OASIS Business Transactions Technical Committee

Transaction models sub-committee

Scope and Requirements,

Actors & Terminology (incorporating Model Overview)

Alastair Green

Copyright © Choreology Ltd, 2001. Subject to OASIS IPR policy.

21 April 2001

The transaction models sub-committee has met once face-to-face and once by conference call, and there have been several e-mail exchanges. This document also reflects consultation with Mark Little as chair of the sub-committee.

There seems to be strong convergence on requirements, and the model/protocol. There is perhaps more divergence on terminology. The contents of this document therefore reflect the discussions, but contain proposals which may not be unanimously agreed. Obviously the full committee will decide where there is controversy.

Peter Furniss has written up a first draft protocol description, which starts at Page 15 of this document.

What is the thing to be called?

There is a strong sentiment to create a new name for the “interorganizational, business-to-business, loosely coupled” reversible sets of related operations that we are dealing with in this Technical Committee. Any term that involves the word “transaction” creates multiple images in readers’ minds, varying from “anything that involves the exchange of goods and services for a consideration” to “an atomic transaction involving serializable databases”.

The term “cohesion” seems to have gained some currency in our discussions. In the absence of any strong contenders, it is therefore proposed

1. That we use the term “cohesion” in place of “business transaction”.

2. That we refer to the specification as the “The Cohesion Protocol Specification”

Scope and Requirements

What follows is a slightly revised edition of Peter Furniss’ draft summary of the models’ sub-committee face-to-face meeting on 3 April 2001, which was mailed to the models list.

Scope of the Specification

Much of this discussion used the diagram from the Choreology input, sent to the model list just before the meeting, with some reinterpretation. The scope of the specification should be:

2, 6 - the Coordination Protocol itself, between coordinator and participant, with a specified binding to a carrier mechanism

5, 7 – the content of the context to be passed with / by the application messages

4 – the augmentation of the application messages with the context

The fact that the context must be passed with the application messages is essentially the responsibility of the application. Given a particular carrier (e.g. SOAP), the mechanism for carrying the context will be specified in a way that is general for all applications (c.f. implicit context propagation in OTS) – hence 4 is included.

The document will need to include an illustrative demarcation api (item 1 in the diagram), which will help ourselves discuss and readers understand. This would be clearly identified as non-mandatory – the intent is to explain the message set (2), not to standardise the api (1), though its presence should enhance the acceptability of the standard.

Other points:

There may be distinct entities that are the initiator, coordinator and decider (as in the HP input) – the decider involves application logic, though this may be handled by delegation to a decider with an appropriate fixed pattern.. This is essentially a matter of area 1 in the diagram.

It would be possible for a service/participant to also behave as an initiator/coordinator (forming a familiar tree). However, this is hidden from the perspective of our protocol – it is just the internal working of the participant, and a different context appears on the lower legs. In other cases, a web-service might be a simple “router” – the context would be passed unmodified, and registration/enlistment would by-pass the router entity.

Service description – there is a general need for a service to identify itself as supporting coordination, but the details are various (is a single flag enough, how does it fit with other work on service description/discovery).

 This should be raised at the general meeting, seeking to get it considered by another subgroup.

However, it is desirable to include a mechanism to ensure that sent contexts aren’t silently ignored if received by something that doesn’t understand them (easy in SOAP, though not strictly achievable in our specification in general, since something that hasn’t implemented our spec won’t know that it must say it doesn’t understand)

Requirements

Considerable discussion on support of ACID properties, especially in light of Fred Carter’s email: “I think we cannot and should not rely on ACID properties”

Agreed :

 will not rely on ACID properties, but will not exclude use and support of ACID properties.

Two-phase commit exchanges (between parties) do not require the use of two-phase locking (within the participant).

Concluded and agreed:

The top of the tree may decide that all the bits of the cohesion will have the same decision

The participants (in general) have the opportunity to apply isolation (and durability) mechanisms to the their data

If everyone agrees (or happens) to do this, then the cohesion is an ACID transaction

There will not be, within this p’col, mechanisms to negotiate or ensure this (might be part of capability negotiation)

We then considered the list of requirements in the original Choreology input (to March meeting), considering whether we believed they should regarded as definitely included as requirements for this specification, definitely deferred or not in scope, or should be clarified.

Definitely in:

Requirement #12: Interoperability
Requirement #13: XML schema-based protocol message formats
Requirement #17: “Resource” registration scheme

Clarified:

Requirement #11: Communications-protocol independent distribution

Spec will define expectations on the underlying comms, and give, but not mandate, a binding to some particular communication

Requirement #16: XA integration

See above statement on ACID

Out (delayed, pending, not in this first wave)

Security requirements:

Requirement #14: Configurable protocol authentication

Requirement #15: Access control for joining and terminating transactions

Additional : non-repudiation of coordination messages

Status subject to security group deliberation, but cannot just pull in security mechanisms from elsewhere – there are specific issues here.

Requirement #8: Operations can use (and can advertise) differing isolation levels (degrees of blocking)

Requirement #9: Operations can use (and can advertise) differing durability levels (degrees of persistence)

Specification will not mandate any particular behaviour in respect of persistence and concurrency control for participants. (see conclusion on ACID)

Requirement #10: Application/operation negotiation over isolation and persistence levels.

Ditto, and capability negotiation is deferred(out of scope for this first edition of the spec)

Discussion on remaining requirement items was at model level rather than simple yes/no.

Requirement #1: Operation groups with reverse operations
Requirement #2: Operation group atomicity
Issues with who defines the group and interactions with concept of a web-service as a single concept – possibly they would always be groups with a single operation. There can be multiple registered participants in a group (possible from the same service entity)

The demarcator can put operations in the same group to indicate (and enforce) a tight relationship

Requirement #3: Action demarcation (addition and removal of operation groups)
Requirement #4: Action reversal
Requirement #5: Multiple valid action outcomes

Some felt the action (= cohesion) is at the collaboration level, controlled by workflow. Alternatively, the cohesion appears in the demarcation api (including the ability to choose partial outcomes and the ability to cancel the whole cohesion), but possibly is not explicit in the protocol.

Requirement #6: Positive/negative action timeout

Requirement #7: Positive/negative operation timeout

If a participant is able to unilaterally reverse or apply its vote, there needs to be a re-voting round, when it is asked what its current status is. (Such a re-vote can be regarded as the only vote, depending on assumptions about how the participants behave)

This re-vote does not need to involve all participants, if it is known which are liable to change state autonomously.

The re-vote needs to be certain – though this imposes timing constraints on the termination process.

The re-vote could be a query (that would not itself change the participant state), returned to the application that may then behave differently if some participants have made their own decisions.

Actors & Terminology—Informal

The description that follows in the next three sections gives very brief informal definitions of each term. The next section (“Terminology—Formal definitions”) gives more elaborate and (I hope) precise definitions. [It is not complete, however.]

What is a cohesion? The application’s view.

First, we establish a very high level view of the actors, from an application standpoint.

One organization (a Party) wants to use a web Service provided by another organization (its Counterparty). We define a service as a software agent which offers a clearly delimited set of Operations for invocation. The party’s Client application (a software agent) sends Application Messages to the service, in order to invoke operations. The service responds to the client in kind. Messages are communicated via Carrier Protocols.

Of course, there might be several counterparties, and each of them might have more than one service to offer.

Taking it a step further, the client may use these services as atomic units of work. In other words, if the client invokes one or more operations from a particular service (e.g. provisionalOrder, associatedShipping), it is highly likely to want these operations to succeed or fail as a unit. (We should be clear that atomic units of work might include operations from several services, even if that is less likely, albeit fully possible.) Making the simplistic assumption that the set of operations used by the client in each service constitutes an atomic unit of work (Atom), we can recast the last diagram. The dotted frames represent these atoms. The blobs represent the client’s view of the atom.

If we focus on the client side of this picture (and turn things through 90º) then we can perceive that the client has a set of atoms that it can manipulate. This set of atoms is known as a Cohesion:

Imagine that the client can dictate whether each atom within the cohesion succeeds or fails, even when it knows that the atom is capable of succeeding. This is somewhat novel. In conventional transactional systems the client usually has a “demarcation” API which enables it to ask for an atom (an atomic action, a transaction) to “commit”. This is shorthand for “ask a coordinator to gather the votes of all the participants that make up the atom, and then send commit messages to all participants if none voted to rollback, otherwise send rollback messages to all participants”.

In the situation we are considering the decision as to the outcome of each atom may well require information about the readiness of other atoms. In other words, it would be wrong to allow each atom to commit autonomously, according to the views of its inferior participants. Instead we wish the client to act as “the last voter”, who will instruct each atom to Confirm or to Cancel, in the full knowledge of the other voters’ views, and in the light of the state of all other atoms that it thinks are relevant. (Note that this is allows any decision dependency graph to be constructed, and does not require the structural foreknowledge that is implied by nested or glued transaction models.)

To be more concrete: imagine that our three atoms are: order goods from a supplier; order shipping via the same supplier, and get a competitive quote for shipping from a third party. Once we know the cost of the two quotes, we can decide to confirm the cheapest (or most reliable, or best known, or biggest …) and cancel the other, while confirming the goods order itself. The final outcome of the cohesion is to accept two atoms, and reject one atom.

The cohesion is reduced, at the end of its life, to the two accepted atoms. In that sense we can view a cohesion as a structured means of whittling down the choices available to the client application, with the goal of deciding on a single, ultimately successful outcome. Alternatively, the client application, in this role as Composer of a cohesion’s worth of atoms, may decide to cancel all of them, and abandon the attempted “business transaction” altogether.

The following code fragment illustrates how this might look to a Java client. Note that there is no need or intent to prescribe an API like this in our specification: the code is for illustrative purposes only (and has never been near a compiler!).

 void cohesionComposer() // an application method

 {

Atom orderGoods = new Atom();

Atom shippingViaGoodsSupplier = new Atom();

Atom shippingFromAnotherSource = newAtom();

// application work

Quote quoteForGoods =

 orderGoods.sendApplicationMessage (“quoteForGoods”, arg, arg …);

Quote quoteForShippingViaGoodsSupplier =

 orderGoods.sendApplicationMessage (“quoteForShipping”, arg, arg …);

Quote quoteForShippingFromAnotherSource =

 orderGoods.sendApplicationMessage (“quoteForShipping”, arg, arg …);

// ensure that the quotes are guaranteed (may be folded into app messages)

orderGoods.prepare(); // no exception, so it is ready

shippingViaGoodsSupplier.prepare(); // ditto

shippingFromAnotherSource.prepare(); // ditto

// there are recovery subtleties that will require logging by the conductors

// after all the atom outcomes are decided, and before they are delivered:

// see note on “Cohesion Outcomes” below . . .

orderGoods.confirm();

QuotesOutcome quotesOutcome

 = this.decideQuotesOutcome (quoteForShippingViaGoodsSupplier,

 quoteForShippingFromAnotherSource);

quotesOutcome.selected().confirm();

quotesOutcome.rejected().cancel();

 }

NOTE: Cohesion Outcomes

A cohesion has many potential successful outcomes. It has one actual outcome (good or bad), made up of the outcome decisions for all atoms. The composer must ensure that this overall outcome is logged before it is communicated to the atoms, in case this delivery of outcomes is interrupted by some failure. One approach to this would be to create a “decision atom”, which recoverably ensures that the decision is persistent across failures. A more systematic, protocol-level approach can also be conceived of. This area requires more work. Note that the use of presumed abort should obviate the need to remember cancel decisions.

It should be noted that the cohesion may cancel atoms and create new ones during its lifetime, and that the membership of a cohesion is therefore established dynamically by the action of the applications. Atoms may also be cancelled “from below” by a participant of the atom. An example would be a service withdrawing its participants because of a timeout. A composer may take interim “polls” to discover whether atoms have gone ready or been cancelled, and is also able to decide that all atoms will finally be prepared in one sweep.

The Atom Outcome Protocol per se

So far we have assumed that atoms can be brought to a state of readiness, where they are able to confirm or cancel (roll forward or backward); or that they are cancelled outright before reaching the state of readiness. The protocol used to achieve this is the standard two-phase commit protocol, familiar from classic transaction management.

The next, expanded diagram shows the significant actors involved in the atom outcome protocol. The protocol defines the content and sequence of messages that are sent between actors, and the contracts that determine their reactions.

The counterparties have decided to make their services “cohesion-capable”, and have somehow advertised this fact to the party (outside our scope). The client therefore decides to create (Initiate) an Atom (not shown in the diagram), which means that a Conductor is created to coordinate any Participants that get involved in that atom.

NOTE: On the name “Conductor”

The argument put forward in favour of “conductor” over “coordinator” is that this actor does not possess enough intelligence to make outcome decisions based on the votes received. Instead it gathers the votes, readies itself, and passes responsibility for the decision to its client. This difference in behaviour betokens a difference in name.

The atom has an id (an Atom Identifier) which it piggybacks on an application message, and which the operation receives. If the operation wants to do some work which is capable of being cancelled by the atom rolling back then it Enrols a participant, which means that a message is sent back to the conductor, telling it about the participant (which is identified by a Participant Identifier). In the process of these exchanges both the conductor and the participant get each other’s Address.

Any work that the service does which is related to this atom will be tagged with the participant id. (In fact, it may be convenient to group units of work into separate, multiple participants, which are used by the service and each of which is enlisted with the conductor).

At some point the client decides to Terminate the atom, which causes Prepare messages to all enlisted participants. The participant on receiving this message should log the information required to either Confirm or Cancel work done for this atom, so that it can either complete the work of the atom, or roll it back. If it can do this, it sends a VOTE/Ready message to the conductor; if it can’t do this it sends a VOTE/Cancel message back. (The messages between the conductor and the participant are Cohesion Protocol Messages.)

If the conductor receives any VOTE/Cancel messages then it sends a CANCEL message to all registered participants. Otherwise it waits to be told by the client whether to send a CANCEL or a CONFIRM to all of them. The participants do whatever makes sense to them, in either case. A cancel might reverse database changes, or do some other compensatory work that makes sense for the web service provider. The client is not aware of the details, but it may know that the Contract (legal or computerese) it has with the service implies certain things about a cancellation (like the web service won’t go ahead with a credit card transaction).

Note that in most standard 2PC-based systems the coordinator (equivalent of the conductor) automatically commits (confirms) if all the participants vote ready. Here we deliberately hand the decision up to the client. This helps the client make complex decisions about the Outcome of the atom (confirm, cancel). These decisions are based on business rules and other (application-related) atom outcomes in a very plastic way. It is expected that the client will take a higher level, cohesion-style approach to coordinating the outcome of all of its work (involving many atoms), as discussed in the last section.

There are a couple of refinements that should be mentioned.

A web service is a highly autonomous actor, which can decide to withdraw or leave a cohesion. This implies that any participants it has enrolled may be asked to Resign from the atom they are enrolled with. This can only happen if they are Ineffectual (have made no significant changes). If they have made significant changes they must send an unsolicited VOTE/Cancel, which will cause the whole atom to be cancelled.

It is also possible for a participant to send an unsolicited VOTE/Ready.

A participant is free to act as a conductor to some underlying participant(s). If this happens then we end up with a tree of participants, all of which are involved in the original atom. The combination of a participant and a conductor is sometimes viewed (as in the BEA submission) as a “sub-coordinator”, although there is no need for a special actor to be defined to allow this double role to be performed.
Crash Recovery and Addressing

A final extension of the diagram used previously shows an actor called a Cohesion Manager, and one called a Redirector.

It is always possible that a receiver for a cohesion protocol message may be transient, and that a replacement endpoint may be put in its place. If that happens then the sender can try to obtain a replacement address, a facility which is provided by a redirector. A redirector allows transient actors to hand over their responsibilities. Conductors and participants tell each other about their redirector(s). This preserves the autonomy of parties and counterparties.

When a cohesion protocol endpoint wants to communicate it uses a compound Cohesion Protocol Address. The first part is meaningful for the carrier protocol being used for communication between the two endpoints. (i.e. it will permit a message to be delivered to a receiver). The second part is an opaque suffix, which might be bound to a refined address, or to an opaque appendix of a URL, or to a header for a particular carrier protocol. This may be used to route a message from a listener to the final, intended receiver. If an address is invalid then redirection should always be able to ultimately yield the address of a Cohesion Manager. This is a backstop receiver which can respond “addressee unknown here”. Without this the sender will not be able to distinguish between a communications failure and the absence of a receiver. In certain crash recovery scenarios the absence of a receiver enables conclusions to be drawn, whereas inability to transmit has to cause retries. It is necessary to provide a means to distinguish these two circumstances.

Terminology—Formal definitions

	Message
	A datum which is produced and then consumed.

	Sender
	The producer of a message.

	Receiver
	The consumer of a message.

	Transmission
	The passage of a message from a sender to a receiver.

	Endpoint
	A sender or receiver.

	Address
	An identifier for an endpoint.

	Carrier Protocol
	A protocol which defines how transmissions occur.

	Carrier Protocol Address
	The address of an endpoint for a particular carrier protocol.

	Cohesion Protocol Address
	A compound address consisting of a mandatory carrier protocol address and an optional opaque suffix.

	Actor
	An entity which executes procedures, a software agent.

	Application
	An actor which uses the Cohesion Protocol.

	Application Message

	A message produced by an application and consumed by an application.

	Application Endpoint
	An endpoint of an application message.

	Operation
	A procedure which is started by a receiver when a message arrives.

	Application Operation
	An operation which is started when an application message arrives.

	Contract
	Any rule, agreement or promise which constrains an actor’s behaviour and is known to any other actor, and upon which any other knowing actor may rely.

	Appropriate
	In accordance with a pertinent contract.

	Inappropriate
	In violation of a pertinent contract.

	Service

	An actor which on receipt of an application messages may start an application operation which is appropriate. For example, a process which advertizes an interface allowing defined RPCs to be invoked by a remote client.

	Client
	An actor which sends application messages to services.

	Effect
	The changes induced by the incomplete or complete processing of a set of procedures by an actor, which are observable by another contemporary or future actor, and which are made in conformance with a contract known to any such observer. This contract must state the countereffect of the effect, and is known as the countereffect contract. An effect is Completed when the change-inducing processing of the set of procedures is finished. [Need an indirect or consequential damage exclusion clause]

	Ineffectual
	Describes a set of procedures which has no effect.

	Countereffect
	An appropriate effect intended to counteract a prior effect.

	Countereffect Contract
	The contract which governs the relationship between the effect and the countereffect of a procedure. In the absence of any other overriding contracts the countereffect contract is the promise that

“The countereffect will attempt so far as is possible to reverse or cancel the effect such that an observer (on completion of the countereffect) is unaware that the effect ever occurred, but this attempt cannot be guaranteed to succeed”.

	Cancel
	Process a countereffect for the current effect of a set of procedures.

	Confirm
	Ensure that the effect is completed of a set of procedures.

	Prepare
	Ensure that of a set of procedures is capable of being successfully instructed to cancel or to confirm.

	Outcome
	A decision to either cancel or confirm.

	Participant
	A set of procedures which is capable of receiving instructions from a conductor to prepare, cancel and confirm. A participant must also have a cohesion protocol address to which these instructions will be delivered, in the form of cohesion protocol messages. A participant is identified by a Participant Identifier (a globally unique identifier).

	Participant Identifier
	A globally unique identifier assigned to a participant.

	Atom
	A set of participants (which may have only one member), all of which will receive instructions that will result in a homogeneous outcome. (Transitively, a set of operations, whose effect is capable of countereffect.) An atom is identified by an Atom Identifier (a globally unique identifier).

	Conductor
	An actor which decides the outcome of a single atom, and has a lifetime which is coincident with that of the atom. A conductor can issue instructions to a participant to prepare, cancel and confirm. These instructions take the form of cohesion protocol messages. A conductor is identified by its atom’s atom identifier. A conductor must also have a cohesion protocol address to which participants can send cohesion protocol messages.

	
	

First DRAFT Cohesion Protocol Description: Messages and Contracts

Peter Furniss

Copyright © Choreology Ltd, 2001. Subject to OASIS IPR policy.

21 April 2001

Context

An application message which communicates an operation of an atom from the client to the service is “augmented” with a context.

	Parameter
	

	Atom identifier
	

	Conductor address
	

Meaning:

If there are changes from operations induced by the receipt of this message, these changes are to be subject to the decision of the atom. If this atom is unknown to the service receiving an augmented message, the ENLIST message shall be sent to the conductor.

Note on Augmentation:

“Carrying” the context can be achieved in several ways – it may be in a header/envelope, or in a separate message on the same connection, among other means.

It is possible for a responder to pass on the context in a further message to some other entity – this can occur whether or not the first responder is itself registered (c.f. transactional server in OTS).

Protocol Messages

ENROLL

Sent from a participant to the conductor (using the address in a received context)

	Parameter
	

	Atom identifier
	

	Participant address
	

	Response_requested
	yes/no

Meaning:

Sender wants to be a participant in this atom

Comments:

The participant address is always needed, even when this is sent on a connection of some kind – the connection would allow the register-reply to come back, but may not still exist when the later messages are sent.

This message can be piggy-backed on an application message (typically on an application reply).

Response_requested is set to “yes” if an ENROLLED response is required.

The ENROLLED response will be necessary in the following cases:

a) Where the receipt of a PREPARE message has triggered processing that requires the enrolment of another participant – the first participant cannot send a VOTE until it can be sure the new participant is enrolled.

ENROLLED

Sent from conductor to participant that has just sent a ENLIST with a Response_requested value “yes”.

	Parameter
	

	Atom identifier
	

Meaning:

The participant is enrolled in the atom – termination messages will be sent to it.

RESIGN

Sent from a participant to the conductor if the operations of the atom have had no effect

	Parameter
	

	Atom identifier
	

	Participant address
	

	Response requested
	

Meaning:

The operations had no effect; the sender is no longer to be a participant in this atom.

Comments:

Response_requested is set to “yes” if a RESIGNED response is required. It can be sent as a response to PREPARE, instead of VOTE.

RESIGN is equivalent to readonly vote in some other protocols, but can be issued early. The RESIGNED response will be needed if no PREPARE has been received, to ensure

RESIGNED

Sent from conductor to participant that has just sent a RESIGN with a Response_requested value “yes”.

	Parameter
	

	Atom identifier
	

Meaning:

The participant is enrolled in the atom – termination messages will be sent to it.

PREPARE

Sent from conductor to participant

	Parameter
	

	Atom identifier
	

Meaning:

Determine whether the received operations of the atom can be performed (or have been performed) and reply appropriately

Comment:

This message can be piggy-backed on an application message (in which case the operations of that message are referred to, as well as any prior messages for that atom).

PREPARE need not be sent to participants from whom VOTE has been received.

VOTE

Sent from participant to conductor, either unsolicited or in response to PREPARE.

	Parameter
	
	

	Atom identifier
	
	

	Vote
	See below
	

	Timeout
	applicable in the assume commit, assume rollback cases
	

	Vote
	Meaning

	cancel
	the operations cannot be performed and the effects have been undone; the atom is no longer known to this participant

	ready
	the operations can be confirmed and can be cancelled, as may be instructed by the conductor. The level of isolation is a local matter (i.e. is the participants choice, as constrained by the contract) – other access may be blocked, may see applied results of operation or may see original state (or cancelled)

	ready, will assume confirm
	as ready, but will lose the ability to cancel after the timeout

	ready, will assume cancel
	as ready, but will automatically cancel after the timeout

VOTE may be associated with an application message – typically the application response to a message associated with a prepare.

CONFIRM

Sent to a participant from whom VOTE with one of the ready results has been received

	Parameter
	
	

	Atom identifier
	
	

Meaning :

The atom is confirmed. The participant is released from the obligation to reverse the operations of the atom. The effects of the operation can be made available to everyone (if they weren’t already)

Comment:

No further messages for the atom will be sent, apart from resending the confirm in recovery.

CONFIRMED

Meaning:

The confirm has been applied

Comment:

This message is really only needed to make the recovery logging work.

CANCEL

Sent to a participant at any time before (and unless) CONFIRM has been sent.

	Parameter
	
	

	Atom identifier
	
	

Meaning:

The atom is cancelled. The countereffects of any operations should be applied. The participant is released from the obligation to confirm the operations.

Comment:

No further messages for the atom will be sent, apart from any resending in recovery.

CANCELLED

Sent by participant in reply to CANCEL.

Meaning:

The cancellation has been applied

Comment:

This message is really only needed to make the recovery logging work.

CONDUCTOR_STATUS

Sent by conductor at any time, when it is (for whatever reason) uncertain whether the participant received the last message or, equivalently, it received no reply. Also sent in response to a received PARTICIPANT_STATUS, in particular states.

	Parameter
	
	

	Atom identifier
	
	

	Status
	See below
	

	Status
	Meaning / Previous message sent/received

	Active
	ENROLL received

	Preparing
	PREPARE sent

	Confirming
	CONFIRM sent

	Cancelling
	CANCEL sent

	Inaccessible
	the atom may or may not be known, but the status cannot be determined at the moment

	Unknown
	the atom is not known: this implies the atom is cancelled.

Meaning:

Informs the participant of the current status of the conductor. For status Preparing, Confirming and Cancelling, this effectively repeats the last message sent and the participant is to reply appropriately (possibly repeating a lost message from the participant). Status Active, Inaccessible and Unknown are only sent in response to a received PARTICIPANT_STATUS message.

A participant should always reply immediately to a received CONDUCTOR_STATUS with Status Preparing, Confirming or Cancelling, using PARTICIPANT_STATUS only if none of the other messages are appropriate. (In particular, if the participant is ready, it should resend the VOTE)

Unknown must not be sent unless it has been determined for certain that the conductor does not exist any more and will not exist. If there could be persistent information corresponding to the conductor, but it is not accessible from the entity receiving the PARTICIPANT_STATUS message (or the entity cannot determine whether any such persistent information exists), the response must be Inaccessible.

PARTICIPANT_STATUS

Sent by participant at any time, when it is (for whatever reason) uncertain of the state of the atom as known to the conductor. Also sent in response to a received CONDUCTOR_STATUS, in particular states.

	Parameter
	

	Atom identifier
	

	Status
	See below

	Timeout
	applicable only in the assume commit, assume rollback cases

	Status
	Meaning / Previous message sent/received

	Active
	ENROLL sent

	Ready
	VOTE sent

	Ready, assume confirm
	VOTE sent

	Ready, assume cancel
	VOTE sent

	Inaccessible
	the atom may or may not be known, but the status cannot be determined at the moment

	Unknown
	the atom is not known; this implies the previous termination message (CANCEL or CONFIRM) did get through and was replied to

Meaning:

Informs the coordinator of the current status of the participant. For status Ready (and its variations), this effectively repeats the VOTE message. Status Active, Inaccessible and Unknown are only sent in response to a received CONDUCTOR_STATUS message.

Unknown must not be sent unless it has been determined for certain that the participant does not exist any more and will not exist. If there could be persistent information corresponding to the participant, but it is not accessible from the entity receiving the CONDUCTOR_STATUS message (or the entity cannot determine whether any such persistent information exists), the response must be Inaccessible.

Comment:

A CONDUCTOR_STATUS/PARTICIPANT_STATUS exchange that determines that one or both sides are in the active state does not require that the atom be cancelled (unlike some other two-phase commit protocols). The atom may be continued, with new application messages carrying the same context. Similarly, if the participant is ready but the coordinator is active, there is no required impact on the progression of the atom.

REDIRECT

Sent from either side when the address it has previously offered is no longer valid

	Parameter
	

	Atom identifier
	

	Old address
	The original address, now replaced

	New address
	The new address

Meaning:

The entity (conductor or participant) sending the message should now be accessed using the new address, not the old one. Access to the new address (especially the *_STATUS messages) should be able to return

Comment:

This may occur in various circumstances, mostly involving a failure.

Note: There is some interaction between redirection and the status query exchange.

Participant

Service

Conductor

Party

Counterparty

Client

Participant

Application messages

Service

Cohesion Protocol messages

Application messages

Client

Counterparty

Service

Application messages

Client

Counterparty

Service

Party

S

Operations

S

S

C

C

S

S

S

C

Cohesion

Cohesion

Composer

(

(

(

Cohesion Protocol messages

Application messages

Redirector

Redirector

 Cohesion

 Manager

 Cohesion

 Manager

Participant

Conductor

Client

Counterparty

Party

Participant

OASIS Models sub-committee 1
Scope, Requirements, Actors, Terminology, Model Overview

First Draft Protocol

