this is not allowed for atomic behaviour but is for cohesive
.

The possible cases for a Superior, given the these two dimensions of variation, are:

a) the “first application element
” initiated the business transaction (causing the creation of the Superior), and instructed that all Inferiors of the Superior should confirm or all should cancel; the Superior is an Atom Coordinator
;

b) the “first application element” initiated the business transaction, but deferred the choice of which Inferiors should confirm until later, allowing it (the application element) to choose some subset to be confirmed, others to cancel; the Superior is a Cohesion Composer
;

c) the “first application element” was itself involved in an existing business transaction, and the Superior in this relationship is the Inferior in another one; this “first application element” instructed
that all Inferiors of this Superior should confirm, but only if confirmation is instructed from above or all should cancel; the Superior is an (atomic) Sub-coordinator;

d) the “first application element” was itself involved in an existing business transaction, and the Superior in this relationship is the Inferior in another one; this “first application element” deferred the choice of which Inferiors should confirm until later, allowing it (the application element) to choose some subset to be confirmed, but only if confirmation is instructed from above, others to cancel; the Superior is a (cohesive) Sub-composer.

In the atomic case
, the two-phase outcome exchange means a Superior acting as an atomic Coordinator or sub-coordinator will treat any Inferior which cannot prepare to cancel/confirm as having veto power, causing the Superior to instruct all its Inferiors to cancel. In the cohesion case
, with the Superior acting as a cohesive Composer or Sub-Composer, the controlling application element will determine the implications of an Inferior’s failure to be prepared to confirm-or-cancel; the application element may cancel some or all other Inferiors, do other application work, which may involve new Inferiors or may just accept the cancellation of that one Inferior and carry on.

For a cohesion, the set of Inferiors that eventually confirm is called the confirm-set. The term is also used to mean the set of Inferiors that have been chosen to confirm before the final decision is made – if the cohesion is eventually cancelled, then confirm-set cancels. (See section “Evolution of confirm-set”) . The confirm-set of an Atom is all of the Inferiors.

If the Superior is itself an Inferior, its own action of becoming prepared, and reporting this to its own Superior will depend on the receipt of prepared reports from its Inferiors. If it is atomic (i.e. is a sub-coordinator), it will only become prepared if all Inferiors reported preparedness to it; if it is cohesive (i.e. is a sub-composer), the controlling application element will determine whether the set of Inferiors that have reported as prepared is sufficient.

If the Superior is not an Inferior, the determination of when, if and, for a Cohesion, what it should confirm depends on the controlling application. This “top-most” Superior has a different relationship to the controlling application to that of an Inferior to its Superior: an Inferior reports that it is prepared to the Superior, which instructs it whether to cancel or to confirm; the top-most Superior is asked by the application element to attempt to confirm, but, dependent on the preparedness of its Inferiors, the top-most Superior makes the final decision. Consequently the top-most Superior is termed the Decider
; the application element that asks it to confirm is the Terminator
.

Participants, Sub-Coordinators and Sub-Composers

An Inferior may directly be responsible for applying the confirm-or-cancel decision to some application effects, or may in turn be a BTP Superior to which others will enrol. If it only handles application effects it is called a Participant, in the latter case it is called a Sub-coordinator or a Sub-composer, depending on whether it is atomic or cohesive
with respect to its own future Inferiors. (If an Inferior is both responsible for application effects, and is a BTP Superior, it is not considered a Participant, according to the strict definitions, though informally it may be referred to as such.) The Superior is unaware, via the BTP exchanges, whether the Inferior is a Participant, Sub-coordinator or Sub-composer. This specification does not define messages or interfaces for the creation of Participants or for the application element to tell the Participant what the application effects are or how they are to be confirmed or cancelled as necessary. (Although out-of-scope for this specification, one or more
APIs could be standardised.)

Business transaction creation

A business transaction is started at the initiative of an application element, which requests or causes the creation of a Coordinator or Composer, which is thus a Superior to which Inferiors can enrol. BTP provides abstract messages (BEGIN, BEGUN) to request this but the equivalent function can also be achieved using proprietary or internal means. If the BTP messages are used, the application element performs the role of Initiator and sends BEGIN to a Factory. The BEGIN message identifies whether a Coordinator (for an atom) or a Composer (for a cohesion) is desired. The Factory, after the creation of the new Coordinator or Composer, replies with related BEGUN and CONTEXT messages (“related” means they are sent together in a manner that has semantic significance; how this is represented is determined by the binding in use). Since the Coordinator’s or Composer’s creation is the establishment of new instances of BTP roles, it may involve only the assignment of a new identifier within an existing Actor (which might also be the Factory); alternatively a new Actor with a distinct address may be instantiated – these, and other alternatives, are implementation choices, and BTP ensures other Actors are unaffected by the choice made.

The BEGUN message provides the addressing and identification information needed for a Terminator to access the new Coordinator or Composer as Decider; the application element performing the Initiator role may itself act as Terminator, or may pass this information to some other application element.

Whether this interoperable BTP Initiator:Factory relationship or some other mechanism is used to initiate the business transaction, a CONTEXT is made available. This identifies the Coordinator or Composer as a Superior – containing both addressing information and the identification of the relevant state information. The CONTEXT is also marked as to whether or not this Superior will behave atomically with respect to its Inferiors (i.e. is it a Coordinator or Composer).

Business transaction propagation

The propagation of the business transaction from one party to another, to establish the Superior:Inferior relationships involves the transmission of this
 CONTEXT (or the equivalent information). This is commonly in association with, or related to, one or more application messages between the parties. In a typical case, an application message is sent from the application element that performed the Initiator role (the “first application” in Figure 1) to some other element (the “second application”), and the CONTEXT is sent with the application message in such a way that the application elements (which term may include their communications or middleware support in this case
) understand that work performed as a result of the application message is to be the subject of a confirm-or-cancel decision of the Superior. The receiving application element causes the creation of an Inferior (which, as for the Superior may involve just assignment on a new identifier, or instantiation of an new Actor) and ensures the new Inferior is enrolled with the Superior identified in the received CONTEXT, using an ENROL message sent to the Superior using the address in that CONTEXT.

Creation of Intermediates (Sub-Coordinators and Sub-Composers)

If the new Inferior is to be a Sub-coordinator or Sub-composer, this can be created using a non-standard mechanism or the Initiator:Factory relationship can be used again. The application element that wants to create the new Inferior performs the Initiator role and issues BEGIN to the Factory, but the CONTEXT for the original Superior is “related” to the BEGIN. The Factory is responsible for enrolling the new Sub-coordinator or Sub-composer as an Inferior of the Superior identified by the received CONTEXT. The reply from the Factory is a related BEGUN and CONTEXT – this being the CONTEXT for the new Sub-coordinator or Sub-composer as a Superior [add diagram]. The Sub-coordinator/Sub-composer is not a Decider, as its decision is subordinated to the outcome received from the Superior. For a Sub-coordinator, further control by the application is primarily a matter of relating the new CONTEXT to appropriate application activity. For a Sub-composer there is in addition a requirement for the application to determine which of the Inferiors of the Sub-composer must have reported they are prepared before the Sub-composer can report that it is itself prepared to its own Superior, and then which of these Inferiors are to be ordered to confirm if the Sub-composer is ordered to confirm. This specification does not provide an interface or interoperable message to control this; like the relationship between application element and Participant, it is left to the implementation or independent standardisation.

The creation
of a new Inferior and establishment of a Superior:Inferior relationship does not always imply that the BTP Actors are under the control of different business parties or application elements. In particular, an application element may begin a Cohesion, then create and enrol (atomic) Sub-coordinators as Inferiors of the Composer, then associate a different Sub-coordinator’s CONTEXT with each of several aspects of the application work, transmitting that CONTEXT with the application messages for that aspect to the other parties in the business transaction. Those parties can then create Participants (or other Inferiors) that are enrolled with the appropriate Sub-coordinator. Later, the application element (as Terminator, or its equivalent) can choose which of the Cohesion Composers’ Inferiors to cancel and which to confirm. By interposing its own atomic Sub-coordinator the initiating application element can indicate to the other parties that some associated set of application work will be confirmed or cancelled as a unit. This may allow the receiving parties to share information between application operations and to make one Participant responsible for applying the outcome to several operations.

“Checking” and context-reply

In BTP, enrolment is at the initiative of an application element that has received or has access to the CONTEXT which creates an Inferior (BTP uses a “pull” paradigm for enrolment). An application element in possession of a CONTEXT can choose, perhaps constrained by an overarching business and application understanding, whether and how many Inferiors to create and enrol. Consequently, in general, an application element which propagates a CONTEXT to another (via whatever mechanisms it choose), cannot be sure how many Inferiors will be enrolled as a result. Without further controls, there would be a possibility that an application element receiving a CONTEXT might attempt to enrol an Inferior with a Superior after the Superior had been asked to confirm, or even had completed confirmation. In such a case application work that should have been part of a confirmed atomic business transaction could be cancelled, violating the atomicity in a manner that will not be apparent to the application.

[Diagram for next bit]
To avoid this, whenever a CONTEXT is transmitted to another party by or on behalf of the application, the transmission of the CONTEXT itself can be
replied to with a CONTEXT_REPLY message. An application element that has received a BTP CONTEXT is able, because it knows the Superior’s identification and address in the CONTEXT, to enrol Inferiors. (In this case, “application element” should be taken as including any BTP-aware supporting infrastructure for a user application element.) Replying with CONTEXT_REPLY means that the sender (the earlier receiver of a CONTEXT) will not enrol any more Inferiors. Consequently the sender of a CONTEXT can keep track of whether there are any outstanding CONTEXTs that could be used for an enrolment and can avoid requesting or permitting confirmation until everything is safe
. This check is required for an Atom, but is not always essential when the CONTEXT is for a Cohesion. For a Cohesion, it is a matter for the controlling application whether all would-be Inferiors must be enrolled before a confirmation decision can be made; or whether it is acceptable to proceed to confirmation at some point in time with the already enrolled Inferiors (or a subset thereof), accepting the automatic cancellation of any late arrivals.

CONTEXT_REPLY can also indicate that attempted enrollments failed. This can occur if the Enroller is unable to contact the Superior, but it able to return a CONTEXT_REPLY to where-ever the CONTEXT came from.

Section explaining becoming prepared ?

Message sequence

Figure 2 shows the message exchange for the conventional progression of a simple transaction to confirmation with a single Superior:Inferior relationship. Two application elements using a request/response application message exchange are involved – the first is represented as the Initiator and Terminator, the second as the Service and Enroller. The Decider/Superior is shown as a Coordinator, but with only one Inferior there would be no difference with a cohesion Composer. The Factory:Coordinator events are non-standardised, but represent interactions that must occur in some form. There are other interactions between the various application groups – Initiator-Terminator and Participant-Enroller-Service that are not shown – in particular the Service:Participant relationship.

The message sequence is shown is the “conventional” sequence, with all messages explicitly present and sent separately. There are several variations and optimisations possible – these are discussed below.

Diagram has been partly modified from Sanjays – role names on the Coordinator and Participant, & for + in request & CONTEXT, CONFIRM_TRANSACTION for REQUEST_CONFIRM. Needs TRANSACTION_CONFIRMED as final reply.

It’s currently uneven in showing the “internal”exchanges – the factory : coordinator ones are shown (and something like that must be happening), but not the service:enroller:participatr and initiator:terminator ones

[image: image6.wmf]

I

nitiator

Terminator

Factory

Coordinator

Participant

Service

Enroller

1: BEGIN

5: BEGUN & CONTEXT

2: new

10: CONFIRM_TRANSACTION

6: request & CONTEXT

11: PREPARE

12: PREPARED

13: CONFIRM

14: CONFIRMED

3: create context

4: get context

8: EN

ROLLED

7: ENROL

9: response + CONTEXT_REPLY

Initiator

Terminator

Factory

Coordinator

(Decider, Superior)

Participant

(Inferior)

Service

Enroller

1: BEGIN

5: BEGUN & CONTEXT

2: new

10: CONFIRM_TRANSACTION

6: request & CONTEXT

11: PREPARE

12:

 PREPARED

13: CONFIRM

14: CONFIRMED

3: create context

4: get context

8: ENROLLED

7: ENROL

9: response + CONTEXT_REPLY

Figure 5 – A conventional message sequence for a simple transaction

Note that CONTEXT has a “related” (&) relationship to BEGUN and to the application request (although in the latter case the meaning of this is defined by the application, not by BTP. The response + CONTEXT_REPLY has no semantic significance, and could be sent separately; provided the CONTEXT_REPLY is not sent until the ENROLLED has returned.

State diagram ?

Control of inferiors

In the case as shown in [diagram of init/term, coordinator, receiving application elements, inferiors], where the CONTEXT has been propagated from on
 application to others
, the

determination of whether to create and enrol Inferiors is, in general, up to the receiving application element – this is an aspect of the fundamental autonomy of the parties involved in a business transaction. This autonomy may be constrained in particular situations, by inter-party agreement or where the application elements are in fact under common control.

The relationship between the application messages and either the propagated CONTEXT or the ENROL message(s) sent to the Superior is strictly part of the application protocol (or the application-with-BTP combination protocol). However defined, this allows the Superior-side application element to be aware of what application work will be confirmed or cancelled under the control of an Inferior. However, from the perspective of the Superior, and the application element controlling it, the Inferior is opaque – it is not in general possible for the Superior or its controlling application element to determine whether is a Sub-composer or Sub-coordinator (i.e. has Inferiors of its own) or is a Participant, with no further BTP relationships. Thus, if the Inferior is a Sub-composer or Sub-coordinator, the Superior has no visibility or control of its “grand-children” – the Inferiors of its Inferior.

The opacity of an Inferior does not however apply to the control exercised by the immediately controlling application element. An application element, acting as Terminator to a Decider (i.e. to a Composer or Coordinator), can be aware of and distinguish the different Inferiors enrolled with that Decider (i.e. Inferiors enrolled with the Decider in its role as Superior). This is especially the case for a Cohesion Composer, where the Terminator will be able to control which of the enrolled Inferiors of the Composer are eventually confirmed – more exactly, the application will have control of the confirm-set for the Cohesion. For an Atom Coordinator, visibility of the Inferiors is useful but less important, since no selection can be made among which will be in the confirm-set – for an Atom, all Inferiors are ipso facto members of the confirm-set.

For this control of the Inferiors to be useful, the Terminator application element will need to be able to associate particular parts of the application work with each Inferior. This can be achieved by various means. Taking the case of an application element controlling a Cohesion Composer:

a) The application element can create an Atom Sub-coordinator as an immediate Inferior of the Cohesion Composer and propagate the Sub-coordinator’s CONTEXT associate with application messages concerned with the particular part of the application work; any Inferiors (however many there may be) enrolled with Sub-coordinator can be assumed to be responsible for (some of) that part of the application, and the Terminator application element can just deal with the immediate Inferior of the Composer that it created.

b) The application element can propagate the Composer’s own CONTEXT, and the receiving application element can create its own Inferior which will be responsible for some part of the application, and send ENROL to the Composer (as Superior). Application messages concerned with that part of the application are associated with the ENROL, and the Terminator application element can thus determine what the Inferior is responsible for.

In both cases, the means by which the application message and the BTP CONTEXT or ENROL are associated is ultimately application-specific. At the abstract message level, BTP defines the concept of transmitting “related” BTP and application messages – particular bindings to carrier protocols can specify interoperable ways to represent this relatedness. BTP messages, including CONTEXT and ENROL, can also carry “qualifiers” – extension fields that are not core parts of BTP or are not defined by BTP at all. The standard qualifier “inferior-name” or application-specific qualifiers can be used to associate application information and the BTP message, allowing a Terminator to determine which parts of the application work are associated with each Inferior.

These considerations about control of the Inferiors of a Decider also apply to the control of the Inferiors of a Sub-composer (and, again of less importance, a Sub-coordinator).

Evolution of confirm-set

There will be a state diagram for this, as well as this procedural explanation
As mentioned above, the set of Inferiors of a Cohesion that will eventually confirm is called the Confirm-set. The determination of the Confirm-set is made by the controlling application, but is affected by events from the Inferiors themselves. If the standard control relationship
is used, the control of the Cohesion Composer is expressed by the Terminator:Decider exchanges, and the progressive determination of the confirm-set (its evolution) is effectively the event sequence for the Terminator:Decider relationship.

An Atom also has a confirm-set, but this always includes all the Inferiors and so does not evolve in the same way as Cohesion’s. With some exceptions, the Terminator:Decider relationship is the same for Atom Coordinators as for Cohesion Composers; this section deals with both, noting the exceptions. The description refers to “Composer”, but should be read as referring to Coordinators as well, unless stated otherwise.

Initially, the Composer is created (by the Factory, using BEGIN with no related CONTEXT), and has no Inferiors. The Composer is now in the active state.

While in the active state, the following may occur, in any order and with any repetition or overlapping:

· Inferiors are enrolled – ENROL is received by the Composer – adding to the set of Inferiors of the Composer.

· Inferiors may resign - RESIGN is received from an Inferior. The Inferior is immediately removed from the set of Inferiors, as if it had never been enrolled (a RESIGNED message may be sent to the Inferior, but it no longer “counts” in any of the Composer-wide considerations here.

· CANCELLED may be received from an Inferior; there is no immediate effect, but if this is a Coordinator the Atom will certainly cancel eventually.

· PREPARED may be received; there is no immediate effect

· The Terminator may issue PREPARE_INFERIORS to the Composer (as Decider) for some subset of the Inferiors; PREPARE is sent to each and any of the Inferiors in the subset, excluding any from RESIGN, CANCELLED or PREPARED has been received; the sending of PREPARE will induce the Inferiors to reply with PREPARED, CANCELLED or RESIGN; when replies have been received from all, the Composer (as Decider) replies to the Terminator with INFERIOR_STATUSES, reporting the replies received (which may in fact have been received before the PREPARE_INFERIORS). PREPARE_INFERIORS is not issued to Atom Coordinators.

· The Terminator may issue CANCEL_INFERIORS to the Composer (as Decider) for some subset of the Inferiors; CANCEL is sent to each and any of the Inferiors in the subset, excluding any from RESIGN or CANCELLED has been received; the sending of CANCEL will normally induce the Inferiors to reply with CANCELLED – there are some exception cases; when replies have been received from all, the Composer (as Decider) replies to the Terminator with INFERIOR_STATUSES, reporting the replies received. CANCEL_INFERIORS is not issued to Atom Coordinators. CANCEL_INFERIORS may be issued for an Inferior regardless of whether PREPARED has been received from it.

· The Terminator may issue REQUEST_INFERIOR_STATUSES to the Composer (as Decider) for some subset
of the Inferiors; the Composer immediately replies with INFERIOR_STATUSES, reporting the current state of the Inferiors as known to the Superior.

Eventually, the Terminator issues one of the completion messages – CANCEL_TRANSACTION or CONFIRM_TRANSACTION. These messages have a flag that determines whether the Terminator wishes to be informed of contradictory and heuristic decisions or hazards within the transaction – this affects when the reply from the Composer (as Decider) is sent to the Terminator.

If the message is CANCEL_TRANSACTION, CANCEL is sent to all Inferiors that it has not already been sent to, and from which neither RESIGN or CANCELLED have been received. If the Terminator indicates it does not want to be informed of contradictions, the Composer will immediately reply with TRANSACTION_CANCELLED. Otherwise, if and when CANCELLED or RESIGN has been received from all Inferiors, the Composer replies to the Terminator with TRANSACTION_CANCELLED; but if HAZARD or CONFIRMED is received from any Inferior, the reply is INFERIOR_STATUSES
, identifying which Inferior(s) had problems.

If the completion message is CONFIRM_TRANSACTION, the inferiors-list parameter of the message defines the confirm-set. If the parameter is absent (which it must be for an atom Coordinator), then all Inferiors (excluding only those that have resigned) are the confirm-set; otherwise the confirm-set is only the Inferiors identified in the inferiors-list parameter (less any from which RESIGN has been received). The processing to arrive at the confirm decision is:

· If at the point of receiving CONFIRM_TRANSACTION or at any point before making the confirm decision (see below), CANCELLED is received, then the transaction is cancelled and processing continues as if CANCEL_TRANSACTION had been received.

· If there any Inferiors not in the confirm-set from which neither CANCELLED or RESIGN has been received, CANCEL is sent to them (this cannot happen for Atom Coordinators)

· If initially or later, there is exactly one Inferior in the confirm-set, and either PREPARE has not been sent to it, or PREPARED has been received from it, then at implementation or configuration option, CONFIRM_ONE_PHASE can be sent to that Inferior. This delegates the confirm decision to the Inferior

· If at any point, RESIGN is received from an Inferior, it is immediately removed from the confirm-set (this may trigger the decision making)

· If there are any Inferiors in the confirm-set from which none of PREPARED, CANCELLED has been received and to which PREPARE has not yet been sent, PREPARE is sent to that Inferior

· If initially or later, PREPARED has been received from all Inferiors in the confirm-set, the Composer makes the confirm decision; it persists (or attempts to persist) information identifying the Inferiors in the confirm-set; if this fails, the transaction is cancelled and processing continues as if CANCEL_TRANSACTION had been received; if the information is persisted, the confirm decision has been made.

When the confirm decision is made, CONFIRM is sent to all the Inferiors in the confirm-set. And, if on the CONFIRM_TRANSACTION the Terminator indicated it did not wish to be informed of contradictions, TRANSACTION_CONFIRMED is sent to the Terminator.

If the Terminator indicated it wanted to be informed of contradictions, the Composer replies to it with TRANSACTION_CONFIRMED if and when CONFIRMED has been received from all the Inferiors in the confirm-set and CANCELLED or RESIGN has
been received from any other Inferiors. If other replies (CANCELLED from a confirm-set Inferior, CONFIRMED from other Inferiors, HAZARD from any) are received, the reply to the Terminator is INFERIOR_STATUSES, identifying which Inferior(s) had problems.

Optimisations and variations

Spontaneous prepared

As described above, before a Superior can order confirmation to an Inferior, the Inferior must become “prepared”, meaning that it is ready to confirm or to cancel as it so ordered and send the PREPARED message as a report of this. In the conventional message sequence, as shown above, the Inferior attempts to become prepared when it receives a PREPARE message from the Superior. The PREPARE in turn is sent by the Superior when it receives an appropriate request from its controlling application (or from its own Superior, if there is one). The application controlling the Superior will request the sending of PREPARE when it determines that no further application work associated with this Inferior (or, perhaps with the whole business transaction) will occur.

However, for some applications, the application element controlling the Inferior will know that the application work for which the Inferior will be responsible is complete before a PREPARE is sent from the Superior. In fact, because the application element has autonomy in determining how application work is to be allocated to Inferiors, it is possible for the Inferior-side application element to know the work is complete for a particular Inferior when Superior-side application element will be sending more message to the Inferior-side. (The future work will, probably, require the enrollment of additional Inferiors.)

BTP consequently allows the application element controlling an Inferior to cause the Inferior to become prepared, and to send PREPARED to the Superior without PREPARE having been received from the Superior. From the perspective of the BTP Superior the Inferior sends PREPARED spontaneously. Apart from this, a spontaneous PREPARED message is the same as, and has the same effect and implications as one induced by a PREPARE message.

One-shot

In the “conventional” message sequence shown above and assuming the Initiator, Terminator and Coordinator on the one side, and “Service”, Enroller and Participant on the other are located within their respective parties, there are eight messages passed in one direction or the other between the two parties. There are four round-trip exchanges: the application request and response exchange, the ENROL/ENROLLED exchange (going in the opposite direction and overlapped with the application exchange), then PREPARE/PREPARED and the CONFIRM/CONFIRMED. However, if the application exchange is a single request/response, it is possible to reduce these eight to two round-trips– the first of which merges the first three of the conventional sequence. The fundamental two-phase nature of BTP (or any coordination mechanism) means there have to be at least two round trips – one before the confirm-or-cancel decision is made at the Superior, one after. This merging of the exchanges is termed “one-shot”, as it requires only one exchange to take the relationship from non-existent to waiting for the confirm-or-cancel decision.

Figure 3 shows a typical “one-shot” message sequence. The diagram distinguishes an additional aspect of the application elements, labelled “context-handler”. This is not a role in the BTP model, but is used only to distinguish a set of responsibilities and actions. In a real implementation these might be performed by the user application itself, or might be performed by the BTP-supporting infrastructure on the path between the application elements. (In Figure 2 the context-handler was merged with the Initiator.) As in the conventional case, the CONTEXT is sent related to the application request (the creation of the CONTEXT by the Factory is not shown and is the same as the conventional case). The “context-handler” is aware of the sending of the CONTEXT.

On the responder (service side), however, when the application element creates the Inferior, the ENROL is not sent immediately, but retained. The application performs the “provisional effect” implied by the received message and the Inferior becomes prepared and issues a PREPARED message, which is also retained. When the application response is available, it is sent with the retained messages and the CONTEXT_REPLY (which indicates that the related ENROL will complete the enrolments implied by the earlier transmission of the CONTEXT.

When this group
is received by the context-handler on the client side, the contained ENROL and PREPARED messages are forwarded to the Superior (whose address was on the original CONTEXT and so is known to the context-handler). An ENROLLED message is sent back to the context-handler, assuring it that the enrolment was successful and the application can progress. If enrollment fails and the business transaction is atomic, confirmation must be prevented – this responsibility falls on the context-handler and the client application, since the failure of the enrolment implies that Superior itself is inaccessible. If enrolment fails and the business transaction is a cohesion, the appropriate response is a matter for the application.

With “one-shot”, if there are multiple Inferiors created as a result of a single application message, there is an ENROL and PREPARED message for each one sent related with the CONTEXT_REPLY. If an operation fails, a CANCELLED message may be sent instead of a PREPARED – if the Superior is atomic, this will ensure it cancels, if cohesive, the client application will be aware of this and behave appropriately.

Whether the “one-shot” mechanism is used is determined by the implementation on the responding (Inferior) side. This may be subject to configuration and may also be constrained by the application or by the binding in use.

This diagram needs modifying. Suggested: Move the communicators next to the application pieces and rename as context-handlers.. Possibly merge the initiator and terminator. And some of the + should be &. REQUEST_CONFIRM is now CONFIRM_TRANSACTION, and needs a reply TRANSACTION_CONFIRMED

[image: image7.wmf]Initiator

Terminator

Coordinator

Client

-

side

Communicator

Participant

Enroller

Service

Service

-

side

Communicator

10: REQUEST_CONFIRM

1: request + CONTEXT

11: CONFIRM

6: response + CONTEXT_REPLY + ENROL + PREPARED

12: CONFIRMED

7: ENROL + PREPARED

3: ENROL

4: PREPARED

5: response + CONTEXT

9: response + CONTEXT_REPLY

2: request + CONTEXT

8: ENROLLED

One approach for

optimization

in BTP

Initiator

Terminator

Coordinator

Client

-

side

Communicator

Participant

Enroller

Service

Service

-

side

Communicator

10: REQUEST_CONFIRM

1: request + CONTEXT

11: CONFIRM

6: response + CONTEXT_REPLY + ENROL + PREPARED

12: CONFIRMED

7: ENROL + PREPARED

3: ENROL

4: PREPARED

5: response + CONTEXT

9: response + CONTEXT_REPLY

2: request + CONTEXT

8: ENROLLED

One approach for

optimization

in BTP

Figure 6 – A message sequence showing the “one-shot” optimisation

Resignation

After an Inferior is enrolled, it may be determined that the application work it is responsible for has no real effect – more exactly, that the counter-effect, if cancelled, and the final effect, if confirmed, will be identical. In such a case the Inferior can effectively un-enrol itself by sending a RESIGN message to the Superior. This can be done “spontaneously” (as far as BTP is concerned) or as a response to a received PREPARE message. It cannot be done after the Inferior has become prepared.

An Inferior from which RESIGN has been received is not considered an Inferior in discussion of the confirm-set – the phrase “remaining Inferiors” is used to mean only non-resigned Inferiors.

One-phase confirmation

If a Coordinator or Composer that has been requested to confirm has only one (remaining) Inferior in the confirm-set, it may delegate the confirm-or-cancel decision to that Inferior, just requesting it to confirm rather than performing the two-phase exchange. This is done by sending the CONFIRM_ONE_PHASE message. Unlike the two-phase exchange (PREPARED received, CONFIRM sent), it is possible with CONFIRM_ONE_PHASE for a failure to occur that leads to the original Coordinator or Composer (and its controlling application element – the Terminator) being uncertain whether the outcome was confirmation or cancllation.

Autonomous cancel and confirm

As described above, BTP does not require a Participant, while it is responsible for holding application resources such that can be confirmed or cancelled, to use any particular mechanism for maintaining this state. A Participant that “becomes prepared” may choose to let the “provisional effect” be identical to the “final effect”, and hold a compensating “counter effect” ready to implement cancellation; or it may make the provisional effect effectively null, and only perform the real application work as the final effect if confirmed; or the “provisional effect” may involve performance of the application work and locking application data against other access; or other patterns, as may be constrained or permitted by the application.

Although a Participant is not required to lock data (as would be the case with some other transaction specifications) on becoming prepared, it is nevertheless in a state of doubt, and this doubt may have application or business implications. Accordingly it is recognised that a Participant (or, rather the business party controlling the application element and the Participant) may need to limit the promise made by sending PREPARED, and retain the right to apply its own decision to confirm or cancel to the Participant and the application effects it is responsible for. This is described as an “autonomous” decision. It is closely analogous to the heuristic decisions recognised in other transaction specifications. The only difference is the conceptual one that heuristic decisions are typically considered to occur only as a result of rare and unpredictable failure, whereas BTP recognises that the right to take an autonomous decision may be critical to the willingness of a business party to be involved in the business transaction at all. BTP therefore allows Participants (and all Inferiors) to indicate that there are limits on how long they are willing to promise to remain in the prepared state, and that after that time they may invoke their right of taking an autonomous decision.

Taking an autonomous decision will of course run the risk of breaking the intended consistency of outcome across the business transaction, if the autonomous decision of the Inferior contradicts the decision (for this Inferior) made by the Superior. The Superior will have received the PREPARED message and thus be permitted to make a confirm decision (directly, or through exchanges with a Terminator application element or with its own Superior). An Inferior taking an autonomous decision informs the Superior by sending CONFIRMED or CANCELLED, as appropriate, without waiting for an outcome order from the Superior. This may cross the outcome message from the Superior, or the Superior may not make its decision till later. If the decisions agree, the normal CONFIRM or CANCEL message is sent. In the case of CANCEL, this completes the relationship – the CANCEL and CANCELLED messages acknowledge each other, regardless of which travels first. In the case of CONFIRM, another CONFIRMED message is needed.

If the Superior’s decision is contradicted by the autonomous decision, the Superior may need to record this, report it to management systems or inform the Terminator application or its own Superior. When this has been done (details are implementation-specific, but may be constrained by the application), the Superior sends a CONTRADICTION message to the Inferior. If an outcome message was sent earlier (crossing the announcement of the autonomous decision), the Inferior will already know there was a contradiction, , but the receipt of the CONTRADICTION message informs the Inferior that the Superior knows and has done whatever it considers necessary to cope.

As mentioned, BTP allows an Inferior to inform the Superior, with a qualifier on the PREPARED message, that the promise to remain in the prepared state will expire. In turn this allows the application on the Superior side to avoid risking a contradictory decision by making and sending its own decision in time.
The Superior side can also indicate, with another qualifier, a minimum time for which it expects the prepared promise to remain valid.

As well as deliberate and forewarned autonomous decisions, BTP recognises that failures and exceptional conditions may force unplanned autonomous decisions In the protocol sequence these are treated exactly like planned autonomous decisions – if they contradict, the Superior will be informed and a CONTRADICTION message sent to the Inferior.

Autonomous decisions, planned or unplanned, are equivalent to the heuristic decisions of other transaction systems. The term is avoided in BTP since it may carry implications that it only occurs in an unplanned manner.

Recovery and failure handling

Types of failure

BTP is designed to ensure the delivery of a consistent decision for a business transaction to the parties involved, even in the event of failure. Failures can be classified as:

Communication failure: messages between BTP actors are lost and not delivered. BTP assumes the carrier protocol ensures that messages are either delivered correctly (without corruption) or are lost, but does not assume that all losses are reported nor that messages sent separately are delivered in the order of sending.

Node failure (system failure, site failure): a machine hosting one or more BTP actors stops processing and all its volatile data is lost. BTP assumes a site fails by stopping – it either operates correctly or not at all, it never operates incorrectly.

Communication failure may become known to a BTP implementation by an indication from the lower layers or may be inferred (or suspected) by the expiry of a timeout. Recovery from a communication failure requires only that the two actors can again send messages to each other and continue or complete the progress of the business transaction.

A node failure is distinguished from communication failure because there is loss of volatile state. To ensure consistent application of the decision of a business transaction, BTP requires that some state information will be persisted despite node failure. Exactly what real events correspond to node failure but leave the persistent information undamaged is a matter for implementation choice, depending on application requirements; however, for most application uses, power failure should be survivable (an exception would be if the data manipulated by the associated operations was volatile). In all cases, there will be some level of event sufficiently catastrophic to lose persistent information and the ability to recover– destruction of the computer or bankruptcy of the organisation, for example.

Recovery from node failure involves recreating an accessible communications endpoint in a network node that has access to the persistent information for incomplete transactions. This may be a recreation of the original actor using the same addresses; or using a different address; or there may be a distinct recovery entity, which can access the persistent data, but has a different address; other implementation approaches are possible.The recovered, and possibly relocated actor may or may not be capable of performing new application work Restoration of the actor from persistent information will often result in a partial loss of state, relative to the volatile state reached before the failure. In some states, there may be total loss of knowledge of the business transaction, including particular Superior:Inferior relationships. After recovery from node failure, the implementation behaves much as if a communication failure had occurred.

Persistent information

BTP requires that certain state information is persisted – these are information that records an Inferior’s decision to be prepared, a Superior’s decision to confirm and an Inferior’s autonomous decision . Requiring the first two to be persistent ensures that a consistent decision can be reached for the business transaction and that it is delivered to all involved nodes, despite failure. Requiring an Inferior’s autonomous decision to be persistent allows BTP to ensure that, if the autonomous decision is contradictory (i.e. opposite to the decision at the Superior), the contradiction will be reported to the Superior, despite failures.

BTP also permits, but does not require, recovery of the Superior:Inferior relationship in the active state (unlike many transaction protocols, where a communication or node failure in active state would invariably cause rollback of the transaction). Recovery in the active state may require that the application exchange is resynchronised as well – BTP does not directly support this, but allows continuation of the business transaction if the application desires it. Apart from the (optional) recovery in active state, BTP follows the well-known presume-abort model – it is only required that information be persisted when decisions are made (and not, for example, on enrolment). This means that on recovery one side may have persistent information while the other does not. This occurs, among other cases, when an Inferior has decided to be prepared but the Superior never confirmed (so the decision is “presumed” to be cancelled), and when the Superior did confirm, the Inferior applied the confirmation and removed its persistent information but the acknowledgement message (CONFIRMED) was never received by the
.

Information to be persisted when an Inferior decides to be prepared has to be sufficient to re-establish communication with the Superior, to apply a confirm decision and to apply a cancel decision. It will thus need to include the addressing and identification information for the Superior. The information needed to apply the confirm or cancel decision will depend on the application and the associated operations.

A Superior must persist the corresponding information to allow it to re-establish communication with the Inferior – that is the addressing and identification information for the Inferior. When it must persist this information depends on its position within the transaction tree. If it is the top of the tree – i.e. it is the Decider for the business transaction -- it need only persist this information if and when it makes a decision to confirm (and, for a Cohesion, only if this Inferior is in the confirm-set). A Superior that is an intermediate in the tree – i.e. it is an Inferior to some other Superior –must persist the information abouteach of its own Inferiors as part of (or before) persisting its own decision to be prepared. For such an intermediate, the “decision to confirm” as Superior is made when either CONFIRM is received from its Superior or it makes an autonomous decision to confirm. If CONFIRM is received, the persistent information may be changed to show the confirm decision, but alternatively, the receipt of the CONFIRM can be treated as the decision itself and the CONFIRM message propagated to the Inferiors without changing the persistent information. If the persistent information is left unchanged and there is a node failure, on recovery the entity (as an Inferior) will be in a prepared state, and will rediscover the confirm decision (using the recovery exchanges to its Superior) before propagating it to its Inferior(s).

Since BTP messages may carry application-specified qualifiers, and the BTP messages may be repeated if they are lost in transit (see next section), the persistent information may need to include sufficient to recreate the qualifiers, to allow them to be resent with their carrying BTP message. This applies both to qualifiers on PREPARED (which would be persisted by the Inferior) and on CONFIRM (which would be persisted by the Superior).

Recovery messages

Once the Superior:Inferior relationship has entered the completion phase – BTP does not generally use special messages in recovery, but merely permits the resending of the previous message – thus, for example, PREPARE, PREPARED, CANCEL, CONFIRM can all be sent repeatedly. Resending the previous message means a possible loss of the original message may be invisible to the receiver. The trigger for this re-sending is implementation dependent – a reported communication failure, a timeout expiry while waiting for a reply, the re-establishment of communications or the general restoration of function after a node failure are all possible triggers. An incoming repetition of the last message received, if it has already been replied to (e.g. receiving PREPARE after PREPARED has been sent), should normally trigger a resending of the last message sent – since that sent message may have got lost.

While in the active phase – i.e. prior to entering completion – there is no appropriate last message that can be sent. However, for active-phase recovery there needs to be some way for the BTP actors to determine that the peer is still there and still aware of the Superior:Inferior relationship. In this case, the peers can interrogate each other using the INFERIOR_STATE or SUPERIOR_STATE messages, informing the peer of their own state and requesting a response – which may be the opposite message, or one of the main BTP messages (which perhaps had been lost). If it is another SUP|INFERIOR_STATE message, that reply does not ask for a response. Receiving a SUP|INFERIOR _STATE messages that asks for a response does not require an immediate response
– especially if an implementation is waiting to determine a decision (perhaps because it is itself waiting for a decision from elsewhere), an implementation may choose not to reply until it wishes too.

The SUP|INFERIOR_STATE messages are also used as replies when the receiver of any of the Superior:Inferior message has determined that there is no corresponding state information – the targeted Superior or Inferior does not exist (or is known to have completed and is no longer an active entity). The SUP|INFERIOR_STATE messages with a status of “unknown” is the indication that the state information does not exist.

The SUP|INFERIOR_STATE messages are also available as replies to any Superior:Inferior message in the (transient, one hopes) case where, after failure an implementation cannot currently determine whether the persistent information exists or not, or what its state is, and so cannot give a definitive answer. The SUP|INFERIOR_STATE messages with a status of “inaccessible” is the indication that the existence of state information cannot be determined. The receiver of such a message should normally treat it as a “re-try later” suggestion.

Redirection

As described above, BTP uses the presume-abort model for recovery. A corollary of this is that there are cases where one side will attempt to re-establish communication when there is no persistent information for the relationship at the far-end, because that side either never reached a state where the state was persisted, or had been persisted, but then progressed to remove the state information. In such cases, it is important the side that is attempting recovery can distinguish between unsuccessful attempts to connect to the holder of the persistent information and when the information no longer exists. If the peer information does not exist, the side that is attempting recovery can draw appropriate conclusions (that the peer either was never prepared, never confirmed or has already completed) and complete its part of the transaction; if it merely fails to get through, it is stuck in attempting recovery.

Two mechanisms are provided to assist implementation flexibility while allowing completion of Superior:Inferior relationships when only one side has any persistent information. The mechanisms are:

· Address fields which provide the address that will be used by the peer to send messages to an actor (effectively a “callback address”) can be a set of addresses, which are alternatives, one of which is chosen as the target address for the future message. If the sender of that message finds the address does not work, it can try a different alternative.

· The REDIRECT message can be used to inform the peer that an address previously given is no longer valid and to supply a replacement address (or set of addresses). REDIRECT can be issued either as a response to receipt of a message or spontaneously.

The two mechanisms can be used in combination, with one or more of the original set of addresses just being a redirector, which does not itself ever have direct access to the state information for the transaction, but will respond to any message with an appropriate REDIRECT.

An alternative implementation approach is to have a single addressable entity that uses the same address for all transactions, distinguishing them by identifier, and which always recovers to use the same address. Such an implementation would not need to supply “backup” addresses (and would only use REDIRECT if it was being permanently migrated).

Terminator:Decider failures

BTP does not provide facilities or impose requirements on the recovery of Terminator:Decider relationships, other than allowing messages to be repeated. A Terminator may survive failures (by retaining knowledge of the Decider’s address and identifier), but this is an implementation option. Although a Decider (if it decides to confirm) will persist information about the confirm decision, it is not required, after failure, to remain accessible using the address it originally gave to the Initiator (and used by the Terminator). Any such recovery is an implementation option.

A Decider
has no way of initiating a call to a Terminator to ensure that it is still active, and thus no way of detecting that a Terminator has failed. The Decider always has the right to initiate cancellation, but if the application (Terminator) and the Decider have different views about how long a “long time” is, then either the Decider might wait unnecessarily for a completion request (e.g. CONFIRM_TRANSACTION) that will never arrive, or it might initiate cancellation while the application is still active. To avoid these irritations, a standard qualifier “Transaction timelimit” can be used (by the Initiator) to inform the Decider when it can assume the Terminator will not request confirmation and so it (the Decider) should initiate cancellation.

Contradictions, heuristics and hazard

Bindings – the idea

Other elements

Qualifiers

Identifiers

Addresses

A modified version of this diagram may go near the inferior control bit

[image: image8.wmf]Initiating

application

BTP Superior

application

BTP Superior

BTP Inferior

application

BTP Inferior

application

BTP Inferior

BTP

messages

BTP

messages

application

messages

application

messages

Composer

or

Coordinator

Sub

-

Composer

or

Sub

-

Coordinator

Participant

Participant

Figure 1
Basic tree structure for BTP1TC “Figure
Basic tree structure for BTP” \f F \l 2

� BTP’s capability of binding to alternative carrier protocols is part of the motivation for not having a distinct recovery message sequence, since the carrier binding does not necessarily have a well-defined communication failure indication.

�PAGE \# "'Page: '#'�'" �� This is correct though confusing. The “state of a business relationship” seems to refer to the highest level agreement between entities. We are using it to describe a much more mundane change such as requesting an order, etc. I haven’t been able to come up with anything better.

�PAGE \# "'Page: '#'�'" ��I agree with Bill’s comments earlier on definition of Business Transaction.

�PAGE \# "'Page: '#'�'" �� What point is this sentence trying to make? Is the point correct and should it be made here? Why would any business relationship or regulation care about this? Is it only the visibility of the effect that we care about here?

�PAGE \# "'Page: '#'�'" ��Can we define characteristics of Atom and Cohesion before this?

�PAGE \# "'Page: '#'�'" ��Not entirely true. A participant can send message to another party too and infect the other party with that transaction.

�PAGE \# "'Page: '#'�'" ��Can we give example here?

�PAGE \# "'Page: '#'�'" ��There is no “first/second application element” anymore.

�PAGE \# "'Page: '#'�'" ��Description for enrol is missing.

�PAGE \# "'Page: '#'�'" ��Is A not passing the decision to B?

�PAGE \# "'Page: '#'�'" ��in cohesive behaviour the Superior will choose or allow some Inferiors to cancel while others confirm while for atomic behaviour the Superior will dictate…

�PAGE \# "'Page: '#'�'" ��Figure has changed…no more first application element!

�PAGE \# "'Page: '#'�'" ��bold

�PAGE \# "'Page: '#'�'" ��bold

�PAGE \# "'Page: '#'�'" ��In case of Sub-coordinator the “first application element” won’t have any say in confirm or cancel.

�PAGE \# "'Page: '#'�'" ��We should define Atom Business Transaction after this.

�PAGE \# "'Page: '#'�'" ��We should define Cohesion Business Transaction after this.

�PAGE \# "'Page: '#'�'" ��bold

�PAGE \# "'Page: '#'�'" ��bold

�PAGE \# "'Page: '#'�'" ��involved in atomic or cohesive transaction

�PAGE \# "'Page: '#'�'" ��one is enough (

�PAGE \# "'Page: '#'�'" ��the CONTEXT of business transaction

�PAGE \# "'Page: '#'�'" ��?

�PAGE \# "'Page: '#'�'" ��This seems like addressed to an advanced user. Is it needed here?

�PAGE \# "'Page: '#'�'" ��(in fact, must be for Atom)

�PAGE \# "'Page: '#'�'" ��Outstanding CONTEXT_REPLYs

�PAGE \# "'Page: '#'�'" ��one

�PAGE \# "'Page: '#'�'" ��other

�PAGE \# "'Page: '#'�'" ��Control relationship is not introduced yet.

�PAGE \# "'Page: '#'�'" ��Or all

�PAGE \# "'Page: '#'�'" ��May be it is too late. I would have liked to see HAZARD message being propagated back to the Terminator. This message can have multiple HAZARD messages too. This gives clear indication to the Terminator that there was something wrong. Conventionally, in JTA, an typed Exception is thrown back to the application.

�PAGE \# "'Page: '#'�'" ��not

�PAGE \# "'Page: '#'�'" ��group of messages

�PAGE \# "'Page: '#'�'" ��Does INFERIOR_STATUSES return this time limit with status of PREPARED Inferior?

�PAGE \# "'Page: '#'�'" ��?

�PAGE \# "'Page: '#'�'" ��May be we should add an identifier which tells that I need to know immediately what is the state if available. This might be useful for speeding recovery in some cases.

�PAGE \# "'Page: '#'�'" ��A subsection heading Transaction Timelimit would be useful

BTP model draft
Page 25 of 25

_1076175642.doc

Initiating application

BTP

Superior

Service

application

BTP

Inferior

BTP messages

Application

messages

_1076251226.doc
[image: image1.png]

_1073394916.doc

Initiator

Terminator

Factory

Coordinator

Participant

Service

Enroller

1: BEGIN

5: BEGUN & CONTEXT

2: new

10: CONFIRM_TRANSACTION

6: request & CONTEXT

11: PREPARE

12: PREPARED

13: CONFIRM

14: CONFIRMED

3: create context

4: get context

8: ENROLLED

7: ENROL

9: response + CONTEXT_REPLY

Initiator

Terminator

Factory

Coordinator

(Decider, Superior)

Participant�(Inferior)

Service

Enroller

1: BEGIN

5: BEGUN & CONTEXT

2: new

10: CONFIRM_TRANSACTION

6: request & CONTEXT

11: PREPARE

12: PREPARED

13: CONFIRM

14: CONFIRMED

3: create context

4: get context

8: ENROLLED

7: ENROL

9: response + CONTEXT_REPLY

