A reply to BEA’s proposal of 23 October 2001

Alastair Green, alastair.green@choreology.com
23 October 2001

Copyright © 2001, Choreology Ltd.

Good and Bad Ways of Accommodating Divergence

I’m going to start by (re)stating my conclusion. BEA and HP and Choreology (to take only the original submitters to this TC) may have divergent views of the likely use and uptake of BTP, and this probably reflects different (and immature) markets.

This wholly understandable divergence of approach can be dealt with in two ways. The bad way, proposed by BEA, is to pare down the specification to match their view. This is not inherently evil; it is bad because it loses useful function, and it causes great disruption to an advanced collective process. The good way (well, I would say that, wouldn’t I?) is to define conformance levels that allow BEA to go their way, and others to go theirs.

My concrete proposal to the Technical Committee, counterposed to BEA’s proposed changes, is:

To adopt a conformance scheme that segments the interoperable roles of Initiator/Terminator, Factory/Decider, Superior and Inferior, and the capabilities of atom coordination and cohesion composition, and which allows implementations to state which interoperation profile and capabilities they support.

If it will help us get out of this debate, and onto the road of adoption, I would be perfectly happy to vote for labelling Superior/Inferior interoperation for Atom Coordination as “Level 1” or “Core Conformance” or any other pleasing term.

Procedure

I believe that the essential proposal in BEA’s document, namely “To remove cohesions from the BTP specification” should be voted on Friday. The current BEA document is the one the committee solicited at its penultimate meeting, and we are better off for a well- motivated and explicit proposal. However, the issues are not new, so I hope we can move ahead, whichever way it goes on the final vote.

Perhaps we can put to one side what I think of as the “archaeology” which occurs occasionally in BEA’s document. There is no ur-proposal which has special status over others. There were three initial submissions, not one. The committee has discussed and decided the scope over many, many meetings at which formal, recorded votes have been taken. Trying to unpick or question the validity of those decisions is wrong, and fruitless.

We have a fresh proposal today, and we should debate it on its merits, and in the context of our accumulated understanding through joint work.

Preface

In working on the specification Peter has changed the term “Persistent Terminator” to “Decider” to capture the fact that some entity takes the ultimate decision on outcome, and logs that decision. Currently a Decider can either be a Coordinator (for Atoms) or a Composer (for Cohesions). The term “Volatile Terminator” has likewise been shortened to plain “Terminator”. I’ve used these terms below.

Protocol Layering

BEA proposes a superficially seductive line: that BTP as currently agreed by the TC is methodologically flawed because it violates protocol layering. They assert that the specification’s “complexity” flows from this fact. This contention in fact shows that BEA has not fully understood the notion of cohesions, and misunderstands its impact on the extent or nature of the specification.

What is a cohesion? It is an atomic action whose membership is fluid until it is confirmed, when the final members are selected from among the candidates.

The detailed exploration of use cases at the Mt Laurel meeting in May showed that many could not be satisfied without such plasticity (late binding). In discussion at HPTS a new example was raised (escrow for house purchase) which requires this feature. BEA agree that this type of structuring or composition is frequently needed by applications, but question whether it should be included in a protocol, or in this version of BTP.

We define a layered architecture in order to avoid reinventing the wheel, basing ourselves on the principle of decomposing the problem and solving each element at the lowest possible, most general level. In O-O terms, each layer specializes (extends) the layer below. In principle BTP sits upon messaging protocols of various stripes or strengths. Our abstract view is adapted to the least capable of such protocols, and elements of our specification may disappear into (be catered for) by a binding to a concrete messaging protocol stack.

Looking at the upper boundary of BTP, we need to recall why BTP exists and is justified. All application interchanges (collaboration protocols) can include messages (or overload messages) to provide commitment or coordination. On examination it becomes clear that such coordination exchanges have a general pattern. It also becomes clear that making such exchanges survive failures is too complicated and confusing for application programmers. (That’s a statement about the available time and proper concerns of application programmers, not their capability.) In particular, we do not want application programmers to become involved in writing failure-recoverable state machines that are capable of resynchronization in any valid state-pair across a system boundary. Therefore, we abstract out the general coordination pattern (two-phase outcome with presumed failure on recovery) and create a new layer in the protocol stack to accommodate it. Writers of collaborative protocols can now concentrate on the forward-progress view of their interactions (the “happy path”, as I heard it described recently).

What does this tell us about cohesions, atoms and layering? It helps, because it makes precise the purpose and scope of the protocol. If messages are to be exchanged and durable records made to underpin state machines, with the purpose of creating coordination over multiple parties, then those messages and records and state machines belong in a coordination protocol. The critical thing here is that cohesions are not simply an application artefact (unlike workflow, which is nothing more than the control flow aspects of a programming language, when it comes down to it). They involve persistence and failure recovery. They are within the proper domain of a coordination protocol.

It could be objected that there are two coordination protocols at work, the one layered above the other, and that BEA still has a case that must be answered. There is no a priori answer to this type of decomposition problem. Once again we must examine the matter in the concrete. I believe I have established a clear upper and lower boundary for BTP as it stands. Can we create such clear boundaries for atomic BTP and cohesive BTP, viewed as two separate protocols in a stack?

Here we run into trouble. The state machines for BTP define (and only need to define) bilateral relations between superiors and inferiors. Everything else is a logical (and unpreventable) deduction. Sub-coordination? An inferior that happens to act (unbeknownst to its superior) as a superior to some other inferiors. Cohesions? A deliberate decision to emit mixed signals to a population of inferiors, which is unknowable to each of those inferiors.

According to BEA, in the proposed BPT specification “Cohesion (upper layer) and Atom (lower layer) share the same Context, Messages and States. We think that this violation of layered architecture has indeed made specification really complex. Many messages, states and roles are made generic to be suitable to two layers of the protocol stack.”

So let’s turn it around. Assume we have an atomic-only protocol, which in some “Future Work” phase, we wish to make cohesions-capable. What new protocol do we define, and how does it layer upon the atomic BTP? What new context, messages and states do we define?

The context is altered by adding a flag, or by creating a new context with a new name, which signals the difference. Receiving applications may use this flag to determine whether data can safely be shared. It has no other function. In all other respects the context has identical contents and purpose.

In terms of Superior:Inferior relations there are precisely zero new messages, precisely zero modifications to messages, and precisely zero new states. So, the core interoperable protocol is not changed. This is a poor basis for “layering”.

What does change is the relationship of the Terminator to the Decider (Coordinator/Composer). Now we must vectorize previously scalar messages between those two parties. If we believe, with born-again BEA, that central coordination hubs are unnecessary, then we simply remove this interoperable relationship from our implementation. Given this limitation, the new “protocol” turns out to be a single bit value in the context.

Cohesions and complexity

Let’s restate the last paragraph. What is the impact of cohesions on the current specification? Let’s remove all elements of explanation, and concentrate on the true, irreducible impact. There are four effects: bits on the wire, contract statements, nomenclature and coordination hub.

Bits on the wire: a context is marked with a value that indicates that it is atomic or cohesive. This flag may be used to control data-sharing.

Contract statements: an Atom Coordinator is obliged to deliver a common outcome to all its enrolled Inferiors. (And, although it need not be said, a Cohesion Composer is not.)

Nomenclature: would it make any difference if we called a Cohesion Composer something different, like a “Cohesion Coordinator”? No. If one wanted to reduce the “role count” we could stop saying Composer, and simply say Coordinator, with appropriate concomitant changes in a very few places.

Coordination hub: It is at this level that the largest impact arises, because scalar messages are replaced by vector messages, to reflect the fluid membership of a cohesion. BEA was in fact the instigator of the post-San Jose proposal to add Terminator-Composer relations into the interoperable scheme.

Misconceived Amendments

The practical impact of BEA’s proposal is captured in a list of changes. I want to treat each of these in turn. Text in italics is quoted directly from BEA’s document.

1. Superior and Inferior relationship

I have already dealt with the main issue. One marginal point: BEA says that BTP will give a type-safety problem to “programmers” by providing for cohesions. We’ve already seen how little effect cohesions have on the wire protocol. Further: no application programmer will ever program BTP in the raw. All access to BTP is going to be controlled in any imaginable implementation by a vendor-supplied (and hopefully standardized) API.

2. Participant Timeout

We share a view of other TC members that autonomous parties in a transaction should be able to indicate participation in transaction for certain time and automatically withdraw from it after this time limit. We also agree that such a capability should be provided by BTP. However, we are not sure that this feature is required during the preparation phase. We believe that a participant should not be able to change its vote (PREPARED/CANCELLED) once it has sent to a Coordinator. Such a change, CANCELLATION by means of timeout, causes heuristics conditions in the protocol and the protocol in its current state is not able to offer atomicity guarantees in that event. We recommend to the TC that this feature be included in “future work” due to time constraints at the time of writing this. If done so, we should look at the message set and remove relevant messages, e.g. MIXED.

The atomic commitment protocol assumes infinite time. It cannot provide a guarantee of consistent outcome without the presumption of recovery from failure (and infinite patience). Any unilateral action taken after the transaction is prepared may produce inconsistency. The experience of implementation shows that it is not possible to employ 2PC without some “cop-out” clause for participants. Hence heuristics, present in all known practical protocols and implementations. One would hope, therefore, that the need for heuristics per se is not in debate. For that we must have HAZARD, incorporating one brand of heuristic, the mixed outcome.

Now, if the premise of participant autonomy in a contract-defined inter-organizational commercial world is accepted, then qualified prepare becomes inevitable. I believe that any protocol which produces an infinite-duration commitment at any point or phase will be unusable by, and unacceptable to, independent businesses who are being asked to synchronize their actions and work with other organizations. After all, it is not in doubt that “compensation” is needed because holding hard locks on inventory is not acceptable. Participant timeouts are an expression of the precise same phenomenon.

By specifying, and stating, timeouts (and “time-ins”) up front, a participant warns its counterpart that a heuristic may occur. It allows the counterpart to factor time into its actions, thereby minimizing the chance of a heuristic occurring. BTP imposes order and prevision on an otherwise unpredictable and chaotic reality.

Absent infinite time, no protocol can give true certainty of consistency. What BTP can do is move applications from never being certain, to being certain perhaps 99% of the time. That gain is worth having, and the remaining window of uncertainty is tiny.

3. Redirector and related message

Our stand is that the Redirector concept and the related messages is an implementation view of one member company. The problem it tries to solve is not specific to BTP messages; it can apply to any application message. So, we think it is up to the messaging system to offer this functionality and it is not in the scope of BTP specification.

To be malicious for a moment, one could be forgiven for thinking that the whole of the BEA proposal was “an implementation view of one member company”. The redirection problem is real, and won’t go away by pushing it at the messaging layer. We encountered this issue when working on the Arjuna JTS. The problem is that failure recovery causes addresses to change. The means which messaging systems use to mask such shifts are many and various. The protocol must be interoperable. Let’s take SOAP as our focus. What answer does SOAP give to the redirection problem? It’s so beautifully “simple” (lame) that it doesn’t even incorporate any notion of end-point mapping or location forwarding. And if it did, there would be eight half-standard implementations and non-implementations in the various toolkits. The need for standardized redirection may not be apparent in a given single-vendor environment where these issues are dealt with in a strong product suite, but it is necessary for this interoperability spec.

4. Factory

The role of factory is introduced to create 3 types of Superiors: Coordinator, Composer and Sub-Composer. If we separate Cohesion transaction from BTP, there will remain only Coordinator. We think that the initiator can figure out the URL of the coordinator by different mechanisms used for bootstrapping in different implementations.

Let’s imagine that we only produce Coordinators. I have to address something (an addressable entity called “Foo”) with a message that says “please create a Coordinator (volatile state for a new transaction, with a persistent backing store)”, and for this to be useful, I get back a reference to that Coordinator (its unique identity). The role played by Foo is that of Factory, i.e. that agent which creates Coordinators. The reference is a CONTEXT message.

Although this is well-traversed ground, it is obviously worth restating a thousand times that one actor (addressable entity) may play more than one role. In the BEA model (very similar to the SeeBeyond conception as expressed in their recent diagrams), the Factory and all Coordinators for a given process or system are a single actor, with a common address. As usual, by design, BTP allows BEA to implement this architecture with perfect freedom. Equally, in the HP Arjuna (or other OTS-alike) world, where a coordinator may be a per-transaction object, BTP is workable.

There is no reference in the specification draft, nor has there ever been, to a mechanism for discovering the Factory. That is indeed an implemenation-specific, or deployment-time issue. By the way, the exportation of the factory via a WSDL interface is the only useful case for WSDL in the protocol, and might be a helpful addition in some “Future Work” phase.

The issue of how many products a Factory can or should manufacture is addressed in the section headed “And a Wrinkle”, at the end of this document.

5. Enroller

We think there is no need for Enroller, which is implicitly a Participant. We recommend allowing for static enrollment. i.e. the service can make the participant’s address part of the application interface definition. In WSDL’s case, this can be a part of the port binding.

This is also an old debate, had out over many e-mails many months ago. The methodological problem is the same: failing to see a role as precisely that―a description of actions to be taken in accordance with a script (specification). One can deliver the role of Hamlet with angst, or without any artistic feeling whatsoever. And in the village hall production we may find the same actor playing a male part in every scene where Hamlet does not appear on stage.

Someone has to enrol the Inferior. There are numerous cases. In “standard” (brute force) BTP the service either enrols the Inferior on receipt of CONTEXT, or asks the Inferior to enrol itself. In optimized “one-shot” BTP, the application on the client side enrols the participant. When creating a new Sub-Coordinator, a Factory creates the beast, and enrols it with its Superior. Which of these possibilities would BEA like to eliminate?

“Static enrolment” is allowed for already. If the Superior’s address and the Inferior’s address are both known (by some means, uninteresting) then the knowing party can send ENROL to the Superior. Once again, the standard does not prejudge who that might be, allowing implementation flexibility.

6. Terminator

We believe that applications initiating transactions will also be a terminator of those transactions. Of course, timeouts or administrators can terminate transactions. But, we think that making this assumption does not lose much flexibility.

I agree that this will usually be the case. What is the practical effect of this “change”? We replace the terms Initiator and Terminator by some portmanteau phrase like Initiator/Terminator and we introduce an unnecessary (and complicating) rule that states: the Initiator and the Terminator must have the same address.

Also, a volatile or persistent terminator is an implementation choice. In our experience, a non-recoverable terminator is of little use. It does not make any sense to recover a transaction for which a terminator may not exist.

I want to deal with this point in conjunction with the next one:

7. Removal of REQUEST_CONFIRM message

This message was introduced because of introduction of three roles: Volatile Terminator, Persistent Terminator and Composer (also a Persistent Terminator). Volatile Terminator uses this message to commence termination of transaction. As we described above, Volatile Terminator is not a practical concept. We believe that we can use the same approach used by User APIs of conventional specifications such as JTA/OTS. According to this approach, commit from an application indicates the “intention” of the application to commit the transaction. Thus, we should replace REQUEST_CONFIRM by CONFIRM. In the context in which this message is used (Persistent Terminator-Coordinator or Coordinator-Participant), it will behave differently. This means, that if Coordinator receives CONFIRM the first time, it should start preparation phase if it hasn’t done so.

A non-recoverable Terminator is normal. Any application client is unrecoverable. If I say tx_commit or Current::commit or Terminator::commit or UserTransaction.commit (TX, OTS, JTA) then I, as an unrecoverable client am requesting the coordinator to attempt to commit the transaction. It will seek to do so, and if it receives the equivalent of PREPAREDs from all of its inferiors, it will log the outcome (commit) and can replay that outcome in the event of any subsequent failure.

The message REQUEST_CONFIRM interoperably permits such a “request to commit” to be communicated. It is not the same as CONFIRM, because the Coordinator could decide, unilaterally, to cancel, based on an inability to log the confirm (a decision which is constant over failure, due to presumed-failure [no log equals cancel]).

A CONFIRM message is emitted by a recoverable Superior which is either the holder of the confirm log, or has a logged Superior which holds the log or knows someone who may hold the log, ad infinitum up the tree to the actual holder of the log.

Using the same name for these two messages (one meaning “go and do two-phase outcome processing, and tell me how you get on”; the other meaning: “now process your confirm operation and tell me if you succeeded or failed”) is a “simplification” if we are counting letters in the spec. By any other criterion it is less, not more, clarifying.

A Solution: Conformance Profiles

The BEA proposal is a mixture of one “big” change (abandon Cohesions) and lots of “little” ones. The “big” change turns out to be not such a big deal in practice. The “little” changes turn out to be quite invasive and prescriptive of a particular implementation approach.

I am also not sure if BEA hasn’t chosen the wrong enemy. I think that the notion of an interoperable coordination hub is actually the cause of much more “stuff” in the specification (Factory, Terminator, vectorized messages) than cohesions per se.

I favour a specification that this committee agrees on. If the committee votes for BEA’s proposal then Choreology will do its best to make the specification changes, if the committee is still happy that Peter and I continue our editing role, and if the decision is quick and clean.

I also favour a specification that reflects our common work and gives implementation choices (and therefore good grounds for competing on quality and flexibility, and for addressing different markets). Therefore, let’s go with conformance profiles as the best way of managing the current divergence. Conformance profiles let you cut away coordination hub, or cohesions, or both in your implementation.

And a Wrinkle

But, there’s one wrinkle, which Peter brought to my attention, and as he’s half on holiday in South Africa, I’ll take it up. I’ve mentioned it already in an earlier posting. If you create a coordinator, and it doesn’t have an open top, then it can’t be a sub-coordinator, i.e. it can’t be enrolled with an existing Superior. Do we always assume that coordinators are enrollable, i.e. are potential sub-coordinators? If we are covering legacy systems with a BTP Coordinator we might run into this issue. I’d like to know what others think of this. (As there are no legacy composers and composers must be attacked two-phase, the issue doesn’t arise for sub-composers.)

Terminator

Coordinator

Inferior

REQUEST_CONFIRM

CONFIRMED

PREPARE / PREPARED

CONFIRM / CONFIRMED

Confirm log

Prepare log

