TAXII 2.0 Specification Pre-Draft

Version 0.2

Current Status/Intent

This document serves to gain consensus on pre-draft concepts of TAXII 2.0. Please feel free to
poke holes and comment!

Overview

TAXIl is an open protocol for the communication of cyber threat information. Focusing on
simplicity and scalability, TAXII enables authenticated and secure communication of cyber
threat information across products and organizations.

Changes from TAXII 1.1

TAXIl is no longer an acronym. TAXIl is just TAXII.

This specification addresses a number of key known issues with TAXII 1.1:
e Lack of automated discovery; Addressed by defining a DNS SRV record
e Lack of real-time exchanges; Addressed by HTTP Long Polling
e Lack of specificity regarding authentication; Addressed by defining authentication
requirements
e Too much optionality (a.k.a., lack of a single architecture); Addressed by more
concretely defining what a TAXII Server “is” and how it should behave.

TODO: Explain that services went away
TODO: Explain TAXII 1.x Data Collection vs. 2.x Collection

Similarities and Differences

Table of Contents

Current Status/Intent
Overview

Changes from TAXII 1.1
Similarities and Differences
Table of Contents
Section 1: TAXIl Overview
TAXII Protocol Overview
TAXII Server Overview
Channels Overview
Collections Overview
DNS Service (SRV) Records
Authentication
Deployment Overview
Section 2: TAXII Server Architecture
HTTP
DNS SRV Records

Long Polling
Section 3: TAXII API

Discovery API

APl Base

HTTP X-Headers
HTTP Status Codes
URL Summary

URL Details

[Discovery]

[API-Base]
[API-Base]/channels/

[API-Base]/channels/<channel-name>/
[AP|-Base]/collections/
[API-Base]/collections/<collection-name>/
Section 4: Messages
Discovery
API-Status
Channel Listing
Repository Listing
Messaging Considerations
Section 5: Authentication
Section 6: Policy Based Authorization

Section 1: TAXII Overview

TAXIl enables communication of cyber threat information across product and organizational
boundaries. This specification defines the TAXII Protocol and requirements for TAXII Server
implementations.

TAXII Protocol Overview

The TAXII Protocol follows the RESTful architectural pattern and uses JSON/HTTPS for all
communications. This specification defines the URL Structures, JSON Messages, and
authentication methods that TAXII Servers are required to implement. The TAXII Protocol is
“‘HTTPS only”, meaning that communications over HTTP are not conformant with this
specification.

TAXII Server Overview

A TAXII Server is a piece of cyber security infrastructure that facilitates the exchange of threat
information using Channels and Collections.

Channels Overview

A Channel distributes information from producers to consumers. Producers send information to
a Channel and Consumers receive information from a Channel. Channels are used to exchange
information in an asynchronous, event-based manner where both Producers and Consumers
are clients and the Channel is maintained by the server.

TAXII Servers perform delivery activities for information written to a Channel; information is
processed by Producers and Consumers. TAXII Server implementations, as a value-add, may
choose to add policy based processing of messages on a channel or package certain types of
clients with a TAXII Server product. Those options are outside the scope of this specification.

The diagram below illustrates a single producer sending a message to the TAXII Server, and
that TAXII Server then distributing the message to multiple consumers. Normative requirements
for Channels are defined later in this document.

Consumer

Producer TAXII
Client
Publish
A e Subscribe
Client TAX“ Consumer
Server

TAXII
Client

Collections Overview

A Collection is used by clients to either send information to the server or request information
from the server. A TAXII Server may contain multiple Collections and Collections are used to
exchange information in a request-response manner. The server responds to client requests
directly, and only the client and server see the request-response communication.

The diagram below illustrates an interaction where a client makes a request to a TAXI| Server,
and the TAXII Server fulfills the request with information available to the TAXII Server (nominally
from a database). Normative requirements for Collections are defined later in this document.

I Reauest
Response
e e

TAXII

TAXII
Server

DNS Service (SRV) Records

This specification defines a DNS SRV record to allow advertisement of TAXII Servers, if desired,
via DNS. Using this feature will enable autodiscovery of a TAXII Server and its features.

Authentication

This specification defines a mandatory to implement authentication method of HTTP Basic with
JSON Web Tokens (JWT). As all communications in TAXIl are over HTTPS, HTTP Basic is an
acceptable authentication system to guarantee baseline interoperability. This specification will
also define extension points for other authentication systems to accommodate the diverse
needs within TAXII deployments. For more information and details about using authentication
with TAXII and enabling authentication systems other than HTTP Basic with JWT, please see
the section titled, Authentication.

Section 2: TITLE TBD

HTTP

This specification use the HTTP protocol for all communications and requires that all TAXII
servers MUST use HTTPS [RFC7230] and implement TLS version 1.2 [RFC5242]. Further,
TAXII servers MUST implement TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
[RFC5489].

With the exception of TLS_ECDHE_RSA_WITH_NULL_SHA384 and the NULL cipher suites, a
TAXIl server MUST NOT offer or negotiate (bid down) an encrypted connection with parameters
weaker than TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384.

TAXII clients MUST use HTTPS [RFC7230] and implement TLS 1.2 [RFC5242]. TAXII clients
can expect conforming TAXII servers to implement at least
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 [RFC5489]. With the exception of
TLS_ECDHE_RSA_ WITH_NULL_SHA384 and the NULL cipher suites, a TAXII client MUST
NOT offer or negotiate (bid down) an encrypted connection with parameters weaker than
TLS_ECDHE_RSA WITH_AES 256 _CBC_SHA384.

Operators will deploy TAXII clients and servers per their local security policy. The requirements
for a TAXII server to implement HTTPS, TLS 1.2, and
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 set a minimum baseline for servers such
that in any environment sufficient security is available to clients that desire it. From an
interoperability perspective, even if a particular deployment might not care about any security or
integrity or privacy at all, and as such would be happy to have clients and servers totally
vulnerable to man-in-the-middle attacks and privacy leakage, there will be many deployments
that will require the minimal level of security offered by HTTPS/TLS 1.2/ECC-AES-SHA-2. As
such, if a “TAXII server” does not implement this baseline, it cannot call itself a ‘TAXII’ server.
Likewise, a TAXII client that fails to implement
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 may find itself unable to communicate with
a TAXII server.

If local policy at the TAXII server is to allow transfers in the clear, in the TLS handshake the
server can offer TLS_ECDHE_RSA_WITH_NULL_SHA384 for integrity checked transfers or the
NULL cipher for insecure transfers. If local policy at the TAXII client is to allow transfers in the
clear, the client can also offer in the TLS handshake TLS_ECDHE_RSA_WITH_NULL_SHA384
for integrity checked transfers or the NULL cipher for insecure transfers. Normal TLS negotiation
will result in the appropriate cipher suite per the mutually agreed to security level.

We expect many deployments will have more stringent security policies. For example, this TAXII
specification is silent on certificate authorities. For many uses, the Web model of having
hundreds of root certificate authorities may be sufficient. For other users, a single or at most a
pair of root certificate authorities may be mandated. For other users, a self-signed certificate
may be sulfficient. All of these policies are up to the organizations deploying the TAXII clients
and servers. This specification allows for the range of totally open (hundreds of ‘recognized’ root
certificate authorities) to totally closed (only a single, either hard-coded, physically distributed, or
limited set of potentially pinned certificate authority, perhaps self-signed by a closed user
community).

Likewise, this TAXII specification is silent as to validation and revocation policy. This is again a
policy issue. We would expect most TAXII servers to implement the X.509 Internet Public Key

Infrastructure Online Certificate Status Protocol (OCSP) [RFC6960]. However, that is a policy

issue, not a mandate for implementation.

DNS SRV Records

This specification defines an optional DNS Service (SRV) record [RFC2782] for use with TAXII.
The service name for this version of TAXII is: “taxii”. Future versions of TAXIlI may define
alternate service names.

An example DNS SRV record, advertising a TAXII server located at taxii.example.com:443:
_taxii._tcp.example.com. 86400 IN SRV 0 5 443 taxii.example.com

Long Polling

**TAXII does long polling. Need to specify things related to long polling here.
TODO This needs to be fleshed out ***

Section 3: TAXII API

The TAXII APl is designed as a resource-oriented HTTP interface that uses JSON. The TAXII
APl uses the URL production “/<resource-type>/<resource-identifier>/" and leverages native
HTTP semantics (e.g., HTTP Status Codes, MIME types).

Discovery API

This specification defines a single Discovery APl URL that clients can use, if implemented, to
discover the TAXII capabilities that the server offers as well as meta-information about the TAXII
Server (e.g., contact information). When this Discovery APl is used with a DNS SRV record,
clients can auto-discover TAXII services as follows:

1. Client uses DNS to retrieve a TAXII DNS Service Record
2. Client uses the TAXII DNS Service Record to construct the Discovery APl URL
3. Client issues a request to the Discovery URL

Recall the example TAXII DNS Service record:

_taxii._tcp.example.com. 86400 IN SRV 0 5 443 taxii.example.com

Using port (443) and the hostname (taxii.example.com) from the DNS Service Record, the TAXII
Discovery URL is constructed as follows:

https:// + hostname + : + port + /taxii/

A fully constructed TAXII Discovery URL is as follows:

https://taxii.example.com:443/taxii/

For backward compatibility with previous versions of TAXII, implementations MAY advertise

previous versions of TAXII in the Discovery message. This specification uses the notation
[Discovery] to refer to the Discovery API URL.

API| Base

This specification defines an API Base URL that is used as the “root” URL for any particular
instance of the TAXII API. TAXIl Servers MUST have at least one API Base. A single TAXII
Server MAY host as many instances of the TAXIl API as desired, with each instance located at
a unique API Base. Hosting multiple APl Bases would allow an implementer to mimic trust

groups or groups of interest on a single TAXII Server. Different APl Bases MAY have different
authentication requirements. This specification does not define how API Bases are managed
(i.e., created, modified, or deleted). This specification uses the notation [API-Base] to refer to a
generic API Base.

An example API Base:
https://subdomain.example.com:12345/trustgroup1/

HTTP X-Headers

This specification defines X-Headers that clients can use to request certain behaviors from the
server they are connecting to. All headers defined in this section are optional for clients to use
and required for servers to support.

X-Header Name Description Allowable Values
X-Max-Size The X-Max-Size header The mimimum allowable value
identifies the maxmimum is 9437184 (9mb). There is no
response size in decimal maximum allowable value.

number of OCTETs that the
client is capable of receiving.
The Content-Length of the
response MUST NOT be
larger than the X-Max-Size
value, if specified.

HTTP Status Codes

TAXIl 2.0 uses HTTP Status Codes to communicate status information about requests. This
section provides a summary of HTTP Status Codes that implementers need to consider. This
specification defines no requirements for the use of HTTP Status Codes.

Status Meaning Is Used When ...
Code (From HTTP RFC)
HTTP 200 | OK ... the request succeeded
HTTP 201 | Created ... the request succeeded AND a new resource (e.g., a
Channel) was created

HTTP 202 | Accepted ... the request has been accepted but not processed
HTTP 204 | No Content ... the request has been fulfilled and there is not content to
return
HTTP 400 | Bad Request .. the server cannot understand the request due to malformed
syntax
HTTP 401 | Unauthorized ... authentication is required
HTTP 403 | Forbidden ... the request could not be fulfilled due to lack of authorization
HTTP 405 | Method Not ... the request specifies an HTTP verb (e.g., POST) that is not
Allowed permitted.
HTTP 406 | Unacceptable ... the request’s Accept header does not specify a value the
server can supply for the specified resource (URL)
HTTP 415 | Unsupported ... the request’s Content-Type header is not supported by the
Media Type server for the specified resource (URL)
HTTP 501 | Not ... the client has requested a function that is not implemented
Implemented on the server

URL Summary

This section summarizes the URLs defined in the TAXII API. Full definitions and requirements
for each URL are in subsequent sections.

Path Description
[Discovery] Enables discovery of Server Metadata and TAXII
functionality.
[API-Base]/ Enables discovery of resources (channels /

collections) at this API Base

[APlI-Base]/channels/

Enables discovery and management of Channels.

[API-Base]/channels/<channel-name>/ Enables interacting directly with a specific Channel

(e.g., reading, writing).

[API-Base]/collections/

Enables discovery and management of

Collections.

[API-Base]/collections/<collection-name>/ | Enables interacting directly with a specific
Collection (e.g., creating or requesting resources).

The following table headings are defined as follows:
Path - Indicates the URL that the HTTP request specifies

e Method - Specifies the HTTP Method (e.g., GET, POST) of the HTTP request.
e Request Message - Specifies the message type of the HTTP Request
e Response Message - Specifies the message type of the HTTP Response.
Path Method | Request Message Response
Type Message Type
[Discovery] GET n/a Discovery
[API-Base] GET n/a API Status
[API-Base]/channels/[?params] GET n/a Channel Listing
[API-Base]/channels/ POST Channel Create | Channel Status
[API-Base]/channels/<channel-name>/ GET n/a TAXII Data
[API-Base]/channels/<channel-name>/ POST TAXII Data TAXII Status
[API-Base]/collections/[?params] GET n/a Collections
[API-Base]/collections/ POST Collection Create Collection
Status
[API-Base]/collections/<collection-name>[? GET n/a TAXII Data
params]
[API-Base]/collections/<collection-name>/ POST Object Create <TBD>
URL Details

This section defines the behavior of each URL in the TAXII API. Note that for the sake of
brevity, error related messages flows are not described in each URL'’s section. Generally, each
channel has a general description and a listing of message flows.

[Discovery]

This URL is the root of a TAXII Server and permits retrieval of server-wide information and API
Bases running on this or other servers.

[API-Base]

This URL is the root of a TAXII APl and permits retrieval of meta-information about this instance
of the TAXII API. The [API-Base] URL does not provide any facility for actually exchanging
cyber threat information.

The following table illustrates the supported HTTP methods at this URL.

HTTP Response Message HTTP Status Description
Method Code
GET API-Status HTTP 200 - Returns information about the
OK channels in this instance of
the TAXII API.

[API-Base]/channels/

This URL contains all Channel resources within the [API-Base], enabling discovery and
management of these Channel resources. GET requests to this URL will result in a listing of
available Channel resources (possibly filtered by query parameters or by policy). POST
requests to this URL will attempt to create a new Channel resource or modify an existing
Channel resource. Requests and responses that are permitted to contain message bodies
MUST be able to be represented as a MIME-type of application/taxii+json.

Requests to this URL MUST NOT result in an HTTP 405 (Unacceptable) when the #TODO# is
specified in the Accept header.

GET Requests

GET requests to this URL are used to request a listing of available Channel resources, possibly
filtered by query parameters. HTTP GET requests to this URL that result in an HTTP 200
response MUST contain a Channel Listing message (even if the Channel Listing message does
not list any Channels) in an acceptable format (per the HTTP Accept header in the request).

HTTP GET requests MAY contain any combination of the following query parameters:

Parameter Description Allowable Values

name Specifies the name of the Channel being TBD
requested. Exact matches are required.

POST Requests
HTTP POST requests to this URL MUST NOT result in an HTTP 415 when the Content-Type is
##TODO## and the content is valid per the specified Content-Type.

This URL has four message flows.

Channel Creation
This message flow creates a channel.

HTTP Response Message HTTP Status Description
Method Code
GET Channel Listing HTTP 200 - Returns information about the
OK channels in this instance of
the TAXII API.

POST Create a Channel

PUT Create/Modify a channel
DELETE Delete a Channel

[API-Base]/channels/<channel-name>/

GET http 200

or

GET http 204 no new
POST http 202

DELETE Requests
TAXII Servers MUST be able to respond to HTTP DELETE requests to this URL and MUST
support the following query parameters:

e name - channel name

Channel Names MUST have a length from 1 to 128 characters long and only contain upper and
lower case ascii characters (A-Z and a-z), numbers (0-9), and a hyphen character (-) in
accordance with the following regular expression: "[A-Za-z0-9-1{1,128}$

PUT <channel object> to [API-Base]/channels/<channel-name>/ - Edit / update details of a
channel

POST <taxii message(s)> to /channels/<channel-name>/ - Add TAXIl message(s) to the
channel

HTTP 202 - Message(s) accepted, message will be transmitted to the channel

HTTP 400 - Invalid request, something wrong with your message structure

HTTP 403 - Permission denied, you can not post to this channel

HTTP 501 - Not implemented (This is a read only channel)

GET /channels/<channel-name>/[?param1=val1...] - Get or Create a subscription and get TAXII
messages from the channel with the specified filter. For more on subscriptions, see below.

HTTP 200 - Response fulfilled

HTTP 204 - No new data

HTTP 400 - Invalid request

HTTP 403 - Permission denied

HTTP 501 - Not implemented (This is a write-only channel)

Error codes for this resource are:

HTTP 200 - Returns channel information (e.g., channel-info message)

HTTP 400 - Invalid request

HTTP 403 - Permission denied, you are not allowed to view this channel's information

e ‘“type” = string - message type with a value of “channel-details”
e “name” = string - name of channel
e “long-poll” = bool - does this channel make use of HTTP long polling
e “msg-age” = string - how long in seconds does the server hold messages for clients
before purging them
Example

{
"type": "channel-details",
"name": "<channel-name>",
"long-poll": true,
"msg-age": "86400"

[API-Base]/collections/

GET HTTP 200

[API-Base]/collections/<collection-name>/

GET HTTP 200

Collection Names MUST have a length from 1 to 128 characters long and only contain upper
and lower case ascii characters (A-Z and a-z), numbers (0-9), and a hyphen character (-) in
accordance with the following regular expression: "[A-Za-z0-9-1{1,128}$

This section hasn’t really been fleshed out yet. See Trey Darley’s proposal.
http://taxiiproject.github.io/taxii2/notional-query-api/

Section 4: Messages

This section contains messages used in TAXII. Each message definition includes a table
defining the message and an example message.

Plus signs are used to indicate parent/child because split cells isn’t a feature of google docs.

TODO: What MIME type is used for these messages?

Discovery
Field Name Description JSON Allowable Values
Type

type A static field identifying the type of | string Only the literal ‘discovery’
this object is permitted

contact-info A text field containing string
human-orented contact
information

description A text field containing a string
human-oriented description of the
TAXII Server

api-bases An array of string values that array

http://taxiiproject.github.io/taxii2/notional-query-api/

contain api-bases that this servers

knows about

Example
{
"type": "discovery",
"contact-info": "Bret and Mark at company xyz",
"description”: "This server support the following company xyz",

"api-bases": [

"https://taxii-foo.example.com:443/taxii2/collection-foo/",
"https://taxii-bar.example.com/t2/channel-bar/"

}
API-Status
Field Name Description JSON Allowable Values
Type
type A static field identifying the type of this | string Only the literal

object

‘api-status’ is
permitted

contact-info

A text field containing human-orented | string

contact information

description A text field containing a string
human-oriented description of the
TAXII Server
Channel Listing
Field Name Description JSON Type Allowable Values
type A static field string Only the literal
identifying the type of ‘channel-listing’ is
this object permitted

requestor can write to
the channel

channels A list of channel array The array MUST

information objects contain only channel
information objects
Channel Information object

type A static field string Only the literal
identifying the type of ‘channel-information’
this object is permitted

name The name of the string tbd
channel

url The URL of the string tbd
channel

description A prose description string tbd
of the channel

subscribers A list of subscriber array The array MUST
IDs contain strings that

conform to <??7?>

can-read Indicates whether the | boolean True/False
requestor can read
from the channel

can-write Indicates whether the | boolean True/False

{

"type": "channel-listing",

"channels":

{

"type":
"name" :

"channel-information",
"channel 1",
“url”: "https://example.com/taxii/channels/channel-1/",

"description”: "This is a description. Read it.",

"subscribers": ["mdavidson", "bjordan"],

"can-read":
"can-write":

Repository Listing

Field Name Description JSON Type Allowable Values
type A static field string Only the literal
identifying the type of ‘repository-listing’ is
this object permitted
channels A list of Repository array The array MUST
Information objects contain only
Repository
Information objects
Repository Information object
type A static field string Only the literal
identifying the type of ‘repository-informatio
this object n’ is permitted
27?7

Messaging Considerations

This section defines requirements for how TAXII Servers deliver messages.

Topics to include:

e Guaranteed deliver (MSD:

Section 5: Authentication

Error codes for authentication are: (TODO)

HTTP 201 - ??
HTTP 400 - ??
HTTP 403 - ??
HTTP 501 - ?7?

Section 6: Policy Based Authorization

