1) General Remarks
The below described transform APIs may be applied to APSs of type "grobjects".  An explicit grobject's region/viewcontext attribute or an implicit boundary property needs to be set for defining the bounding extent of the enclosed graphical object during the transform operations. Viewers will move the APS or scale them in accordance with the API call.
Currently it's assumed that the overlay model will be used, which means that a "transformed" APS may overlay wholly or partially the elements rendered earlier. Transparency can be considered separately.

Applying the "transform" operation to any grobject just means that this object will be rendered as a whole with some additional xxxx, for example as repeatable, or as scaled, or rotated...  It might be an option to use, for transforms, the Generalized Text Path capability (text on arbitrary, curved paths) and Generalized Text Path Mode already supported in WebCGM 2.0.

Comments UL:
I believe the approach to rely on the region/viewcontext or some otherwise defined APS bound box, and then to take the center of this rectangle as the transform origin, is not sufficient.  We will probably need two more API calls, setTransformOrigin, getTransformOrigin (or split the latter into getx/gety for Java conventions).  The setTransformOrigin function, beside x & y of the origin, may also include a boolean parameter specifiying whether the transformation should be cumulative or not regarding its transform origin.

The ideas above about “repeatable” and “transparent” were, to my knowledge, not discussed within the group so far.  It may indeed be an option to concurrently display an object at different stages along the transformation “path” rather than deleting previous appearances of the object.  This could be specified in a separate call or as an additional parameter in the transform functions.  Likewise with Transparency.
2) Transform Method Description

void move(in WebCGMString apsId, in WebCGMString newx, in WebCGMString newy);
The specified Application Structure is moved so that its center is located at the point newx, newy

Parameters
    apsId - Application Structure ID
    newx, newy  - new location for the center
void rotate(in WebCGMString apsId, in WebCGMString angle);
The specified Application Structure is rotated by the angle of "angle".

Parameters
    apsId - Application Structure ID
    angle - angle of rotation

void scale(in WebCGMString apsId, in WebCGMString x, in WebCGMString y);
The specified Application Structure is scaled along both direction with factors fx and fy 

Parameters
    apsId - Application Structure ID
    fx, fy - scaling factors

void transform(in WebCGMString apsId, in WebCGMString a, in WebCGMString b,
     in WebCGMString c, in WebCGMString d, in WebCGMString e, in WebCGMString f);
The specified Application Structure is transformed using the motion path defined by the transformation matrix(<a> <b>  <c> <d> <e> <f>), which specifies a transformation in the form of a transformation matrix of six values.  The matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [a b c d e f].

Parameters
    apsId - Application Structure ID
    (a,b,c,d,e,f) - transformation matrix
3) Example for APS Rotation
We see two places where to add the transform interface functions to the WebCGM DOM API specification:

- WebCGMAppStructure or
- WebCGMPicture
Let’s assume we put them into the WebCGMPicture interface.  An example to rotate an APS around its center (Comment UL: setTransformOrigin needs to be added for more flexibility) would look like this:

<script type="text/ecmascript">
 function OnBtnDOM() {
  try {
    // Get layernname
    var cgmDoc = document.getElementById("ivx1").getWebCGMDocument();
    var cgmPic = cgmDoc.firstPicture;
    var result = document.getElementById("_1");
    var gr = cgmPic.getAppStructureById("fleet");
    cgmPic.rotate(gr, "45");    
  }
  catch (e) {
    alert("Catch the exception: " + e.description);
  }
}
</script>

