STIX 2.0 Specification - Pre-Draft

STIX Core Concepts - Version 0.1

Document Table of Contents

1. Document Development Status
2. STIX Definitions
3. STIX Concepts
3.1. IDs and ID References
3.2. Versioning
3.2.1. Use Cases
3.2.2. Scenarios
3.2.3. Implementation
3.2.4. Definitions
3.2.5. Examples
3.3. Confidence
3.4. Controlled Vocabularies
3.4.1. Examples
3.5. ENUMs
3.6. Vendor Defined Fields
3.6.1. Processing Rules
3.6.2. Examples
3.7. Data Markings
3.7.1. Object-Level Markings
3.7.2. Granular Markings
3.7.3. Precedence Rules
3.7.4. Interoperability
3.7.5. Level 0
3.7.6. Level 1
3.7.7. Level 2
3.7.8. Resolving References
3.7.9. Examples
4. Core Types
4.1. |dentifiers
4.1.1. Format
4.1.2. Examples
4.2. Timestamps
4.2.1. Format
4.2.2. Examples

4.3. Extended Vocabulary

4.3.1. Examples
4.4. Granular Markings

5. Common Properties
5.1. STIX Core
5.1.1. Properties

5.1.2. Common Relationships

5.1.3. Examples
5.2. STIX Descriptive
5.2.1. Properties
6. Common Types

6.1. Impact

6.2. Statement (statement)

1. Document Development Status

Object / Concept Status MVP Description
STIX Concepts

ID References Draft < add text >
Versioning < add text >
Controlled Vocabularies Yes < add text >
ENUMs < add text >
Vendor Defined Fields Draft < add text >
Data Markings < add text >
Core Types

identifier Draft < add text >
timestamp Draft < add text >
vocab-ext < add text >
granular-marking OIplelTellefTe] | < add text >

Common Properties

stix-core Yes < add text >
descriptive-properties Yes < add text >
Common Types

impact < add text >
statement (UIie[Sleife[sle] | < add text >

2. STIX Definitions

Term Definition

top level object Top level objects (TLOs) capture information
about things that exist in the cybersecurity
threat domain: threat actors, observations,
attack patterns, malware, campaigns, etc.

ID reference A string that contains an ID that references a
different existing STIX TLO.

3. STIX Concepts

3.1. IDs and ID References

Status: Draft
MVP:

The CTI language specifications make use of globally unique identifiers as defined by the
identifier type. The type is also used to define fields that are references to other constructs
(such as the source_ref field in relationship). Resolving a reference is the process of
identifying and obtaining the actual object referred to by the reference field. References resolve
to an object when the value of the reference field (e.g. source_ref) is an exact match with the
id field of another object. References may refer to any object that exist - even those that the
consumer may not currently have access to.

3.2. Versioning

Status:
MVP:

The following table documents the set of use cases that drive the requirements on versioning
within STIX.

Open Questions:

1. Need to define what a material change is, since there is a MUST with it, we need to
make sure the definition is solid.

2. Do we need the ability to revoke a specific version of the object?

3. Do we need to better define "entity" in object creator? Is it an organization, a system,
something else? The intent was to leave it open to any, is that OK?

4. Is there a better name for the revision field?

5. Do we need any timestamp fields? Which ones?

6. What are the versioning-specific relationships? Do we need derived-by,
suggested-update, etc.?

7. May need an FAQ section at some point, this is a complicated topic

3.2.1. Use Cases

Uses we consider in-scope for versioning in STIX 2.0 MVP.
1. Object creator creates a new top-level object.
a. Obiject creator creates a new top-level object derived from a top-level object from
another object creator.
b. Object creator creates a new top-level object derived as a major change from an
top-level object from the same object creator.
c. Object creator creates a new top-level object not based on any other object.
2. Object creator updates a top-level object.
a. Obiject creator updates a top-level object with additional content.
b. Object creator updates a top-level object with changes to existing content. <--
previously issued intel contained valid content that is now refined/improved
c. Object creator updates a top-level object with corrections to existing content. <--
previously issued intel contained errors that are now corrected
3. Object creator indicates that a top-level object and all of its versions are no longer "valid"
<-- previously issued intel was incorrect and an update will not be issued.

3.2.2. Scenarios

Scenarios that demonstrate the above use cases (numbers align)

1a. ACME Incorporated receives an indicator with a single IP address. The indicator includes a
relationship to an indicated TTP for a particular piece of malware. (3 objects total). ACME
Incorporated creates a new indicator with the single IP address received in the original indicator
but adds an OR hash=x to the pattern. It creates a new relationship from the new indicator to
the previously indicated TTP. It creates a “derived_from” relationship from the new indicator to
the original received indicator. (4 objects total; 5 if you count the old original indicator)

1b. Major Financial creates a TA asserting a title (name), motivation, sophistication and some
identification details. It realizes later learns more about the threat actor that will change most of
the information in the TA characterizing that threat actor. It creates a new TA with the updated
information. It creates a “derived_from” relationship from the new TA to the old TA.

1c. Government Org Alpha creates a new threat actor characterization for Deep Baboon, shares
it to several other government organizations.

2a. Major Financial updates the previous TA, adding an assertion of intended_effects.

2b. ACME Incorporated updates the previous indicator, adding a couple new IP addresses to
the pattern.

2c. ACME Incorporated updates the original indicator in 1a above and changes the single IP
address making explicit that the previous indicator was in error and that the new version is
corrected.

2d. GOA expands attribution for a threat actor, adding a more specific location.

3a. ACME Incorporated revokes the indicator in 1a, it incorrectly listed the Google DNS server.

3b. GOA revokes the threat actor, they had an incorrect country. The re-issue an update with
Country Bravo rather than Country Delta.

3.2.3. Implementation

This section describes versioning in STIX. Within STIX, versioning is controlled by the fields, as
described below.

3.2.4. Definitions

Object Creator: The object creator is the entity (e.g. system, organization, tool) that generates
the identifier field for a given object. Entities (proxies) that re-publish a top-level object from
another entity, maintaining the original identifier, are not considered the object creator.
Entities (brokers) that accept objects and republish them with a new identifier are considered
the object creator of the new objects.

Top-Level Object: TODO LINK TO DEF

Object Series: a top-level object series is the set of STIX top-level objects with the same ID. All
objects are members of a top-level object series. a top-level object series may only have a
single member.

Property Name Type Description
revision number revision indicates the revision number of this
(required) object. This field MUST be present in all STIX

objects. This field’s value MUST be greater than or
equal to 1 and less than or equal to 999,999,999.
Higher revision numbers indicate later versions of the
object. Object creators MUST increment the revision
number (SHOULD increment it by exactly 1) when
creating a new version of a top-level object.

revoked boolean revoked indicates whether this object has been
(optional) revoked. If this field is present, the timestamp
indicates the timestamp that the object was revoked.
Revoking a top-level object terminates the complete
object series (all versions of the object); future
revisions of that object are not permitted. When
revoking a top-level object, the revision number
MUST be incremented as above.

STIX objects, uniquely identified by id and revision values, are considered to be immutable
(this means that the contents (fields and values) of the object MUST NOT be changed).
Versioning provides the mechanism to change STIX objects.

STIX objects with the same id value and different revision values are said to be of the same
“object series”. Objects with different id values are said to be of different “object series”. Within
a top-level object series, lower revision values indicate “earlier” revisions, and higher
revision values indicate later revisions.

If the revoked field is present in a top-level object, that object is said to have been “revoked”. If
the revoked field is not present, the object is said to be “active”. Revocation terminates a
top-level object series. Once a top-level object has been revoked, additional updates to the
object series are not permitted. object creators MUST NOT publish new revisions to a top-level
object series once that object series has been terminated.

Relationships may have sources or targets to object series' that have been revoked. The
consumer may choose to handle those relationships however it wishes.

New Object or Revision?

Eventually, an implementation will encounter a case where a decision must be made regarding
whether a change is a new object series or a revision to an existing object series. This is
generally considered a data quality problem and therefore this specification does not provide
any normative text. However, to assist implementers and promote consistency across
implementations, some rules of thumb are provided.

Anytime a change indicates a material change to the meaning of the object (say different
malware, different actor) a new object id MUST be used. The determination of whether a
change is a material change is at the object creator's discretion.

3.2.5. Examples

Example Revision
Given: One object creator has decided that for their content, a change to the list of IP addresses
in network indicators does not constitute a material change.

That object creator would consider each change of IP address to be an update to that indicator,
and when changing the indicator would update the revision but not issue a new id.

Step# STIX Object Object Creator Action

1 { Original object created.
"type": "example",

"id": "example-1",

"revision": 1,

"title": "attention",

"description”: "this is the description”

2 Object creator changes the title.

3 { Object creator increases current
“type”: "example”, object revision by 1.

"id": "example-1",

"revision": 2,

"title": "Attention!",

"description”: "this is the description”

Example of Derived Object

Given: A different object creator has decided that for their content, a change to the list of IP
addresses in network indicators does constitute a material change.

That object creator would then issue two objects for each update:

set.

A new indicator with a new id

A revised initial indicator, with the same id, updated revision, and the revoked flag

Step # STIX Object Object Creator Action

1 { Original object created (via new id
type”: "example”, and set revision to 7).
"id": "example-1",
"revision": 1,
"title": "attention",
"description": "this is the description”
}
2 Object creator changes the title.
3 { Object creator creates a new

"type": "example",
"id": "example-2",

"revision": 1,
"title": "Attention!",
"description”: "this is the description”

object (via new id and set
revision to 7).

Example Recipient Workflow
This section describes an example workflow where a recipient receives multiple updates to a
particular object series. The STIX Objects have been truncated for brevity.

Step# STIX Object Recipient Action

1 { Recipient stores example object because
“type": "example”, this is the first time the recipient has seen
"id": "example-1", the object.
"revision": 1

}

2 { Recipient updates example object
“type®: “example”, because the received revision number is
"id": "example-17, higher than the object that is currently
"revision": 4

stored.

3 { Recipient ignores this object because the
“type": "example”, recipient already has a newer version of
"id": "example-1", the object.
“revision®: 3 Note: recipient might choose to store
¥ meta-information about received objects,
including revisions that were received
out-of-order.
4 { Recipient deletes example object, but
“type": "example”, keeps some metadata regarding the
"id": "example-1", object.
"revision": 12,
"revoked": "2016-03-11T07:23:00Z"
}
5 { Recipient ignores this object because the
“type": "example”, recipient already has a newer version of
"id": "example-1", the object (the revoked version).
"revision": 11
}

Example object creator Workflow

This section describes an example workflow where a object creator publishes multiple updates
to a particular object series. The STIX Objects have been truncated for brevity. This scenario

assumes a human using a STIX implementation.

Step #

User Action

User clicks a create button in the Ul,

STIX Object

1 _ _ n/a — STIX is not involved in this
creates a top-level object, then clicks .
. . . . scenario.
save. This action causes information to
be stored in the product’s database.
(tools could choose to create and track
STIX revisions for internal changes, but
it is not required by the specification)
2 The user clicks the “share” button, {
delivering the latest cutting-edge threat "type": "example",
intel to multiple social media platforms "id": "example-2",
using STIX. "revision": 1
}
3 The user performs additional analysis n/a — STIX is not involved in this

within the STIX implementation,
performing multiple modifications and
saving their work multiple times.

scenario.

(tools could choose to create and track

STIX revisions for internal changes, but
it is not required by the specification)
4 The user, happy with the status of their | ¢
work, decides to provide an update to "type": "example",
the previously published object. "id": "example-2",
"revision": 2
}
5 The user receives lots of negative {
feedback regarding the quality of their "type": "example",
work and decides to retract the object "id": "example-2",
by pressing the “revoke” button. "revision": 3,
"revoked": "2016-03-11T07:23:00Z"
}

Example: Broker
A broker is an entity that accepts STIX objects from entities wants to become the object creator
(to maintain and update the object), and republishes them to recipients.

It is expected that that there will be CTI brokers, such as an ISAC, that aggregate, validate and
maintain a feed of STIX objects. In these cases, the object(s) may originally come from a
member of the ISAC, but the ISAC will want to maintain the object(s) and to update the object(s)
based upon feedback from other members or research they themselves did, without involving
the member that produced it. In these cases, it is expected that the ISAC will take the original
STIX object, and reissue the object w/ a new identifier. The ISAC is the object creator of
this new object, and will be able update the object. If the ISAC simply republishes the original
object from the member, any changes made to the object would have to be issued by the same
member that published it. This would impact the ability of the ISAC to get up to date information
to it's members.

Step # STIX Object Broker Action

1 { Broker receives this object
"type": "example",
"id": "example-1",
"revision":1
}
2 { Broker sends the object, as the object
type”: “"example”, creator, with a new id and revision
"id": "example-B1",
values.

"revision": 1

Example: Proxy

In contrast to a broker, a proxy simply passes some or all STIX objects to recipients without
modification. An example is an entity that accepts content from a number of object creators and
distributes them to all consumers, unmodified.

Note that if a proxy filters the set of objects that might change the picture of the intelligence, and
is in effect "updating” the content. But, as they are not updating any of the individual objects, for
the purposes of object versioning only they aren't an object updater.

Step # STIX Object Proxy Action

1 { Proxy receives this object
"type": "example",
"id": "example-1",
"revision": 1

2 { Proxy sends the object, as received.
"type": "example",
"id": "example-1",
"revision": 1

3.3. Confidence

STUB
< add description and details >

Open Questions:
e How should this be defined? What's the scale?
e Should this be required or optional (may be different in different locations)?
e |sita controlled vocab with _ext fields or just an enum

3.4. Controlled Vocabularies

Status:
MVP:

All vocabularies in the CTI specifications are either "Uncontrolled" or "Controlled". Each
vocabulary also supports an extension point to support additional / external vocabularies. The
key name for the extension point (of vocab-ext type) is [vocabulary_field_name]_ext. The

vocabulary fields also support the ability to have a fallback value. Using the value of other in
the main field indicates no fallback value.

Uncontrolled - This type represents a vocabulary that is not yet defined in the specification, but
may be defined in a future version. This type means you can you can use any string value you
want or use the extension point to specify a value from your own controlled vocabulary.

Controlled - This type represents a vocabulary that is defined in the specification. You can use
this controlled vocabulary or use the extension point to specify a value from your own controlled
vocabulary.

3.4.1. Examples

In this example the field cti_type is an uncontrolled vocabulary, which means you can use any
string value you want
i

c ey

"cti_type": "foo bar"

In this example the field cti_type is a controlled vocabulary, where you use something from the
defined vocabulary in the specification.
t

“ ey

"cti_type": "malware",

In this example the field cti_type is a controlled vocabulary (example is the same for an
uncontrolled vocabulary), however, you want to use your own controlled vocabulary with no
fallback / default value. Using the value of other in the main field indicates no fallback value.
i

605
"cti_type": "other",
"cti_type_ext": {

"value": "malware type foo",

"vocab": "my name or url to my super cool vocab"

}s

In this example the field cti_type is a controlled vocabulary (example is the same for an
uncontrolled vocabulary), however, you want to use your own controlled vocabulary with a
fallback / default value from the defined vocabulary.

c ey

"cti_type": "malware",
"cti_type_ext": {
"value": "malware type foo",
"vocab": "my name or url to my super cool vocab"

¥

In this example the field cti_type is a controlled vocabulary (not valid for an uncontrolled
vocabulary), however, you want to use some arbitrary string value that is not part of the defined
vocabulary or any other vocabulary with no fallback / default value. Note the use of the value
other in this case.

1
605
"cti_type": "other",
"cti_type_ext": {
"value": "malware type foo"
s
}

In this example the field cti_type is a controlled vocabulary (not valid for an uncontrolled
vocabulary), however, you want to use some arbitrary string value that is not part of the defined
vocabulary or any other vocabulary and you want to add a fallback / default value from the
defined vocabulary.

1

ey
"cti_type": "malware",
"cti_type_ext": {

"value": "malware type foo"

¥

3.5. ENUMs

Status:
MVP:

< TODO add description. We need to explain how ENUMSs are different from Controlled
Vocabularies >

3.6. Vendor Defined Fields

Status: Draft
MVP:

The authors of this specification recognize that there will be cases where certain information
exchanges can be improved by adding fields that are not specified in this document; these fields
are called Vendor Defined Fields. This section provides guidance and requirements for how
producers can use vendor-defined fields and how consumers should interpret them in order to
extend STIX in an interoperable manner.

3.6.1. Processing Rules

Producers MAY create any number of Vendor Defined Fields in a STIX document.
Vendor Defined Fields SHOULD start with “x_” following by a source unique identifier
(like a domain name), an underscore and then the name. For example:
x_examplecom_customfield.

e Vendor Defined Fields MUST be uniquely named when produced by the same source
and SHOULD use a consistent namespace prefix (e.g., a domain name).

e Rules for processing Vendor Defined Fields SHOULD be well defined and accessible to
any consumer that would be reasonably expected to parse them.

e Vendor Defined Fields SHOULD only be used when there is no existing field defined by
the STIX specification that fulfills that need.

Any consumer that receives a STIX document with one or more Vendor Defined Fields MAY:
e process the fields in the manner intended by the producer, if known
e refuse to process the document further
e silently ignore non-understood fields and continue processing the document

Producers of STIX documents that contain Vendor Defined Fields SHOULD be well aware of
the variability of consumer behavior depending on whether or not the consumer understands the
Vendor Defined Fields present in the STIX document. Vendor defined fields that are not
prefixed with “x_" may be used in a future version of the specification for a different meaning. If
compatibility with future versions of this specification is required, the “x_" prefix MUST be used.

The reporting and logging of errors originating from the processing of Vendor Defined Fields
depends heavily on the technology used to transport the STIX document and is therefore not
covered in this specification.

Consumers that receive a STIX document that contains one or more Vendor Defined Fields that
are understood MUST process the Vendor Defined Fields according to the rules for that Vendor
Defined Field.

3.6.2. Examples
{

"x_acmeinc_scoring": {
"impact": "high",
"probability": "low"

¥

3.7. Data Markings

Status:
MVP:

Data markings provide the ability for producers to convey to consumers how they may use and
share the marked data that they receive.

The CTI Common specification defines two types of data markings:
e Object-level data markings define how markings are applied to entire packages and
top-level objects
e Granular data markings define how markings are applied to one or more individual data
points within a package or top-level object

3.7.1. Object-Level Markings

Object-level markings are contained in the object_marking_refs field, which is an array of ID
references (of type identifier) that resolve to objects of type marking-definition. This
field MUST ONLY be used on packages and top-level objects: when used at the package level,
the markings referenced in the list apply to the package itself and to each of the top-level
objects in the package. When used on a top-level object, the markings apply only to that marked
object.

3.7.2. Granular Markings

Granular markings are contained in the granular_markings field, which is an array of
granular-marking objects. Each of those objects contains a list of content selectors to select
what is marked and a list of marking references that refer to the markings to be applied. The

consumer must evaluate each granular-marking in the list individually. For each marking, the
list of content_selectors must be evaluated to determine the set of content that the markings
are applied against. The list of marking-definition objects referenced in the marking_refs
field are then applied to the selected content.

3.7.3. Precedence Rules

Markings of the same type may override other markings of that type. Processors MUST honor
the following order of precedence when encountering more than one marking application with
the same type:

e Object markings applied at the package level. Within the marking_refs field, markings
appearing later override markings appearing earlier. These are overridden by,

e Object markings applied at the object level. Within the marking_refs field, markings
appearing later override markings appearing earlier. These are overridden by,

e Granular markings applied at the package level. Within the granular_markings and
content_selectors fields, markings appearing later override markings type appearing
earlier. These are overridden by,

e Granular markings applied at the object level. Within the granular_markings and
content_selectors fields on the object, markings appearing later override markings
appearing earlier.

Markings of different types never override each other.

3.7.4. Interoperability

Producers MAY create any combination of object-level and granular data markings. Producers
MUST ensure that all markings they create comply with the functional and data marking
requirements defined in this document.

A consumer MAY support:
e No data markings (known as a Level 0 Marking Consumer)
e Object-level data markings (known as a Level 1 Marking Consumer)
e Both object-level and granular data markings (known as a Level 2 Marking
Consumer)

A Level 0 Markings Processor is not able to process data markings. A Level 1 Markings
Processor is only able to process object-level data markings. A Level 2 Markings Processor
is able to process both object-level markings and granular markings.

3.7.5. Level O

e A Level 0 processor who receives a package that contains either the
object_marking_refs field or the granular_markings field at the package level
MUST reject the entire package.

e A Level 0 processor who receives a package that DOES NOT contain the
object_marking_refs field or the granular_markings field at the package level MAY
accept the package.

e A Level 0 processor processing an object that contains the object_marking_refs field
or the granular_markings field MUST reject the object. It MAY continue to process the
rest of the document.

3.7.6. Level 1

e A Level 1 processor who receives a package that contains the granular_markings
field at the package level MUST reject the document.

e A Level 1 processor who receives a document that DOES NOT contain the
granular_markings field at the package level MAY accept the document.

e A Level 1 processor processing a document that contains an object with the
granular_markings field MUST reject the object. It MAY continue to process the rest
of the document.

e A Level 1 processor MUST process all object-level markings applied in the
object_marking_refs field per the mechanisms outlined in this specification.

3.7.7. Level 2

e 2.1: Alevel 2 processor MUST process all object-level markings applied in the
object_marking_refs field and granular markings applied in the granular_markings
field per the mechanisms outlined in this specification.

3.7.8. Resolving References

e Level 1 and Level 2 processors that are unable to resolve a reference to a marking
definition MUST reject content marked by that definition.

3.7.9. Examples
{

"type": "indicator",
"id": "indicator--089a6ecb-ccl15-43cc-9494-767639779235",
"spec_version": "stix-2.0",
"object_marking_refs": ["marking-definition--a82a2ecb-2cla-42cn-9494-772156779431"],
"granular_markings": [
{

"content_selectors": ["$.description"],

"marking_refs": ["marking-definition--089a6ecb-cc15-43cc-9494-767639779123"]
1

"description"”: ["Some description"]

}

1
"type": "indicator",
"id": "indicator--089a6ecb-ccl15-43cc-9494-767639779235",
"object_marking_refs": ["marking-definition--089a6ecb-cc15-43cc-9494-767639779123"],

4. Core Types

<enter description>

4 1. Identifiers

Type Name: identifier Status: Draft
MVP:

This section defines the identifier type. Within STIX and CybOX many objects have
identifiers (IDs) that uniquely identify them among all objects. These identifiers and fields that
references these identifiers (by having a type of identifier) MUST conform to the production
algorithm and format defined in this section.

4.1.1. Format

[construct-type]--[uuid]

e construct-type: Construct type is the exact value from the type field of the construct
being identified or referenced.

e uuid: UUID is an RFC 4122 compliant Version 4 UUID. This field MUST be generated
according to the algorithm(s) defined in RFC 4122, Section 4.4 (Version 4 UUID).

4.1.2. Examples
{

"type": "indicator",
"id": "indicator--e2ela340-4415-4ba8-9671-f7343fbf0836",

4.2. Timestamps

Type Name: timestamp Status: Draft
MVP:

This section defines the timestamp type. All discrete timestamps (i.e. not time ranges or
relative times) in the CTI specifications are made up of two fields: the timestamp field itself,
containing the time, and an optional field that indicates the precision of the timestamp.

4.2.1. Format
YYYY-MM-DDTHH :mm:ss.ssssss”Z

The timestamp field MUST be a valid RFC 3339-formatted timestamp.
The timestamp MUST be represented in the UTC timezone and MUST use the 'Z'
designation to indicate this.

e The optional precision field, if present, MUST be one of "year", "month", "day", "hour",
"minute", or "second".

o The default value for the precision field is "second", so omitting the field is
equivalent to explicitly specifying "second".

o A value of "second" indicates that the value in the timestamp field is precise to
the number of digits in the seconds value (including any fractional seconds, such
as milliseconds).

o A value of “minute”, “hour”, “day”, “month”, or “year” indicates that the timestamp
value is precise to that as a lower bound (the precision window is the timestamp
value plus one unit of the precision value). For example, if the timestamp value is
1300 and the precision value is "hour", the window is 1300-1400.

o When specifying a precision other than "second", the time portion of the
timestamp field MUST contain zeroes for all fields beyond the specified precision
while the date portion MUST contain "01" for all fields beyond the specified
precision.

m For example, if the precision field is "month”, the timestamp field must
contain "01" for the day field and "00" for the hour, minute, and second
fields such as 2016-12-01T00:00:00Z.

e The timestamp precision field is always nested at the same level as the timestamp field.
e The property name for the precision field is [timestamp_field_name]_precision.

o For example, if the key of the timestamp field is “created_at”, the key of the

precision field is “created_at_precision”.

4.2.2. Examples

A timestamp know only to a year would look like:

{
"timestamp": "2016-01-01T00:00:00Z",

"timestamp_precision": "year"

}

A timestamp known only to an hour would look like:

tl
"timestamp": "2016-01-20T12:00:00Z",

"timestamp_precision": "hour"

}

A timestamp known to a second would look like:

4
"timestamp": "2016-01-20T12:31:12Z"

}

A timestamp known to 5 digit sub second precision would look like:

4
"timestamp": "2016-01-20T12:31:12.12345Z",

}

4.3. Extended Vocabulary

Type Name: vocab-ext Status:
MVP:
<enter description>
Property Name Type Description
value (required) string Arbitrary value or value from an alternate
vocab.
vocab (optional) string Name or location of alternate vocab

4.3.1. Examples
{

"type": "indicator",
"indicator_types": ["other"],
"indicator_types_ext": [{

"value": "malware type foo",

"vocab": "my name or url to my super cool vocab"

3]
}

{
"type": "indicator",
"indicator_types": ["other"]
"indicator_types_ext": [{
"value": "malware type foo"

3]
}

4.4. Granular Markings

Type Name: granular-marking Status:

MVP:

This section defines the granular-marking type. Granular markings are used within STIX and
CybOX to allow producers to mark individual fields and data points within a package or top-level
object.

The consumer must evaluate each selector in the content_selectors list and apply each
marking in the marking_refs list to that content.

Property Name Type Description

content_selector | array of type A list of selectors for content within this object.
s string The markings referenced in the

(required) content_selectors field are applied to the

selected content.

In the JSON MTI specification, this is a list of
JSONPath statements. The context root that
these statements must be applied against is the
object that contains the granular-marking list
that this is contained in (i.e. for a package, the
package, and for a top-level object, that object).

marking_refs array of type The list of markings that apply to the fields
(required) identifier selected by content_selectors.

5. Common Properties

5.1. STIX Core

Type Name: stix-core

Status:

MVP:

STIX Core is a base set of properties that are inherited by top-level STIX objects.

5.1.1. Properties

Property Name

type (required)

Type

string

Description

The type of construct being
represented. This is a fixed value for
each top-level object, formatted as
all lowercase with ‘-’ as a separator
(e.g. attack-pattern). Thisis a
serialization-based field and derives
from the type of the construct in the
model.

id (required)

identifier

A globally unique identifier for this
object

spec_version (required)

string

The release version of the language
specification used to represent this
construct

created_time (required)

timestamp

The time that the object with this ID
was created

created_by_ref
(optional)

identifier

The ID of the Identity Object that
describes who created this object
(source--).

object_marking_refs
(optional)

array of type
identifier

The list of markings applied to this
object

granular_markings
(optional)

array of type
granular-marking

The set of granular markings
applied to this object

5.1.2. Common Relationships

The following descriptions of relationships are defined as part of the CTlI Common specification
as they apply to all objects within STIX and CybOX.

Kind of Description

Relationship

duplicate-of <Object> <Object of | Allows recording that two different
same type> | Objects of the same type are
duplicates of each other.

derived-from <Object> <Object of | Allows recording that an Object was
same type> | derived from a different Object of the
same type.
suggested-update | <Object> <Object of | Allows associating an Object

same type> | produced by a third-party containing
suggested updates with the original
Object to which the suggested
updates apply.

other <Object> g The catch-all generic relationship
type that allows description of
relationships between an Object and
any other Domain Object. It is
essentially a fallback to allow a
relationship to be defined when none
of the others fit.

5.1.3. Examples

This example shows the simultaneous use of a Level 1 marking and a Level 2 marking on the
Indicator top-level object. The Level 2 marking on the description takes precedence over the

Level 1 marking for the rest of the object.
tl

"type": "indicator",

"id": "indicator--089a6ecb-ccl15-43cc-9494-767639779235",
"spec_version": "stix-2.0",

"created_time": "2016-01-10T13:15:18Z",

"created_by ref": "source--089a6ecb-cc15-43cc-9494-767639779231",
"object_marking_refs": ["data-marking--089a6ecb-ccl15-43cc-9494-767639779123"],
"granular_markings": [

{

"content_selectors": ["$.description"],
"marking_refs": ["data-marking--@89a6ecb-cc15-43cc-9494-767639779124"]

}
1

"description"”: ["Some description"]

}

5.2. STIX Descriptive

Type Name: descriptive-properties Status:
MVP:

<enter description>

Open Questions:
1. i18n internationalization
2. multiple descriptions for marking
3. structured text, need to address this and see if we want to still do it or just define
something like mark-down as the only option.

5.2.1. Properties

Property Name Type Description

title (optional) string A human readable title for the
construct.

descriptions (optional) array of type string A prose description of the construct.

6. Common Types

< enter description >

6.1. Impact

Type Name: impact Status:

MVP:

Impact is used throughout the STIX specification wherever a construct needs to represent
estimated or actual impact as a result of a threat.

Open Questions:
1. Allan has a comment about do we really want or need to do this.. Is this really MVP
2. Need to define a min/max on level and is it similar to confidence (0-100)

Property Name Type Description

level (optional) integer The estimated severity of the
impact.

intended_effects array of type A list of effects that the construct

(optional) intended-effect-cv | intends to create (e.g. “Fraud”,

“Harassment”)

description (optional) | string A prose description of the impact

confidence (optional) < TO DO > The confidence in this impact
statement, using the STIX default
vocabulary..

confidence_ext vocab-ext The confidence in this impact

(optional) statement, using a third-party
vocabulary.

6.2. Statement (statement)

Type Name: statement Status:

MVP:

Statements are used to describe analysis assertions within an object. They include an controlled
vocabulary field,a description, and a confidence assertion.

Open Questions:

1. Allan Thomson, not sure why this is required in MVP 2.0. Is the intent of this type to just
be a general purpose description field? If so, then why not just a vendor specific

extension field that allows analysis information to complement the additional intel.

Property Name Type Description

value (required) ? The value of this statement from the
vocabulary. The vocabulary is set by
usages of statement.

value_ext (optional) vocab-ext A value in an extended vocabulary
description (optional) string A description of this statement
confidence (required) < TO DO > The credibility of this statement
confidence_ext vocab-ext The confidence in this statement,

(optional) using a third-party vocabulary.

