
Organization for the Advancement of Structured Information Systems

Business Transaction Protocol

An OASIS Committee Specification

	Working draft 0.1(pre-London)
	14 June 2001

	Working draft 0.2 (London)
	18 June 2001

	Working draft 0.3a (circulated)
	12 July 2001

	Working draft 0.3b (not circulated)
	17 July 2001

	Working draft 0.3c (circulated)
	20 July 2001

	Working draft 0.4 (circulated; incorporates PRF/AC material)
	25 July 2001

Copyright notices and acknowledgements

Copyright © 2001, [standard OASIS terms]

Employees of the following companies participated in the finalization of this specification as members of the OASIS Business Transactions Technical Committee:

Applied Theory

BEA Systems, Inc.

Bowstreet, Inc.

Choreology Ltd.

Entrust, Inc.

Hewlett-Packard Co.

Interwoven Inc.

IPNet Solutions

Sun Microsystems Computer Corp.

Talking Blocks Inc.

In addition, the following individual members of OASIS are members of the Technical Committee:

[TBD]

Typographical and Linguistic Conventions and Style

The initial letters of words in terms which are defined (at least in their substantive or infinitive form) in the Glossary are capitalized whenever the term used with that exact meaning, thus:

Cancel

Participant

Application Message

The first occurrence of a word defined in the Glossary is given in bold, thus:

Coordinator

Such words may be given in bold in other contexts (for example, in section headings or captions) to emphasize their status as formally defined terms.

Abbreviations defined in the Glossary are always given in bold:

C (PREPARE (P
The names of abstract BTP protocol messages are given in upper-case throughout:

BEGIN

CONTEXT

RESIGN

The values of elements within a BTP protocol message are indicated thus:

BEGIN/atom

BTP protocol messages that are related semantically are joined by an ampersand:

BEGIN/atom & CONTEXT

BTP protocol messages that are transmitted together in a compound are joined by a + sign:

ENROL + VOTE

XML schemata and instances are given in Courier:

<btp:begin> … </btp:begin>

Illustrative fragments of code in other languages, such as Java, are given in Lucida Console:

int main (String[] args)

{

}

Terms such as MUST, MAY and so on, which are defined in RFC [TBD number], “[TBD title]” are used with the meanings given in that document but are given in lowercase bold, rather than in upper-case:

A Participant must send one of RESIGN, READY or CANCELLED to its Coordinator.

Contents

2Copyright notices and acknowledgements

3Typographical and Linguistic Conventions and Style

5Contents

8A Note on the Specification

9Part 1. Purpose and Features of BTP

9Introduction

11Purpose and Scope of the Business Transaction Protocol

12Relationship to Other Standards and Technologies

13Overview of the Protocol

13A Survey of Key Concepts and Roles

16User-defined Participants

17Coordination of Atomic Business Transactions

17The Life-cycle of an Atom

20Sub-coordination through Interposed Coordinators

20Composition of Cohesive Business Transactions

22The Lifecyle of a Cohesion

22Extending the Transaction Tree to Incorporate Cohesions

22Message Transmisssion in BTP

22Relationship of Applications and BTP Recapitulated

23Part 2. Formal Specification of BTP

23Actors, Roles and Relationships

23Basic roles

24Superior

25Inferior

26Enroller

27Specialized Roles

27Factory

29Atom Initiator

29Cohesion Initiator

31Coordinator

31Composer

31Sub-composer

31Volatile Terminator

33Persistent Terminator

33Client

34Service

34Communicator

35Participant

35Client-Communicator-Service and Coordinator-Participant Relationships

36Status Requestor

36Sub-coordinator

37Redirector

38Addressing

38Addresses

40Abstract Messages and Associated Contracts

40Addresses

42Request/response pairs

42Messages

42Qualifiers

43CONTEXT

44BEGIN

45BEGUN

45ENROL

47ENROLLED

47RESIGN

48RESIGNED

49PREPARE

49READY

51CONFIRM

51CONFIRMED

53CANCEL

53CANCELLED

55MIXED

56CONTRADICTION

56SUPERIOR_STATE

58INFERIOR_STATE

60REQUEST_CONFIRM

61REQUEST_STATUS

61STATUS

63REDIRECT

64FAULT

66State Tables

67Failure Recovery

68XML Schema for Message Set

69Compounding of Messages

70Carrier Protocol Bindings

71Implementers’ View

72Conformance

72Participant

72Atom coordinator

72Cohesion composer

72Communicator/message gateway

73Part 3. Appendices

73A. Glossary

77B. Examples and Use-cases

78C. BTP and Business Process Management

79D. BTP and Security

A Note on the Specification

After prefatory material, this specification falls into three parts.

The first part (entitled “Purpose and Features of BTP”) is intended to explain why a new business transactions protocol has been created, and to outline and convey its main features and characteristics. This part gives the reader a detailed, but informal view of the protocol.

The second part (entitled “Formal Specification of BTP”) is the definitive guide to implementers, and has precedence over any statement of, or inference from, the first or third parts. This part includes a set of formal definitions of terms, under the heading of “Glossary”.

The third part (entitled “Appendices”) describes the relationship of BTP to other standards initiatives, and gives examples, use-cases, and helpful references. This part is intended to situate and exemplify the BTP protocol, and like the first part, is informal and expository.

Part 1. Purpose and Features of BTP

Introduction

This document, which describes and defines the Business Transaction Protocol (BTP), is a Committee Specification of the Organization for the Advancement of Structured Information Standards (OASIS). The standard has been authored by the collective work of representatives of [TBD number] software product companies (listed on page [TBD]), grouped in the Business Transactions Technical Committee (BT TC) of OASIS.

The OASIS BTP Technical Committee began its work at an inaugural meeting in San Jose, Calif. on 13 March 2001, and this specification was endorsed as a Committee Specification by a [unanimous] vote on [date].

BTP uses a two-phase outcome coordination protocol to create atomic effects (results of computations). BTP also permits the composition of such atomic units of work (atoms) into cohesive business transactions (cohesions) which allow application intervention into the selection of the atoms which will be confirmed, and of those which will be cancelled.

BTP is designed to allow transactional coordination of participants which are part of services offered by multiple autonomous organizations (as well as within a single organization). It is therefore ideally suited for use in a Web Services environment. For this reason this specification defines communications protocol bindings which target the emerging Web Services arena, while preserving the capacity to carry BTP messages over other communication protocols. Protocol message structure and content constraints are schematized in XML, and message content is encoded in XML instances.

The BTP allows great flexibility in the implementation of business transaction participants. Such participants enable the consistent reversal of the effects of atoms. BTP participants may use recorded before- or after-images, or compensation operations to provide the “roll-forward, roll-back” capacity which enables their subordination to the overall outcome of an atomic business transaction.

The BTP is an interoperation protocol which defines the roles which software agents (actors) may occupy, the messages that pass between such actors, and the obligations upon and commitments made by actors-in-roles. It does not define the programming interfaces to be used by application programmers to stimulate message flow or associated state changes.

The BTP is based on a permissive and minimal approach, where constraints on implementation choices are avoided. The protocol also tries to avoid unnecessary dependencies on other standards, with the aim of lowering the hurdle to implementation.

(
For more information on the genesis and development of BTP, please consult the OASIS BT Technical Committee’s web-site, at

http://www.oasis-open.org/committees/business-transactions/
If you have a question about the functionality of BTP, or wish to report an error or to suggest a modification to the specification, please subscribe to:

bt-maintenance@oasis-open.org
by sending a mail with the word “subscribe” in the body of the message.

As of the date of publication of this specification the OASIS BT Technical Committee is still in existence, with the charter of

· maintaining the specification in the light of implementation experiences

· coordinating publicity for BTP

· liaising with other standards bodies whose work affects or may be affected by BTP

· reviewing the appropriate time, in the light of implementation experience and user support, to put BTP forward for adoption as an OASIS standard

If you would like to find a speaker to present BTP at a meeting or conference, please send mail to:

publicity.bt@oasis-open.org
Any employee of a corporate member of OASIS, or any individual member of OASIS, is entitled to apply to join the Technical Committee. Please send mail to:

membership.bt@oasis-open.org
Purpose and Scope of the Business Transaction Protocol

The Business Transaction Protocol is designed to extend atomic transactional guarantees to linked elements of business processes executing in different organizations. Examples include electronic procurement, shopping carts, financial instrument trade execution, content publication or replication: in short, any interaction where data representing valuable information, goods or services must be manipulated or shared in concert.

BTP is designed to accommodate four underlying requirements:

· Ability to handle multiple possible successful outcomes to a transaction, coupled with the ability to involve operations whose effects may not be isolated or durable; in other words, the ability to relax the ACID properties of classic atomic transactions

· Coordination of autonomous parties, whose relationships are governed by contracts, rather than the dictates of a central design authority

· Discontinuous service, where parties are anticipated to suffer outages during their lifetime, and coordinated work must be able to survive such outages

· Interoperation, using XML, over multiple communications protocols

While the protocol is highly suitable for an inter-organizational Web Service environment, it can also be used to coordinate updates in conventional databases which offer a distributed transaction interface such as XA. It is also capable of integration with conventional atomic transaction services, such as the OMG’s Object Transaction Service.

Unlike flat transactional protocols, BTP allows the creation of cohesive business transactions or cohesions, which have many possible successful outcomes. Cohesions are made up of atomic groups of operations or atoms, which can each be confirmed or cancelled in a highly flexible way, under the control of a supervising business process. At the end of its lifetime a cohesion resolves to a strictly atomic outcome.

Unlike nested transaction protocols, BTP does not anticipate the use of specialized resources, but its cohesion mechanism does provide the structuring and fault isolation benefits of nested transactions.

BTP allows transactions to be processed which possess the well-known ACID (atomicity, consistency, isolation, durability) properties; it also enables transactions to be created where isolation and durability are consciously relaxed.

Relationship to Other Standards and Technologies

[TBD]

A detailed examination of the potential relationship to specific business process management standards is contained in Appendix C, “BTP and Business Process Management”.

A statement on the requirements for a future secure version of BTP is contained in Appendix D, “BTP and Security”.

The web-site of the OASIS BT Technical Committee should be consulted for further information on security standardization initiatives current at the time this specification was written.

Overview of the Protocol

A Survey of Key Concepts and Roles

The Business Transaction Protocol (BTP) is an interoperation protocol. It defines the messages that pass between programs, and the roles that those programs play, in terms of the behaviours they must exhibit when receiving or sending such messages

BTP does not define an application programming interface (API), although a simple illustrative API in Java is used in the first part of this specification to help explain how an application can take advantage of BTP. Implementers are free to define any type of API using any language.

BTP provides a stack of facilities:

[* * * add communicator to stack., possibly Factory * * *]

The purpose of BTP is to coordinate work across a set of services, each of which may be offered by a different organization. To take an example: A customer may want to buy goods, insurance and shipping from different suppliers.

If these goods and services are to be offered for system-to-system procurement then each supplier must make its offer in a standard fashion. In BTP terms this means that each supplier must make its offer within the framework of a BTP Participant interface. This standard interface, or set of predefined messages, can be implemented in any way that makes sense for the supplier’s business. The facility to create user-defined Participants, containing any useful business logic, allows any service to be equipped to take part in a BTP coordinated outcome.

For a coordinated outcome to occur one party to the business transaction must act as (or appoint a delegate to act as) a Coordinator. In our example we might see an arrangement where the customer acts as the Coordinator, and the different suppliers (service offerers) act as Participants:

A purchaser of offered services has to decide which offers to accept, and which combinations of goods or services make sense. In the example already given it makes little sense to order shipping or insurance services if the goods are not available at a suitable price. The three elements of this multi-part business transaction are therefore tied together: the customer is likely to want all of them or none of them. This “all or nothing” choice is modelled in BTP by atomic business transactions or “atoms”.

Atomic transaction coordination is the part of BTP which allows distributed pieces of work to be gathered into a single unit which either completes as a whole, or is cancelled as a whole. This facility is provided using the well-known two-phase commit protocol (with presumed abort).

Individual atoms can also be linked together in a higher-level coordination unit called a cohesive business transaction or “cohesion”.

A cohesion can contain several candidate atoms. These atoms might represent offers or quotes, from which a buyer will select. The application applies business rules to determine which of these candidates will ultimately be included in the completed cohesion. Atoms can be added to the cohesion, and removed from it, to modulate the pool of candidates over the lifetime of the cohesion. Eventually the application business process will confirm the final set of atoms that has been selected, and the cohesion will resolve to a single atomic outcome for all those atoms (i.e. they will all be confirmed, or will all be cancelled).

We can apply the cohesion facility to the procurement example already given. The customer may decide that insurance is optional in the business transaction. If the goods and shipping can be obtained at a reasonable price and for an appropriate delivery time, then the customer may judge that insurance is certain to be available at some future point. Perhaps the price of the standard insurance offered by the shipping supplier is not acceptable. In this case the customer will accept (confirm) the offers for goods and shipping, but reject the insurance offer.

The goods and shipping become the final atomic unit of work: they must both be purchased for the business transaction to make sense, or they must both fail. In either eventuality the insurance offer is rejected.

The net effect is that the final atomic outcome is more restricted than in the earlier example of a single atomic transaction, where this kind of partial outcome was not permitted:

The next sections of this overview look in more detail at the three key players in the BTP protocol: user-defined Participants, Coordinators of Atomic Business Transactions and Composers of Cohesive Business Transactions.

They include descriptions of how BTP Atoms and Cohesions fit in to the work of a distributed application (such as a client-web service environment).

User-defined Participants

[TBD]

Coordination of Atomic Business Transactions

The Business Transaction Protocol allows the work of several Participants services to be coordinated. At its heart is a modified version of the well-known two-phase commit protocol. An Initiator application instigates an Atomic Business Transaction. A Coordinator manages the transaction by keeping track of a set of enrolled Participants.

Each Participant carries out work (performs computations) on behalf of the transaction. If the application decides to cancel the transaction (or one of the Participants decides it must cancel) then the whole atom is cancelled. This means that each Participant is instructed to process a Cancel operation. Cancel functionality is defined for each Participant by its creator. A Cancel operation might reverse state changes, or it might process a compensatory action of some other kind.

Conversely, if all Participants are able to complete their work when requested to do so by the controlling application then the transaction is Confirmed. The protocol ensures that a confirmation is processed by all participants in the atomic business transaction (or Atom, for short).

Applications interact with atomic business transactions in three ways. An Atom is created and terminated by application code. An application can send messages from one processing location to another, and can associate such messages with a particular BTP atom. Finally, the application program which receives such messages can Enrol groups of computations (operations) with the Atom. Each enrolled operation group can have many forward operations, that are used to accomplish work as part of the atomic business transaction, and must have one Cancel operation. This group of related, cancellable operations is called a Participant.

The following diagram illustrates the relationship between the key application roles (Initiator, Client and Service) and the key protocol roles (Coordinator and Participant).

[TBD The four-box diagram]

The Life-cycle of an Atom

Examining the typical life-cycle of an atomic business transaction helps to explain these relationships in more detail. Please note that this exposition is informal and explanatory, and glosses over some of the detailed choices offered by BTP to users and implementers. In particular, it does not describe the use of Communicators. This topic is dealt with in a later sub-section of this overview, “Messsage Transmission in BTP”. It also does not show the possibility of spontaneous voting, which is discussed in the same section.

Atom creation

An Initiator application sends BEGIN to a Factory. A Coordinator is allocated to the Atom, and a CONTEXT is generated. The CONTEXT is inserted in a BEGUN, and the BEGUN is sent to the Initiator.

Sending an Atom-associated Application Message from Client to Service

The Initiator, acting as a Client, sends an Application Message to a BTP-aware Service. The message is passed in conjunction with the CONTEXT which was embedded in the BEGUN. The CONTEXT contains an Atomic Identifier, and the Address of the Atom’s Coordinator. The message is received by the Service, along with the CONTEXT. The Service now reacts to the message from the Client, and in the process may use the CONTEXT to create a Coordinator-Participant relationship.

Creating Participants
A BTP-aware Service reacts to an Atom-associated message by invoking some kind of operation or computation. The nature of the work done by this operation is completely determined by the application Service. If the Service wants some of this work to be performed on behalf of, or as part of, the Atomic Business Transaction then it must delegate that part of its work to a Participant.

A Participant can be made up of many operations whose purpose is to progress the work of the application, but is always possesses a single Cancel operation. If the Cancel is invoked then all the work of the forward progress operations will be reversed or, to be more precise, Counter-effected.

The Service may delegate Atom-associated work to more than one Participant. Each Atom-associated Application Message may cause the Service to use a different Participant, or the Service may re-use the same Participant to handle work for different Application Message deliveries.

Enrolling a Participant with a Coordinator
Each Participant is located or created by the Service. A Participant can be thought of as a relationship between a particular Atom (and its associated Coordinator) and a Service. This relationship is created by sending an ENROL to the Coordinator. This message specifies an Inferior Identifier, which uniquely identifies the Participant, and also provides an Address for the Participant. The Coordinator responds by sending an ENROLLED back to the entity that sent the ENROLL. (The Enroller might be the Service, or the Participant may be charged by the Service with enrolling itself.)

Sending an Application Message back from the Service to the Client

The Service may use any Enrolled Participant to perform work for the Atom concerned. Once the Service has completed its operation in response to the Client’s Application Message, it may send an Application Message back to the Client. The Application Message may be a normal message or a Fault. Any Fault will invalidate Participant enrollments carried out by the Service as a result of the receipt of the original Client Application Message.

Requesting the Termination of an Atom

A Client can transmit as many Atom-associated Application Messages as it likes to one or more Services, each of which may, in turn, involve as many Participants as it likes in performing Atom-associated work. When the Client concludes that all the desired work has been performed it may act as a Terminator, by sending a REQUEST_CONFIRM to the Coordinator. This message asks the Coordinator to perform the two-phase commit coordination protocol with all of its Enrolled Participants.

Performing the “Two-phase Commit” Protocol

The Coordinator, once asked to attempt to bring the Atom to a Confirmed state, processes the first (prepare) phase of the 2PC protocol. It sends a PREPARE to all enrolled Participants. Each Participant is bound to respond by sending a READY, a CANCELLED or a RESIGN.

A RESIGN indicates that the Participant has had no significant involvement with the Atom (has never processed an operation, or its operations’ effects have been nil).

A READY indicates that the Participant has processed its forward operations successfully, and is in a position to either process its Cancel operation or its Confirm operation (i.e. to “roll back” or to “roll forward”).

A CANCELLED indicates that the Participant has not been able to process its forward operations successfully, or has not been able to prepare to execute either of its Confirm or Cancel operations.

If the Coordinator receives a single CANCELLED then the whole Atom must be Cancelled. This is achieved by the Coordinator sending CANCEL to all of its enrolled Participants.

If the Coordinator only receives READY or RESIGN messages then it reacts by sending a CONFIRM to all Participants that sent it a READY.

On receipt of a CONFIRM, a Participant will typically send CONFIRMED to its Coordinator. Likewise, on receipt of a CANCEL, a Participant will usually send CANCELLED to its Coordinator. (It is possible for a Participant to contradict its Coordinator’s instructions by making a unilateral decision to Confirm or Cancel.)

In any event, the Coordinator will send an outcome message to its Terminator. This will be one of CONFIRMED, CANCELLED or MIXED.

(MIXED is only sent if different Participants, enrolled with a single Coordinator, end up sending some combination of CONFIRMED and CANCELLED, such that there is no single outcome. This circumstance is rare, but possible. It indicates that the BTP protocol has been broken, and that some kind of administrative repair will likely be needed.)

Once an outcome has been delivered to the Terminator the Atom is completed or finished, and its Coordinator ceases work.

Sub-coordination through Interposed Coordinators

[TBD]

Composition of Cohesive Business Transactions

Each Atom’s outcome (confirmed or cancelled) is determined by the intersection of two decisions. For an Atom to confirm all its Participants must have sent a READY to the Atom’s Coordinator. In addition the Atom’s Terminator must have indicated that it is happy for the Atom to be confirmed.

An Atom Terminator is responsible for communicating the view of the Initiator application, or of its delegate, on the outcome of the atomic business transaction.

A Coordinator can have two kinds of Terminator. A volatile Terminator has no durable record of its desired outcome, and is therefore not the ultimate decision maker. It expresses its opinion to the Coordinator by sending a REQUEST_CONFIRM or a CANCEL. (It is very likely that the Terminator role in this case will be performed by the Initiator application itself. However, the application may have appointed a proxy or delegate to carry out this role, particularly in a situation where the Initiator application is not expected to survive as long as the Atom.) In the case of REQUEST_CONFIRM the Coordinator then polls its Participants to see whether they are all prepared, i.e. that they have all sent READY back to the Coordinator to indicate they are able to either be confirmed or cancelled. If they all send READY then the Coordinator sends CONFIRM to all of them; if any of them send CANCELLED then the Coordinator sends CANCEL to all of those which sent READY.

A persistent Terminator has a different relationship to the Coordinator. A persistent Terminator asks the Coordinator to poll all of its Participants to establish whether the Atom is capable of being confirmed. It does this by sending a PREPARE to the Coordinator. If the Coordinator’s Participants are all ready (able to confirm or cancel) then the Coordinator returns READY to the Terminator. The Terminator then decides, on the basis of application logic, whether or not to give the final go-ahead for the Atom to be confirmed (by sending CONFIRM), or whether to abort the Atom by sending CANCEL to the Coordinator. For the Terminator to safely send a CONFIRM it must durably record its decision to do so, prior to the message actually being transmitted. (This persistent record enables the Terminator to re-issue the CONFIRM in the event of recovery of the Terminator or the Coordinator after a crash, or long-lasting communications failure.)

 In this latter case, the Terminator is the true decision-maker. It does not merely recommend, or express an opinion, it makes the final decision. The underlying Coordinator enrolls itself, in effect as a Participant of the Terminator, and a “superior-inferior” relationship is created between the two which mimics that between a Coordinator and one of its Participants..

A Cohesion or Cohesive Business Transaction is an example of a persistent Terminator. Any number of Atom Coordinators can be enrolled as its Inferiors. (An Inferior is capable of receiving PREPARE, CONFIRM and CANCEL, and of sending RESIGN, READY, CANCELLED, CONFIRMED and MIXED to a Superior, which is in turn capable of receiving the latter, and sending the former).

A Cohesion is used as a conduit by the application for orderly communication with the underlying enrolled Coordinators. Each Cohesion is represented or managed by a Composer (a role which is analagous to the Atom’s Coordinator).

Typically each Coordinator represents an atomic unit of work that may or may not end up as part of the overall set of confirmed actions that make up the overall business transaction. The Composer sends PREPARE to each Coordinator. If the Coordinator sends READY back then its Atom becomes a candidate for inclusion in the final confirm set of the Cohesion. The application, knowing the service offered by each Atom (and observing its characteristics, such as price), will decide whether or not to ask the Composer to send CONFIRM to each of these Atom’s Coordinators. When the Composer sends a CONFIRM to one or more of its inferior Coordinators, it must durably record its intention in advance. Rejected Coordinators are sent CANCELs.

The final effect of the application’s selection from the pool of Atoms is to either cancel all Atoms, or to confirm a sub-set. The confirm sub-set is guaranteed to receive the CONFIRM message under normal circumstances, and in the event of recovery from component failures.

The confirm sub-set is therefore an atomic unit of work. The cohesion as a whole ends up with a disparate (non-atomic) outcome, where some elements are confirmed, and others are cancelled. Atoms within a Cohesion (unlike Participants of an Atom) should therefore not share data prior to confirmation with each other, as they would run the danger of basing confirmed state changes on cancelled partial changes.

The Lifecyle of a Cohesion

[TBD]

Extending the Transaction Tree to Incorporate Cohesions

[TBD]

Message Transmisssion in BTP

[TBD]

Relationship of Applications and BTP Recapitulated

[TBD]

Part 2. Formal Specification of BTP

Actors, Roles and Relationships

Actors are software agents which process computations. BTP actors are addressable for the purposes of receiving application and BTP protocol messages transmitted over some underlying communications or carrier protocol. (See section “Addressing” for more detail.)

BTP actors play roles in the sending, receiving and processing of messages. These roles are associated with responsibilities or obligations under the terms of software contracts defined by this specification. (These contracts are stated formally in the sections entitled “Abstract Messages and Associated Contracts” and “State Tables”.) A BTP actor’s computations put the contracts into effect.

One actor may play several roles, or each role may be assigned to a distinct actor. This is a choice for the implementer. An actor playing a role is termed an “actor-in-role”.

Actors may interoperate, in the sense that the roles played by actors may be implemented using software created by different vendors for each actor-in-role. The section “Conformance”, later in this part, gives guidelines on the likely groups of roles that might be implemented in a partial, interoperable implementation of BTP.

Basic roles

Some roles share a common interface (where the messages sent are identical, though the behaviour of the receiver may differ). There are two cross-role interfaces, or basic roles, of this kind:

Superior

Inferior

For example, both a Coordinator and a Composer are Superiors, and both a Participant and a Sub-Coordinator are Inferiors. Their support for one of these cross-role interfaces means that they are specializations of these basic roles.

A related role is that of

Enroller

An Enroller is responsible for establishing the Superior-Inferior relationship.

These three roles are described in the next three sub-sections.

Superior

Determines the Outcome of one or more of its enrolled Inferiors and sends a corresponding Outcome message (CONFIRM or CANCEL) to each enrolled Inferior, after having durably recorded each decision to send CONFIRM.

Each Inferior can be Enrolled with only one Superior. Messages must be exchanged between a Superior and an enrolled Inferior to prepare for the transmission by the Superior of an Outcome messsage. The Inferior acknowledges the receipt of an Outcome message by sending a CONFIRMED, CANCELLED or MIXED, although the CANCELLED acknowledgement can be omitted in one particular case (see “[TBD default cancel]” in “[TBD sub-section]”).

A Superior can receive

ENROL

from the actor that plays the role of Enroller.

A Superior can send

ENROLLED

to an Enroller.

A Superior can receive

REQUEST_STATUS

from the actor that plays the role of Status Requestor.

[* * * and what gets sent back? Does this go to an Inferior?]

A Superior can receive

READY

CANCELLED

CONFIRMED

MIXED

RESIGN

INFERIOR_STATE

from an enrolled Inferior.

A Superior can send

PREPARE

CONFIRM

CANCEL

SUPERIOR_STATE

to an enrolled Inferior.

Inferior

An enrolled Inferior can receive

PREPARE

CONFIRM

CANCEL

SUPERIOR_STATE

from its enrolling Superior.

An enrolled Inferior can send

READY

CANCELLED

CONFIRMED

MIXED

RESIGN

INFERIOR_STATE

to an enrolling Superior.

An Inferior can send CANCELLED to its enrolling Superior at any time before the Inferior durably records its Superior Identity and its decision to send READY to its Superior.

An Inferior can send CANCELLED to its enrolling Superior after it has durably recorded its Superior Identity and its decision to send CANCELLED, in the aftermath of a prior decision to send READY to its Superior.

An Inferior can send CANCELLED to its enrolling Superior in response to receiving a CANCEL and after deleting any durable record of its Superior Identity and its decision to send READY.

If an Inferior sends one of

READY

MIXED

then it must durably record its Superior Identity and its decision to send the message.

An Inferior must respond to a PREPARE sent by its enrolling Superior by sending one of

READY

CANCELLED

MIXED

RESIGN

to the Superior.

The same set of messages can also be sent spontaneously by the Inferior to its Superior.

Enroller

An Enroller can send

ENROL

to a Superior.

A Superior can send

ENROLLED

to an Enroller which has previously sent an ENROL.

The exchange of ENROL/ENROLLED creates a relationship between an Inferior and a Superior. The Inferior may also be the Enroller, or the Enroller may be another actor, in which case the Enroller is very likely to be an Application Service, a Superior Communicator acting on behalf of an Application Service, or a Factory creating a new Inferior which is enrolled with its Superior at birth.

The following diagram shows the typical order in which the messages specified above pass between a Superior and an Enroller, and then between a Superior and its enrolled Inferior. Obviously the sequence for a cancellation is different from the sequence shown for a confirmed atom.

Compound messaging and mutually contradictory Superior/Inferior outcomes can disrupt this typical order. For full details of the possible exchanges, see the later sections “[TBD abstract message set]” and “[TBD state tables]”.

Specialized Roles

These are the roles that BTP actors may perform (with the basic roles that they extend, if any, appended in parentheses). They are defined in an order based on their position in the life-cycle of Atoms and Cohesions.

Factory

Creates Superiors. The following types of Superior are created :

Coordinator

Composer

Sub-Composer

all of which are defined below.

A Factory can receive

BEGIN/atom

BEGIN/cohesion

BEGIN/atom & CONTEXT

BEGIN/cohesion & CONTEXT

from an Initiator, which sends back one of

BEGUN/atom & CONTEXT/atom

BEGUN/cohesion & CONTEXT/cohesion

in response. The CONTEXT returned identifies the newly created Superior.

There are two types of Initiator: Atom Initiator and Cohesion Initiator, which are defined immediately below.

If a Factory receives BEGIN/atom or BEGIN/atom & CONTEXT then it creates a Coordinator.

If a Factory receives BEGIN/cohesion then it creates a Composer.

If a Factory receives BEGIN/cohesion & CONTEXT then it creates a Sub-Composer.

If a factory receives a CONTEXT related to a BEGIN then the newly created Superior will be enrolled as an Inferior of the Superior identified by the CONTEXT supplied.

The following diagrams indicates the relationships of the Initiator and Factory, and the resulting relationship of the newly created Superior to a prior Superior, or the absence of such a relationship, depending on the messages sent to the Factory.

In the first case, where no CONTEXT accompanies the BEGIN, the newly created Superior is freestanding. (Dotted lines and greyed type indicate a putative entity or relationship, that has not in fact been created.)

In the second case, where a CONTEXT is supplied alongside the BEGIN to the Factory, the newly created Superior has a relationship with the prior Superior identified by that CONTEXT.

Atom Initiator

Requests a Factory to create a Coordinator (which represents an Atom). A Coordinator is always an Inferior (i.e. it is able to act as an interposed Sub-coordinator, and to be an Inferior to a cohesion Composer).

An Atom Initiator can send

BEGIN/atom

BEGIN/atom & CONTEXT/atom

BEGIN/atom & CONTEXT/cohesion

to a Factory, which in all cases sends back

BEGUN-inferior & CONTEXT/atom

in response. The CONTEXT/atom returned identifies the newly created Coordinator, and the BEGUN-inferior identifies the Coordinator qua Inferior.

Cohesion Initiator

Requests a Factory to create a Composer (which represents a Cohesion), or a Sub-composer.

A top-level or root Composer is not an Inferior. This specification does not define an interoperable message set for the relationship between an application actor and a Composer. There is no defined role of “cohesion terminator” in this specification. Implementers are expected to develop application programming interfaces of their own design for this purpose.

However, for the purposes of allowing implementers to create interfaces to Composers, the creation of a Composer causes an address and identifier to be sent back to the Cohesion Initiator in a BEGUN, just as with all other Superior specializations. This address is cognate to an Address-as-Inferior, but is termed an Address-as-Composer to make it clear that there is no definition of the actual interface that may be associated with the address (i.e. the messages that may be sent to the Address-as-Composer are not defined by this specification).

A Sub-composer is an Inferior, because it is related to a Superior. See the sub-section “Sub-composer” below for a more detailed discussion.

A Cohesion Initiator wishing to create a Composer must send

BEGIN/cohesion

to a Factory, which sends back

BEGUN/cohesion & CONTEXT/cohesion

in response. The CONTEXT/cohesion returned identifies the newly created Composer. The BEGUN/cohesion identifies the Composer as a putative service to an application actor which will control its resolution, containing an Address-as-Composer and a Cohesion Identifier.

A Cohesion Initiator wishing to create a Sub-composer must send

BEGIN/cohesion & CONTEXT/atom

BEGIN/cohesion & CONTEXT/cohesion

to a Factory, which in either case sends back

BEGUN-inferior & CONTEXT/cohesion

in response. The CONTEXT/cohesion returned identifies the newly created Sub-composer, and the BEGUN/cohesion identifies the Sub-composer qua Inferior.

A CONTEXT/cohesion cannot be related to an Application Request. In other words, an Application Request must be associated with an Atom by travelling as a relative of a CONTEXT/atom.

Coordinator

A Coordinator is a Persistent Terminator (see below) with respect to all of its enrolled Inferiors. It must deliver the same Outcome message to all of its enrolled Inferiors, that is, it either sends a CONFIRM to all of them, or it sends a CANCEL to all of them.

A Coordinator represents an Atom by maintaining state which reflects the lifecycle of the Atom and its relationship to all of its Inferiors. A Coordinator has one Atom Identifier, which uniquely identifies the Atom which it represents, and which is unique within the scope of its Address-as-Superior.

Composer

A Composer is a Persistent Terminator (see below) with respect to all of its enrolled Inferiors. It may deliver a different Outcome message to each of its enrolled Inferiors.

A Composer represents a Cohesion by maintaining state which reflects the lifecycle of the Cohesion and its independent relationship of the Cohesion to each of its Inferiors. A Composer has a Cohesion Identifier which uniquely identifies the Cohesion it represents within the scope of its Address-as-Superior.

Sub-composer

A Composer which is also an Inferior.

A sub-composer will only resolve to an atomic Outcome (by selecting the final members of its Confirmed Set) during its processing of a CONFIRM received from its enrolling Superior.

Volatile Terminator

Requests a Coordinator or a Sub-composer to take responsibility for attempting to bring itself to a Confirmed state, or to a Cancelled state.

[Need to introduce convention for states, comment on fact that it could be a Superior in a 1PC brush]

A request to confirm is made by sending

REQUEST_CONFIRM

to the target Inferior. This message can only be sent by an application actor which seeks to instigate confirmation, or by a Superior which has already received a REQUEST_CONFIRM from its Superior or from an application actor. It can only be sent to a single endpoint for a given atomic business transaction.

A possible scenario illustrating these rules is shown below:

An instruction to cancel is made by sending

CANCEL

to the target Inferior.

A target Inferior must send back

CONFIRMED

CANCELLED

MIXED

in response to either a REQUEST_CONFIRM or a CANCEL.

Persistent Terminator

A Superior which decides the Outcome of an enrolled Inferior.

There can be only one Persistent Terminator in a Business Transaction Tree. While this role is usually played by the root Superior, it may be pushed down to a lower node by means of REQUEST_CONFIRM.

A Persistent Terminator must durably record the Inferior Identity (Address-as-Inferior and Inferior Identifier) of its Inferior, before sending a CONFIRM to its Inferior.

A Persistent Terminator may send

CANCEL

to its enrolled Inferior at any time prior to durably recording the Inferior’s identity.

Client

Application actor which sends

Application Request & CONTEXT/atom

to a Service.

A Client receives

Application Response

from a Communicator, which forwards that response.

It is particularly important in this specific instance to note the general point that the two roles of Client and Communicator may be played by the same actor, i.e. utilize the same address.

The way in which an Application Request and Application Response are related (or how this relationship is known to the Client or Service) is not defined.

The content of Application Request and Application Response is not defined.

The reaction of a Client to the receipt of an Application Response is not defined.

Service

Application actor which receives

Application Request

from a Communicator, and which can then gain access to a CONTEXT/atom which is related to that Application Request (or to the information contained within the CONTEXT/atom), by means which are undefined.

A Service must send one of

Application Response

FAULT

to a Communicator in response to the receipt of an Application Request.

The actions of a Service between receiving Application Request and sending Application Response or FAULT in response are undefined. A Service is ultimately responsible for ensuring that Participants are enrolled with the Atom Coordinator identified by the CONTEXT/atom, but the Enroller role may be delegated (perhaps to a Participant, or to a Communicator).

Communicator

Sends and receives messages, including Compound Messages. Actors may communicate directly with one another, or they may send messages via a Communicator.

A Communicator is responsible for making CONTEXT/atom available to a Service on receipt of Application Request & CONTEXT/atom.

A Communicator which receives a FAULT which is related to a prior Application Request must cancel the Atom related to that Application Request, and must then forward the FAULT to the Client.

[* * * Who generates the FAULT, and how this is actually related to an Application Response requires more work. * * *]

A Communicator uses Optional Addressing Information in Target Addresses to forward messages to their ultimate destination.

The way in which a Communicator (or any other role) creates Compound Messages is undefined.

Participant

An Inferior which is specialized for the purposes of an application.

A Participant supports operations that are meaningful for an application, as well as supporting the message set and obligations of an Inferior. These application-related operations are known as Forward Operations.

Typically a Participant’s application-related operations will carry out work on behalf of a Service. This work is within the context of an atomic business transaction (has Effect), and the datum required to Counter-effect it is durably recorded by the Forward Operation that created the Effect. The durable data for all Forward Operations are collectively termed the Counter-effect Data.

If a Participant receives a CANCEL from its Superior then it uses the Counter-effect Data recorded by all prior Forward Operations to process the Counter-effect of the sum of all Effects.

Effects, Counter-effect Data and Counter-effects are all defined by the Participant implementer.

Client-Communicator-Service and Coordinator-Participant Relationships

The following diagram shows a typical topology for Client-Service interactions:

[* * * we need a discussion of checking. This relates to the need in the message set for a wrapper btp:app-request and btp:app-response * * *]

[* * * Explain, add in a second diagram showing P + C * * *]

Status Requestor

Requests and receives the current status of an Inferior. Note that a Composer is not an Inferior.

A Status Requestor may send

REQUEST_STATUS

to an Inferior, which sends back

STATUS

in response.

The information returned will always relate to the actor concerned in its role as an Inferior, even if it also a Superior.

Sub-coordinator
A Coordinator which has a Superior, and which is not a Persistent Terminator.

There can be only one Persistent Terminator in a Business Transaction Tree. Any Coordinator which is lower in the tree than the Persistent Terminator (and is therefore also an Inferior) is a Sub-coordinator. It does not durably record the Outcome decided by the Persistent Terminator, but it does durably record according to the normal rules for an Inferior, and also durably records the Inferior Identities of its Inferiors.

Redirector

[TBD]

The following diagram illustrates their relationship. In this diagram a line joining two roles indicates that BTP protocol messages (or application messages which are related to BTP protocol messages) flow between the actors which play those two rules.

[TBD this should be moved to the top of this section, preceded by a synoptic list of all the roles]

Addressing

Addresses

All of the messages have a “target address” parameter and many also have other address parameters. These latter identify the desired target of other messages in the set. In all cases, the exact value will invariably have been determined by the implementation that is the target or desired future target. The format of the address will depend on the particular carrier protocol, but at this abstract level is considered to have two parts. The first part is meaningful for the carrier protocol itself, which will use it for the communication (i.e. it will permit a message to be delivered to a receiver). The second part, “additional information”, is a suffix, which might be bound to a refined address, or to an appendix of a URI, or to a header for a particular carrier protocol. This may be used to route a message from a (carrier protocol) listener to the final, intended receiver. The suffix is opaque to parties other than the recipient. How the two parts are distinguished in a particular carrier mapping is specific to that mapping (and in some cases, such as a URI, the division point may be indeterminate).

All messages that concern a particular business transaction or Inferior (most of them) have an identifier parameter as well as the compound target address. This allows full flexibility for implementation choices – an implementation can:

Use the same carrier address and additional information for multiple business transactions, using the identifier parameter to locate the relevant state information;

Use the same carrier address for multiple business transactions and use the additional information to locate the information; or

Use a different carrier address for each business transaction.

Which of these choices is used is opaque to the entity sending the message – both parts of the address and the identifier originated at the recipient of this message (and were transmitted as parameters of earlier messages in the opposite direction). In cases b) and c), the identifier is to some extent redundant, although interoperation requires that it always be present.

There is a constraint on the implementation options, particularly in the case of c). In some recovery scenarios, the local element of a business transaction will have ceased to exist, while other elements still exist and are attempting to communicate with it. In such cases, the element(s) that do exist can draw conclusions and complete appropriately if they can determine that their would-be respondent has gone away; if they merely fail to get through they are stuck in attempting recovery.

Two mechanisms are provided to make it possible that even when the local element of a transaction has completed, that a message can eventually get through to something that can definitively report the status, distinguishing this case from a temporary inability to access the state of a continuing transaction element. The mechanisms are:

Address fields which provide a “callback address” can be a set of addresses, which are alternatives one of which is chosen as the target address for the future message. If the sender of that message finds the address does not work, it can try a different alternative. (No algorithm or preference structure is defined)

The REDIRECT message can be used to inform the peer that an address previously given is no longer valid and to supply a replacement address (or set of addresses). REDIRECT can be issued either as a response to receipt of a message or spontaneously.

The two mechanisms can be used in combination, with one or more of the original set of addresses just being a redirector, which does not itself ever have direct access to the state information for the transaction, but will respond to any message with an appropriate REDIRECT.

It is recognised that after a crash it may not be possible to immediately get through to anything that understands BTP at all; the requirement is that, eventually, there will be something that responds usefully. Nevertheless, in extreme cases (e.g. bankruptcy) there may be permanently unreachable transaction elements; implementations may wish to provide management mechanisms to avoid polling for such indefinitely.

Abstract Messages and Associated Contracts

BT Protocol Messages are defined in this section in terms of the abstract information that has to be communicated to the relevant actor. These abstract messages will be mapped to concrete messages communicated by a particular carrier protocol (there can be several such mappings defined).

The abstract message set and the associated state table assume the carrier protocol will

· deliver messages completely and correctly, or not at all (corrupted messages will not be delivered);

· report some communication failures, but will not necessarily report all (i.e. not all message deliveries are positively acknowledged within the carrier);

· sometimes deliver successive messages in a different order than they were sent;

and

· does not have built-in mechanisms to link a request and a response

Note that these assumptions would be met by a mapping to SMTP and more than met by mappings to SOAP.

However, when the abstract message set is mapped to a carrier protocol that provides a richer service (e.g. reports all delivery failures, guarantees ordered delivery or offers a request/response mechanism), the mapping can take advantage of these features. Typically in such cases, some of the parameters of an abstract message will be implicit in the carrier mechanisms, while the values of other parameters will be directly represented in transmitted elements.

Addresses

All of the messages have a “target address” parameter and many also have other address parameters. These latter identify the desired target of other messages in the set. In all cases, the exact value will invariably have been determined by the implementation that is the target or desired future target. The format of the address will depend on the particular carrier protocol, but at this abstract level is considered to have two parts. The first part is meaningful for the carrier protocol itself, which will use it for the communication (i.e. it will permit a message to be delivered to a receiver). The second part, “additional information”, is a suffix, which might be bound to a refined address, or to an appendix of a URI, or to a header for a particular carrier protocol. This may be used to route a message from a (carrier protocol) listener to the final, intended receiver. The suffix is opaque to parties other than the recipient. How the two parts are distinguished in a particular carrier mapping is specific to that mapping (and in some cases, such as a URI, the division point may be indeterminate).

All messages that concern a particular business transaction or Inferior (most of them) have an identifier parameter as well as the compound target address. This allows full flexibility for implementation choices – an implementation can:

Use the same carrier address and additional information for multiple business transactions, using the identifier parameter to locate the relevant state information;

Use the same carrier address for multiple business transactions and use the additional information to locate the information; or

Use a different carrier address for each business transaction.

Which of these choices is used is opaque to the entity sending the message – both parts of the address and the identifier originated at the recipient of this message (and were transmitted as parameters of earlier messages in the opposite direction). In cases b) and c), the identifier is to some extent redundant, although interoperation requires that it always be present.

There is a constraint on the implementation options, particularly in the case of c). In some recovery scenarios, the local element of a business transaction will have ceased to exist, while other elements still exist and are attempting to communicate with it. In such cases, the element(s) that do exist can draw conclusions and complete appropriately if they can determine that their would-be respondent has gone away; if they merely fail to get through they are stuck in attempting recovery.

Two mechanisms are provided to make it possible that even when the local element of a transaction has completed, that a message can eventually get through to something that can definitively report the status, distinguishing this case from a temporary inability to access the state of a continuing transaction element. The mechanisms are:

Address fields which provide a “callback address” can be a set of addresses, which are alternatives one of which is chosen as the target address for the future message. If the sender of that message finds the address does not work, it can try a different alternative. (No algorithm or preference structure is defined)

The REDIRECT message can be used to inform the peer that an address previously given is no longer valid and to supply a replacement address (or set of addresses). REDIRECT can be issued either as a response to receipt of a message or spontaneously.

The two mechanisms can be used in combination, with one or more of the original set of addresses just being a redirector, which does not itself ever have direct access to the state information for the transaction, but will respond to any message with an appropriate REDIRECT.

It is recognised that after a crash it may not be possible to immediately get through to anything that understands BTP at all; the requirement is that, eventually, there will be something that responds usefully. Nevertheless, in extreme cases (e.g. bankruptcy) there may be permanently unreachable transaction elements; implementations may wish to provide management mechanisms to avoid polling for such indefinitely.

Request/response pairs

Many of the messages combine in pairs as a request and its response. However, in some cases the response message is sent without a triggering request, or as a possible response to more than one type of request. To allow for this, the abstract message set treats each message as standalone; but where a request does expect a reply, a “reply-address” parameter will be present. For any message with a reply address parameter, in the case of certain errors, a FAULT message will be sent to the reply address instead of the expected reply.

For messages which are specified as sent between Superior and Inferior, a FAULT message is sent to the peer.

Messages

Qualifiers

All messages have a Qualifiers parameter which contains zero or more Qualifier values. A Qualifier has sub-parameters:

	Sub-parameter
	Type

	qualifier type
	URI

	must-be-understood
	Boolean

	to-be-propagated
	Boolean

	content
	Arbitrary – depends on type

Qualifier type this identifies the meaning and use of the Qualifier. Qualifier types may be defined in this or other standard specifications, in specifications of a particular community of users or of implementations or by bilateral agreement.

Must-be-understood if this has the value “true” and the receiving entity does not recognise the Qualifier type (or does not implement the necessary functionality), a FAULT “unsupported qualifier” shall be returned and the message shall not be processed. (Default is “false”).

To-be-propagated if this has the value “true” and the receiving entity passes the BTP message (which may be a CONTEXT, but can be other messages) onwards to other entities, the same Qualifier value shall be included. If the value is “false”, the Qualifier shall not be automatically included if the BTP message is passed onwards. (If the receiving entity does support the qualifier type, it is possible a propagated message may contain another instance of the same type, even with the same Content – this is not considered propagation of the original qualifier.)

Content the type (which may be structured) and meaning of the content is defined by the specification of the Qualifier.

CONTEXT

A CONTEXT is supplied by (or on behalf of) an Atom Coordinator or a Cohesion Composer. The “superior type” parameter identifies which kind of Superior the CONTEXT refers to.

	Parameter
	Type

	target address
	BTP address

	address-as-superior
	Set of BTP addresses

	superior identifier
	Identifier

	superior type
	Cohesion/Atom

	timelimit
	Time

	qualifiers
	List of qualifiers

target address the address to which the CONTEXT is sent. When the context is returned as the reply to an earlier message, this will be taken from the reply address of that message. When the CONTEXT is sent in relationship with an application message, the target address is the effective target address of the application message.

address-as-superior the address to which ENROL and other messages from an enrolled Inferior are to be sent. This can be a set of alternative addresses.

superior identifier identifies the Cohesion or Atom within the scope of the address-as-superior

superior type identifies whether the CONTEXT refers to a Cohesion or an Atom.

timelimit an Inferior that has not sent READY or received PREPARE by this time should initiate cancellation.

The forms CONTEXT/cohesion and CONTEXT/atom refer to CONTEXT messages with the superior type with the appropriate value.

BEGIN

A request to a factory to create a new Cohesion or a new Atom.

	Parameter
	Type

	target address
	BTP address

	reply address
	BTP address

	superior type
	Cohesion/Atom

	timelimit
	Time

	qualifiers
	List of qualifiers

target address the address of the entity to which the BEGIN is sent. How this address is acquired and the nature of the entity are outside the scope of this specification.

reply address the address to which the replying BEGUN and related CONTEXT message should be sent.

superior type identifies the Cohesion or Atom within the scope of the address-as-superior

timelimit indicates the expected duration of the active phase of the business transaction. If the Coordinator (if this “superior type” is “atom”) has not received PREPARE by this time; or equivalent termination has not been requested (if “superior type” is “cohesion”) it should initiate cancellation. This timelimit is copied to any CONTEXT returned for this business transaction (adjusted to refer to the same fixed point in time).

Types of FAULT possible (sent to Reply address)

General

BEGUN

BEGUN is a reply to BEGIN.

	Parameter
	Type

	target address
	BTP address

	address-as-inferior
	Set of BTP address

	qualifiers
	List of qualifiers

target address the address to which the BEGUN is sent. This will be the reply address from the BEGIN.

address-as-inferior for an Atom, this is the address to which PREPARE, CONFIRM, CANCEL and SUPERIOR_STATE messages are to be sent.; for a Cohesion, this address is used for the (non-standard) equivalent messages.

BEGUN is always transmitted with a related CONTEXT, which includes the identification (including the address-as-superior) for the business transaction.

At implementation option, the “address-as-inferior” (generally used by the initiator or, for an Atom, by a Cohesion Composer) and the address-as-superior in the related CONTEXT (used to enrol and by Inferiors) may be the same or may be different. There is no general requirement that they even use the same carrier protocol. Either or both may also be the same as the target address of the BEGIN message.

No FAULT messages are issued on receiving BEGUN.

ENROL

A request to a Superior to ENROL an Inferior. For an Atom, this is typically issued after receipt of a CONTEXT message in relation to an application request.

The actor issuing ENROL plays the role of Enroller.

	Parameter
	type

	target address
	BTP address

	superior identifier
	Identifier

	reply requested
	Boolean

	reply address
	BTP address

	address-as-inferior
	Set of BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the ENROL is sent. This will be the address-as-superior from the CONTEXT message.

superior identifier. The superior identifier as on the CONTEXT message

reply requested true if an ENROLLED response is required, false otherwise

reply address the address to which a replying ENROLLED is to be sent, if Reply requested is true. If this field is empty and Reply requested is true, the ENROLLED should be sent to the “address-as-inferior” (or one of them, at sender’s option)

address-as-inferior the address to which PREPARE, CONFIRM, CANCEL and SUPERIOR_STATE messages for this branch of this business transaction are to be sent.

inferior identifier the identifier for the inferior for this branch of this business transaction.

Types of FAULT possible (sent to Reply address)

General

InvalidSuperior – if superior identifier is unknown

DuplicateInferior – if inferior identifier is already enrolled

WrongState – if it is too late to enrol new Inferiors (generally if the Superior has already sent a READY message to its superior or terminator, or if it has already issued CONFIRM to other Inferiors).

The form ENROL/rsp-req refers to an ENROL message with “reply requested” having the value “true”; ENROL/no-rsp-req refers to an ENROL message with “reply requested” having the value “false”

ENROLLED

Sent from Coordinator in reply to an ENROL message, to indicate the Inferior has been successfully enrolled (and will therefore be included in the termination exchanges)

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the ENROLLED is sent. This will be the reply address from the ENROL message (or one of the address-as-inferiors if the reply address was empty)

inferior identifier The inferior identifier as on the ENROL message

No FAULT messages are issued on receiving ENROLLED.

RESIGN

Sent from an enrolled Inferior to the Superior to remove the Inferior from the enrolment. This can only be if the operations of the atomic business transaction have had no effect as perceived by the Inferior.

RESIGN may be sent in response to a PREPARE message (instead of a READY), or at any point prior to the sending of a READY or CANCELLED message.

	Parameter
	type

	target address
	BTP address

	superior identifier
	identifier

	address-as-inferior
	BTP address

	inferior identifier
	identifier

	response requested
	Boolean

	qualifiers
	List of qualifiers

target address the address to which the RESIGN is sent. This will be the superior address as used on the ENROL message.

superior identifier The superior identifier as on the ENROL message

address-as-inferior The address-as-inferior as on the earlier ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the earlier ENROL message

response_requested is set to “true” if a RESIGNED response is required.

Note -- RESIGN is equivalent to readonly vote in some other protocols, but can be issued early. The RESIGNED response will be needed if no PREPARE has been received, to ensure the Superior does not get an INFERIOR_STATE/unknown or FAULT in reply to a later PREPARE because the inferior identifier is no longer known.

Types of FAULT possible (sent to address-as-inferior)

General

InvalidSuperior – if superior identifier is unknown

UnknownInferior – if no ENROL had been received for this address-as-inferior and identifier (Inferior Identity)

WrongState – if a READY or CANCELLED has already been received by the Superior for this branch

The form RESIGN/rsp-req refers to an RESIGN message with “reply requested” having the value “true”; RESIGN /no-rsp-req refers to an RESIGN message with “reply requested” having the value “false”

RESIGNED

Sent in reply to a RESIGN/rsp-req message.

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the RESIGNED is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the business transaction.

After receiving this message the Inferior will not receive any more messages with this address-as-inferior and identifier.

No FAULT messages are issued on receiving RESIGNED.

PREPARE

Sent from Superior to an Inferior from whom ENROL but neither CANCELLED nor RESIGN have been received, requesting a READY message. PREPARE can be sent after receiving a READY message.

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the PREPARE message is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the atomic business transaction.

On receiving PREPARE, the Inferior should reply with a READY, CANCELLED or RESIGN.

Note – No reply address is needed, as the reply will invariably be sent to the Superior.

Types of FAULT possible (sent to Superior address)

General

InvalidInferior – if inferior identifier is unknown

WrongState – if a CONFIRM or CANCEL has already been received for this branch

READY

Sent from Inferior to Superior, either unsolicited or in response to PREPARE, but only when the Inferior has determined the operations associated with the Inferior can be confirmed and can be cancelled, as may be instructed by the Superior. The level of isolation is a local matter (i.e. is the Inferiors choice, as constrained by the shared understanding of the application exchanges) – other access may be blocked, may see applied results of operation or may see original state (or cancelled).

	Parameter
	Type

	target address
	BTP address

	superior identifier
	identifier

	address-as-inferior
	BTP address

	inferior identifier
	Identifier

	default is cancel
	Boolean

	qualifiers
	List of qualifiers

target address the address to which the READY is sent. This will be the Superior address as on the ENROL message.

superior identifier The superior identifier as on the ENROL message

address-as-inferior The address-as-inferior as on the earlier ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the ENROL message

default is cancel if “true”, the Inferior states that if the outcome at the Superior is to cancel the branch, no further messages need be sent. If the Inferior does not receive a CONFIRM message, it will cancel the associated operations. The “default is cancel” = “true” will invariably be used with a qualifier indicating under what circumstances (usually a timeout) an autonomous decision to cancel will be made. If “false”, the Inferior will expect a CONFIRM or CANCEL message as appropriate, even if qualifiers indicate that an autonomous decision will be made.

On sending a READY, the Inferior undertakes to maintain its ability to confirm or cancel the local effects of the operations until it receives a CONFIRM or CANCEL message. Qualifiers may define a time limit or other constraints on this promise. The “default is cancel” parameter affects only the subsequent message exchanges and does not of itself state that cancellation will occur.

Types of FAULT possible (sent to address-as-inferior)

General

InvalidSuperior – if Superior identifier is unknown

UnknownInferior – if no ENROL has been received for this address-as-inferior and identifier, or if RESIGN has been received for the branch

The form READY/cancel refers to a READY message with “default is cancel” = “true”. The unqualified form READY refers to a READY message with “default is cancel” = “false”.

CONFIRM

Sent by the Superior to a Inferior from whom READY has been received

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the CONFIRM message is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the atomic business transaction.

On receiving CONFIRM, the Inferior is released from its promise to be able to undo the operations of the atom. The effects of the operation can be made available to everyone (if they weren’t already)

No further messages for the atom will be sent, apart from resending the confirm in recovery.

Types of FAULT possible (sent to Superior address)

General

UnknownInferior – if inferior identifier is unknown

WrongState – if no READY has been sent, or if CANCEL has been received

CONFIRMED

Sent after the Inferior has applied the confirmation, both in reply to CONFIRM but also when the Inferior has made an autonomous confirm decision.

CONFIRMED is also used to reply to a REQUEST_CONFIRM if the Atom outcome is confirmed..

	Parameter
	Type

	target address
	BTP address

	superior identifier
	Identifier

	address-as-inferior
	BTP address

	inferior identifier
	Identifier

	confirm received
	Boolean

	qualifiers
	List of qualifiers

target address the address to which the CONFIRMED is sent. This will be the target address used on the ENROL message. (or the reply address from a REQUEST_CONFIRM message)

superior identifier The superior identifier as on the CONTEXT message

address-as-inferior The address-as-inferior as on the earlier ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the earlier ENROL message

confirm received “true” if CONFIRMED is sent after receiving a CONFIRM message; “false” if an autonomous confirm decision has been made and either if no CONFIRM message has been received or the implementation cannot determine if CONFIRM has been received (due to loss of state information in a failure).

Types of FAULT possible (sent to address-as-inferior)

General

InvalidSuperior – if Superior identifier is unknown

UnknownInferior – if no ENROL has been received for this address-as-inferior and identifier, or if RESIGN has been received for the branch

Note – A CONFIRMED message arriving before a CONFIRM message is sent, or after a CANCEL has been sent will occur when the Inferior has taken an autonomous decision and is not regarded as occurring in the wrong state. (The latter will cause a CONTRADICTION message to be sent.)

The form CONFIRMED/auto refers to a CONFIRMED message with “confirm received” = “false”; CONFIRMED/response refers to a CONFIRMED message with “confirm received” = ”true”.

CANCEL

Sent by the Superior to an Inferior at any time before (and unless) CONFIRM has been sent..

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the CANCEL message is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the atomic business transaction.

The branch is cancelled. The effects of any operations of the business transaction at the Inferior (or its inferiors) should be undone. The Inferior is released from its promise to be able to confirm the operations.

No further messages for the atom will be sent, apart from any resending in recovery.

Types of FAULT possible (sent to Superior address)

General

UnknownInferior – if inferior identifier is unknown

WrongState – if CONFIRM has been received

CANCELLED

Sent when the Inferior has applied (or is applying) cancellation of the operations associated with the Inferior. CANCELLED is sent in three cases:

1. before (and instead of) sending READY, to indicate the Inferior is unable to apply the operations in full and is cancelling all of them;

2. in reply to CANCEL, regardless of whether READY has been sent;

3. after sending READYand then making and applying an autonomous decision to cancel.

As is specified in the state tables, these cases are not fully distinct in circumstances of recovery and resending of messages.

CANCELLED is also used to reply to a REQUEST_CONFIRM if the Atom outcome is cancelled.

	Parameter
	

	target address
	BTP address

	superior identifier
	Identifier

	address-as-inferior
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the CANCELLED is sent. This will be the Superior address from the ENROL message. (or the reply address from a REQUEST_CONFIRM message)

superior identifier The superior identifier as used on the ENROL message

address-as-inferior The address-as-inferior as on the earlier ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the earlier ENROL message

Types of FAULT possible (sent to address-as-inferior)

General

InvalidSuperior – if Superior identifier is unknown

UnknownInferior – if no ENROL has been received for this address-as-inferior and identifier, or if RESIGN has been received for the branch

WrongState – if CONFIRM has been sent

Note – A CANCELLED message arriving before a CANCELLED message is sent, or after a CONFIRM has been sent will occur when the Inferior has taken an autonomous decision and is not regarded as occurring in the wrong state. (The latter will cause a CONTRADICTION message to be sent.)

MIXED

Sent when the Inferior has discovered that an mixed decision has occurred for the operations associated with the branch. This will typically initially occur when there are multiple lower inferior, and either some have made autonomous decisions to cancel and some autonomous decisions to confirm, or some made autonomous decisions contrary to the outcome received from the superior and others have followed the superior outcome. The fact of the mixed result can be passed up the tree to successively higher superiors.

MIXED is also used to reply to a REQUEST_CONFIRM if the Atom has produced a mixed outcome.

	Parameter
	Type

	target address
	BTP address

	superior identifier
	Identifier

	address-as-inferior
	BTP address

	inferior identifier
	Identifier

	Qualifiers
	List of qualifiers

target address the address to which the MIXED is sent. This will be the superior address from the ENROL message (or the reply address from a REQUEST_CONFIRM message)

superior identifier The superior identifier as used on the ENROL message

address-as-inferior The address-as-inferior as on the earlier ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the earlier ENROL message

Types of FAULT possible (sent to address-as-inferior)

General

InvalidSuperior – if Superior identifier is unknown

UnknownInferior – if no ENROL has been received for this address-as-inferior and identifier, or if RESIGN has been received for the branch

A CONTRADICTION message will be received

CONTRADICTION

Sent by the Superior to an Inferior that has taken an autonomous decision contrary to the decision for the atom. This is detected by the Superior when the ‘wrong’ one of CONFIRMED or CANCELLED is received. CONTRADICTION is also sent in response to a MIXED message.

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	Qualifiers
	List of qualifiers

target address the address to which the CONTRADICTION message is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the atomic business transaction.

SUPERIOR_STATE

Sent by a Superior as a query to an Inferior when

1. in the active state

2. there is uncertainty what state the Inferior has reached (due to recovery from previous failure or other reason).

Sent by the Superior to the Inferior in response to a received INFERIOR_STATE, in particular states.

	Parameter
	Type

	target address
	BTP address

	inferior identifier
	Identifier

	Status
	see below

	reply requested
	Boolean

	Qualifiers
	List of qualifiers

target address the address to which the SUPERIOR_STATE message is sent. This will be the address-as-inferior from the ENROL message.

inferior identifier The inferior identifier as on the earlier ENROL message, identifying the branch of the atomic business transaction.

status states the current state of the Superior, in terms of this branch only.

	status value
	meaning

	active
	The branch is in the active state from the perspective of the Superior; ENROLLED has been sent, PREPARE has not been sent and READY has not been received (as far as the Superior knows)

	readyreceived
	READY has been received from the Inferior, but no outcome is yet available

	inaccessible
	The state information for the branch, if it exists, cannot be accessed at the moment. This should be a transient condition

	unknown
	The branch is not known – it does not exist from the perspective of the Superior. The branch can be treated as cancelled

Reply requested true if SUPERIOR_STATE is sent as a query at the Superior’s initiative; false if SUPERIOR_STATE is sent in reply to a received INFERIOR_STATE or other message. Can only be true if status is active or readyreceived.

The Inferior, on receiving SUPERIOR_STATE with reply requested = true, should reply in a timely manner by (depending on its state) repeating the previous message it sent or by sending INFERIOR_STATE with the appropriate status value.

A status of unknown shall only be sent if it has been determined for certain that the Superior has no knowledge of the branch, or (equivalently) it can be determined that the branch was cancelled. If there could be persistent information corresponding to the Superior, but it is not accessible from the entity receiving an INFERIOR_STATE/*/y (or other) message or the entity cannot determine whether any such persistent information exists, the response shall be Inaccessible.

SUPERIOR_STATE/unknown is also used as a response to messages, other than INFERIOR_STATE/*/y that are received when the branch is not known (and it is known there is no state information for it).

The form SUPERIOR_STATE/abcd refers to a SUPERIOR_STATE message status having a value equivalent to “abcd” (for active, readyreceived, unknown and inaccessible) and with “reply requested” = “false”. SUPERIOR_STATE/abcd/y refers to a similar message, but with “reply requested” = “true”. The form SUPERIOR_STATE/*/y refers to a SUPERIOR_STATE message with “reply requested” = “false” and any value for status.

INFERIOR_STATE

Sent by a Inferior as a query when in the active state to a Superior, when (due recovery from previous failure or other reason) there is uncertainty what state the Superior has reached. Sent by the Inferior to the Superior in response to a received SUPERIOR_STATE, in particular states.

	Parameter
	Type

	target address
	BTP address

	superior identifier
	Identifier

	address-as-inferior
	BTP address

	inferior identifier
	Identifier

	Status
	see below

	reply requested
	Boolean

	Qualifiers
	List of qualifiers

target address the address to which the INFERIOR_STATE is sent. This will be the target address as used the original ENROL message.

superior identifier The superior identifier as used on the ENROL message

address-as-inferior The address-as-inferior as on the ENROL message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the ENROL message

status states the current state of the Inferior for the atomic business transaction, which corresponds to the last message sent to the Superior by (or in the case of ENROL for) the Inferior

	status value
	meaning/previous message sent

	active
	The branch is in the active state from the perspective of the Inferior; ENROL has been sent, a decision to send READY has not been made.

	inaccessible
	The state information for the branch, if it exists, cannot be accessed at the moment. This should be a transient condition

	unknown
	The Inferior is not known – it does not exist from the perspective of the Superior. The Inferior can be treated as cancelled

reply requested “true” if INFERIOR_STATE is sent as a query at the Superior’s initiative; “false” if INFERIOR_STATE is sent in reply to a received SUPERIOR_STATE or other message. Can only be “true” if “status” is “active” or “readyreceived”. Can only be “true” if “status” is “active”.

The Superior, on receiving INFERIOR_STATE with “reply requested” = “true”, should reply in a timely manner by (depending on its state) repeating the previous message it sent or by sending SUPERIOR_STATE with the appropriate status value.

A status of “unknown” shall only be sent if it has been determined for certain that the Inferior has no knowledge of the branch. If there could be persistent information corresponding to the Superior, but it is not accessible from the entity receiving an SUPERIOR_STATE/*/y (or other) message or the entity cannot determine whether any such persistent information exists, the response shall be “inaccessible”.

INFERIOR_STATE/unknown is also used as a response to messages, other than SUPERIOR_STATE/*/y that are received when the branch is not known (and it is known there is no state information for it).

A SUPERIOR_STATE/INFERIOR_STATE exchange that determines that one or both sides are in the active state does not require that the branch be cancelled (unlike some other two-phase commit protocols). An atom may be continued, with new application messages carrying the same CONTEXT. Similarly, if the Inferior is ready but the Superior is active, there is no required impact on the progression of the branch.

The form INFERIOR_STATE/abcd refers to a INFERIOR_STATE message status having a value equivalent to “abcd” (for active, unknown and inaccessible) and with “reply requested” = “false”. INFERIOR_STATE/abcd/y refers to a similar message, but with “reply requested” = “true”. The form INFERIOR_STATE/*/y refers to a INFERIOR_STATE message with “reply requested” = “false” and any value for status.

REQUEST_CONFIRM

Sent from a Volatile Atom Terminator to a Coordinator to request it to attempt to complete confirmation of the Atom. This may be sent from a Superior to an enrolled Inferior, when there is only one such enrolled Inferior; in this case the two-phase commit sequence is not performed between the Superior and Inferior.

	Parameter
	Type

	target address
	BTP address

	reply address
	BTP address

	atom identifier
	Identifier

	Qualifiers
	List of qualifiers

target address the address to which the REQUEST_CONFIRM message is sent. When REQUEST_CONFIRM is issued to an enrolled Inferior by its Superior this will be the address-as-inferior on the ENROL message.

reply address the address to which the replying CONFIRMED, CANCELLED or MIXED message should be sent. When REQUEST_CONFIRM is issued to an enrolled Inferior by its Superior, this field can be omitted and the reply message will be sent to the superior address as used on the ENROL message.

atom identifier The atom identifier of the atom. When REQUEST_CONFIRM is iissued to an enrolled Inferior by its Superior this will be the inferior identifier on the ENROL message.

REQUEST_CONFIRM can be issued by a Superior to an Inferior from whom READY has been received (subject to the requirement that there is only one enrolled Inferior).

Types of FAULT possible (sent to Superior address)

General

UnknownInferior – if inferior identifier is unknown

WrongState – if a PREPARE has already been received for this branch

REQUEST_STATUS

Sent from a Status Requestor to an Inferior (or a Factory ?) to ask it to reply with STATUS.

	Parameter
	Type

	target address
	BTP address

	reply address
	BTP address

	inferior identifier
	Identifier

	qualifiers
	List of qualifiers

target address the address to which the REQUEST_ STATUS message is sent..

reply address the address to which the replying STATUS should be sent

inferior identifier The inferior identifier identifying the branch of the business transaction.

Types of FAULT possible (sent to Superior address)

General

STATUS

Sent by a Inferior in reply to a REQUEST_STATUS, reporting the overall state of the transaction tree node represented by the Inferior.

	Parameter
	Type

	target address
	BTP address

	address-as-inferior
	BTP address

	inferior identifier
	identifier

	Status
	See below

	reply requested
	Boolean

	Qualifiers
	List of qualifiers

target address the address to which the STATUS is sent. This will be the reply address on the REQUEST_STATUS message

address-as-inferior The address-as-inferior as on the REQUEST_STATUS message (with the inferior identifier, this determines who the message is from)

inferior identifier The inferior identifier as on the REQUEST_STATUS message

status states the current status of the transaction tree node represented by the Inferior

	status value
	meaning

	created
	The Inferior exists (and is addressable) but it has not been enrolled with a Superior

	enrolling
	ENROL has been sent, but ENROLLED is awaited

	active
	The Inferior is enrolled

	resigning
	RESIGN has been sent; RESIGNED is awaited

	resigned
	RESIGNED has been received

	preparing
	PREPARE has been received; READY has not been sent

	ready
	READY has been sent; no outcome has been received or autonomous decision made

	confirming
	CONFIRM has been received; CONFIRMED/response has not bee sent

	confirmed
	CONFIRMED/response has been sent

	cancelling
	CANCEL has been received or auto-cancel has been decided

	cancelled
	CANCELLED has been sent

	cancel-contradiction
	Autonomous cancel decision was made, CONFIRM received; CONTRADICTION has not been received

	confirm-contradiction
	Autonomous confirm decision was made, CANCEL received; CONTRADICTION has not been received

	mix
	A mix has been discovered; CONTRADICTION has not been received

	contradicted
	CONTRADICTION has been received

	unknown
	No state information for the identifier exists; no such inferior exists

	inaccessible
	There may be state information for this identifier but it cannot be reached/existence cannot be determined

Do we want more detail on these, especially the auto cancel, auto confirm, default cancel machinations ?

REDIRECT

Sent when the address previously given for a Superior or Inferior is no longer valid and the state information for the business transaction is now accessible with a different address (but the same superior or inferior identifier).

	Parameter
	Type

	target address
	BTP address

	superior identifier
	Identifier

	inferior identifier
	Identifier

	old address
	Set of BTP addresses

	new address
	Set of BTP addresses

	qualifiers
	List of qualifiers

target address the address to which the REDIRECT is sent. This may be the reply address from a received message or the address of the opposite side (superior/inferior) as given in a CONTEXT or ENROL message

superior identifier The superior identifier as on the CONTEXT message and used on an ENROL message. (present only if the REDIRECT is sent from the Inferior).

inferior identifier The inferior identifier as on the ENROL message

old address The previous address of the sender of REDIRECT. A match is considered to apply if any of the old addresses match one that is already known.

new address The (set of alternatives) new addresses to be used for messages sent to this entity.

If the actor whose address is changed is a Inferior, the new address value replaces the address-as-inferior as present in the ENROL.

If the actor whose address is changed is a Superior, the new address value replaces the Superior address as present in the CONTEXT message (or as present in any other mechanism used to establish the Superior:Inferior relationship).

FAULT

Sent in reply to various messages to report an error condition

	Parameter
	Type

	target address
	BTP address

	superior identifier
	Identifier

	inferior identifier
	Identifier

	fault type
	See below

	fault data
	See below

	qualifiers
	List of qualifiers

target address the address to which the FAULT is sent. This may be the reply address from a received message or the address of the opposite side (superior/inferior) as given in a CONTEXT or ENROL message

superior identifier the superior identifier as on the CONTEXT message and as used on the ENROL message (present only if the FAULT is sent to the superior).

inferior identifier the inferior identifier as on the ENROL message (present only if the FAULT is sent to the inferior)

fault type identifies the nature of the error, as specified for each of the main messages.

fault data information relevant to the particular error. Each fault type defines the content of the fault data.

	fault type
	meaning
	fault data

	General
	Any otherwise unspecified problem
	Free text explanation

	InvalidSuperior
	The received identifier or does not identify a known Superior
	The identiifier

	WrongState
	The message has arrived when the recipient is in an invalid state.
	

	UnknownInferior
	The atomic business transaction is known but the Inferior identified by the address-as-inferior and identifier are not enrolled in it
	The Inferior Identity (address-as-inferior and identifier)

Note – If the carrier mechanism used for the transmission of BTP messages is capable delivering messages in a different order than they were sent in, the “WrongState” FAULTs

State Tables

Failure Recovery

XML Schema for Message Set

[TBD Messaging sub-committee]

Compounding of Messages

Carrier Protocol Bindings

Implementers’ View

[TBD

Diagram showing superior-inferior enrollment

Diagram showing how Inferior Identity is used in a Composer to allow access to the right Atom

Diagram illustrating what needs to get logged where

Diagram illustrating active logging. Missed out of the minutes?]

Conformance

In the first part of this specification, the following diagram was introduced.

[* * * stack diagram * * *]

In broad terms, it is meaningful for each of the layers in this stack to be implemented as a freestanding (if partial) component, which can usefully conform with the relevant parts of this specification.

Participant

Atom coordinator

Cohesion composer

Communicator/message gateway

Part 3. Appendices

A. Glossary

	Message
	A datum which is produced and then consumed.

	Sender
	The producer of a message.

	Receiver
	The consumer of a message.

	Transmission
	The passage of a message from a sender to a receiver.

	Endpoint
	A sender or receiver.

	Address
	An identifier for an endpoint.

	Carrier Protocol
	A protocol which defines how transmissions occur.

	Carrier Protocol Address

(CPA)
	The address of an endpoint for a particular carrier protocol.

	Business Transaction Protocol Address

(BTPA)
	A compound address consisting of a mandatory carrier protocol address and an optional opaque suffix.

	Actor
	An entity which executes procedures, a software agent.

	Application
	An actor which uses the Business Transaction Protocol.

	Application Message

	A message produced by an application and consumed by an application.

	Application Endpoint
	An endpoint of an application message.

	Operation
	A procedure which is started by a receiver when a message arrives at it.

	Application Operation
	An operation which is started when an application message arrives.

	Contract
	Any rule, agreement or promise which constrains an actor’s behaviour and is known to any other actor, and upon which any other knowing actor may rely.

	Appropriate
	In accordance with a pertinent contract.

	Inappropriate
	In violation of a pertinent contract.

	Service

	An actor which on receipt of an application messages may start an application operation which is appropriate. For example, a process which advertises an interface allowing defined RPCs to be invoked by a remote client.

	Client
	An actor which sends application messages to services.

	Effect
	The changes induced by the incomplete or complete processing of a set of procedures by an actor, which are observable by another contemporary or future actor, and which are made in conformance with a contract known to any such observer. This contract must state the countereffect of the effect, and is known as the countereffect contract. An effect is Completed when the change-inducing processing of the set of procedures is finished. [Need an indirect or consequential damage exclusion clause]

	Ineffectual
	Describes a set of procedures which has no effect.

	Countereffect
	An appropriate effect intended to counteract a prior effect.

	Countereffect Contract
	The contract which governs the relationship between the effect and the countereffect of a procedure. In the absence of any other overriding contracts the countereffect contract is the promise that

“The Countereffect will attempt so far as is possible to reverse or cancel the Effect such that an observer (on completion of the Countereffect) is unaware that the Effect ever occurred, but this attempt cannot be guaranteed to succeed”.

	Cancel
	Process a countereffect for the current effect of a set of procedures.

	Confirm
	Ensure that the effect of a set of procedures is completed.

	Prepare
	Ensure that of a set of procedures is capable of being successfully instructed to cancel or to confirm.

	Outcome
	A decision to either cancel or confirm.

	Participant
	A set of procedures which is capable of receiving instructions from a coordinator to prepare, cancel and confirm. A participant must also have a BTPA to which these instructions will be delivered, in the form of BTP messages. A participant is identified by a participant identifier.

	Inferior Identifier
	An identifier assigned to an Inferior which is unique within the scope of an Address-as-Inferior.

	Atomic Business Transaction

or

Atom
	A set of participants (which may have only one member), all of which will receive instructions that will result in a homogeneous outcome. (Transitively, a set of operations, whose effect is capable of countereffect.) An atom is identified by an atom identifier.

	Atom Identifier
	A globally unique identifier assigned to an atom.

	Coordinator
	An actor which decides the outcome of a single atom, and has a lifetime which is coincident with that of the atom. A coordinator can issue instructions to a participant to prepare, cancel and confirm. These instructions take the form of BTP messages. A coordinator is identified by its atom’s atom identifier. A coordinator must also have a BTPA to which participants can send BTP messages.

	Address-as-Superior
	The address used to communicate with an actor playing the role of an Superior

	Address-as-Composer
	The address used to communicate with a Composer by an application actor that controls its resolution. The messages that might be sent to or received from this endpoint are undefined.

	Address-as-Inferior
	The address used to communicate with an actor playing the role of an Inferior.

	Identity-as-Superior
	The combination of Superior Identifier and Address-as-Superior of a given Superior.

	Indentity-as-Inferior
	The combination of Inferior Identifier and Address-as-Inferior of a given Inferior.

B. Examples and Use-cases

C. BTP and Business Process Management

D. BTP and Security

User-defined Participants

Atomic Coordination

 Cohesion Composition

Implementer or application extensions

Customer

Shipping

Insurance

Goods

Shipping

Goods

Insurance

Customer

 Atomic unit of work

Enroller

Shipping (

Goods (

Insurance (

Customer

 Cohesion

Superior

ENROL (

Atomic unit of work

Shipping

Goods

Insurance

Customer

Shipping Participant

Goods Participant

Insurance Participant

Customer Coordinator

ENROLLED (

PREPARE (

READY (

Inferior

CONFIRM (

CONFIRMED (

Initiator

Factory

BEGIN & CONTEXT (

BEGUN & CONTEXT (

Prior Superior

BEGUN & CONTEXT (

Factory

Initiator

BEGIN (

Created Superior

Is the Superior of

Is the Inferior of

Is the Inferior of

Is the Superior of

Prior Superior

Created Superior

Application Actor

Volatile Atom Terminator

REQUEST_CONFIRM

Coordinator

REQUEST_CONFIRM

Sub-Coordinator

PREPARE

PREPARE

Participant A

Participant B

Client system

Client

Communicator

Communicator

Service

AReq & CONTEXT

FAULT or

AReq

CONTEXT

ARes or

FAULT or

ARes or

Service system

	OASIS BTP working draft Specification 0.4, 25 July 2001
	Page 1 of 79

