
1

Cloud Application Management for Platforms
(CAMP) 1.0: An Introduction

2

Agenda

 Motivation, Introduction & Scope

 Why?

 What?

 Standardization: Issues & Missing Pieces

 Q&A

3

Elastic Beanstalk

4

Existing Platform Application Mgmt APIs

 Most platforms (Elastic Beanstalk, GAE, Heroku, OpenShift, Oracle
Java Service, …)

– Command line interface

– Web based console

– Unpublished RESTful API that can change

5

Why: Motivation (1)

 No existing PaaS Application Management standard
 Proprietary APIs are proliferating
 Each PaaS management API causes friction between clouds, limiting

growth of the market
– A standard alleviates customer concerns and increases adoption

 Customers will prefer early adopters of a Platform standard over the
slower adopters

– Implementation of the standard itself will be a “feature”

6

Why: Motivation (2)

 Interoperability
 Portability
 Consensus management API

– Enables providers to invest resources in other, more valuable areas

– Serves as a basis for innovation and value-add

7

Introduction (1)

 Cloud Application Management for Platforms (CAMP)
– http://www.cloudspecs.org/paas/

http://www.cloudspecs.org/paas/

8

Introduction (2)

 Simple API to manage applications in a PaaS cloud
– Resource & lifecycle model for application management

– Portable packages

– HTTP-based RESTful API

– JSON serialization

– Extensible

– Language- (Ruby, Java, Python, PHP, etc.), framework- (Rails, Spring,
etc.), and platform- neutral (Java EE, .Net etc).

9

Scope (1)

 Management of applications and their use of the Platform
– Upload

– Manage lifecycle (configure/customize, deploy, undeploy, start, stop,
snapshot, suspend, restart, delete)

– Enable Monitoring

A Humble Spec

10

Scope (2)

11

Why: Goals (1)

 Simple
 HTTP/REST
 JSON
 Interoperability
 Portability

– Application packaging

– Tools

– Skills

12

Why: Goals (2)

 Extensibility
– Platform vendors can still extend the standard for their own value added

features (no lowest common denominator)

13

Why: Use Cases (1)

 Moving applications between clouds
– Public cloud A <> Public cloud B

– On-premise/Private cloud <> Public cloud

 Managing App lifecycle consistently
– Starting, stopping, snapshotting, suspending, resuming, patching,

deleting an application

 Monitoring Support
 Changing configuration and runtime parameters

14

Why: Use Cases (2)

15

Why: Use Cases (3)

 Develop App in an ADE running in the cloud
– deploy to cloud

16

What CAMP is not (1)

 Topology and orchestration
 Functional (non-management) interfaces to Platform and application

services
– E.g., interface to a message service bus or a database service offered by

a Platform

 Facilities and interfaces that are language-, framework or platform-
specific (e.g. .Net, Java EE)

17

What CAMP is not (2)

 Management of underlying Platform resources
– Management of underlying IaaS layer (if it exists)

– Agnostic to underlying layer

– Definition of Platform services (functional interfaces)

– these may take many different shapes and offer a variety of APIs

– E.g., Messaging service functional interfaces

18

What: Lifecycle

 The lifecycle of an application
proceeds through multiple stages:

– Uploaded

– Deployed

– Instantiated

– Suspended

 These transitions are controlled
through the CAMP interface

19

What: Packaging

 CAMP includes a portable
packaging format

– ADE cloud

– Cloud A Cloud B

20

What: Protocol

 Based on REST Principles
 HTTP
 JSON serialization
 Extensible to accommodate vendor extensions
 Authentication via TLS

21

What: Protocol Example (Deploy Request)

 Request
– POST /myPaaS HTTP/1.1
Host: example.org
Content-Type: ...
Content-Length: ...

{
 "pdp_uri": "/myPaaS/pkgs/1"
}

22

What: Protocol Example (Deploy Response)

 Response
– HTTP/1.1 201 Created
Location: http://example.org/myPaaS/templates/1
Content-Type: ...
Content-Length: ...

...

23

What: Protocol Example (Start)

 Request
– POST /myPaaS/templates/1 HTTP/1.1
Host: example.org

 Response
– HTTP/1.1 201 Created
Location: http://example.org/myPaaS/apps/1
Content-Type: ...
Content-Length: ...

...

24

What: Protocol Example (Monitor Request)

 Request
– GET /myPaaS/apps/1 HTTP/1.1
Host: example.org

25

What: Protocol Example (Monitor Response)

 Response
– HTTP/1.1 200 OK

Location: http://example.org/myPaaS/templates/1
Content-Type: ...
Content-Length: ...

{ "uri": "http://example.org/myPaaS/apps/1",

 "name": "Hello Cloud App",

 "applicationComponents": [

 {"href": "/myPaaS/apps/1/acs/1”},

 {"href": "myPaaS/apps/1/acs/2”}],

 "platformComponents": [

 {"href": "/myPaaS/pcs/1”},

 {"href": "myPaaS/pcs/2”}],

 "assemblyTemplate": "/myPaaS/templates/1",

 "resourceState": {

 "state": "RUNNING"

 }

}

26

What: Management Model

27

What: Management Model
Traversing Resources (Runtime Discovery Via URI Links)

28

CAMP Standardization

 Defining PDP
 Extensibility model and framework

– Attributes

– Resources

– Protocol/API

– Lifecycle

– Extension and metadata discovery

 Testing

Missing Pieces

29

CAMP Standardization

 Resource model
 Media type
 Life cycle
 Other minor/misc. issues

Issues

30

Q&A

	Slide 1
	Agenda
	Slide 3
	Existing Platform Application Mgmt APIs
	Why: Motivation (1)
	Why: Motivation (2)
	Introduction (1)
	Introduction (2)
	Scope (1)
	Scope (2)
	Why: Goals (1)
	Why: Goals (2)
	Why: Use Cases (1)
	Why: Use Cases (2)
	Why: Use Cases (3)
	What CAMP is not (1)
	What CAMP is not (2)
	What: Lifecycle
	What: Packaging
	What: Protocol
	What: Protocol Example (Deploy Request)
	What: Protocol Example (Deploy Response)
	What: Protocol Example (Start)
	What: Protocol Example (Monitor Request)
	What: Protocol Example (Monitor Response)
	What: Management Model
	What: Management Model
	CAMP Standardization
	CAMP Standardization
	Q&A

