

STIX 2.0 Specification
Part 3a: Cyber Observable Core Concepts - Version 2.0-rc3

​Technical Committee
OASIS Cyber Threat Intelligence (CTI) TC

​Chair
Richard Struse (Richard.Struse@hq.dhs.gov), DHS Office of Cybersecurity and
Communications (CS&C)

Editors
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl

Additional Artifacts
This prose specification is one component of a Work Product, which consists of:

● STIX Version 2.0 Part 1: STIX Core Concepts
● STIX Version 2.0 Part 2: STIX Objects
● STIX Version 2.0 Part 3a: Cyber Observable Core Concepts (this document)
● STIX Version 2.0 Part 3b: Cyber Observable Objects
● STIX Version 2.0 Part 4: STIX Patterning

Table of Contents

​1.​ Introduction
​1.1.​ Terminology
​1.2.​ Overview

​1.2.1.​ CybOX Objects & Actions
​1.2.2.​ CybOX Containers
​1.2.3.​ CybOX Relationships
​1.2.4.​ CybOX Extensions

mailto:ikirillov@mitre.org
mailto:trey@kingfisherops.com

​1.2.5.​ CybOX Vocabularies
​1.2.6.​ Serialization
​1.2.7.​ Transporting CybOX

​1.3.​ Conventions
​1.3.1.​ Naming Conventions
​1.3.2.​ Font Colors and Style

​2.​ Common Data Types
​2.1.​ Integer
​2.2.​ Float
​2.3.​ Boolean
​2.4.​ String
​2.5.​ Hexadecimal
​2.6.​ List
​2.7.​ Dictionary
​2.8.​ Timestamp
​2.9.​ Controlled Vocabulary
​2.10.​ Open Vocabulary
​2.11.​ Object Reference
​2.12.​ Hashes Type

​3.​ CybOX Objects
​3.1.​ Common Properties
​3.2.​ IDs and References
​3.3.​ Object Property Metadata

​3.3.1.​ String Encoding
​3.4.​ Object Relationships
​3.5.​ Object Extensions

​3.5.1.​ Predefined Extensions
​3.6.​ Common Types
​3.7.​ CybOX Container
​3.8.​ Reserved Names

​4.​ Common Vocabularies
​4.1.​ Hashing Algorithm Vocabulary
​4.2.​ Encryption Algorithm Vocabulary

​5.​ Customizing CybOX
​5.1.​ Custom Objects

​5.1.1.​ Requirements
​5.1.2.​ Example

​5.2.​ Custom Object Extensions
​5.2.1.​ Requirements
​5.2.2.​ Examples

​6.​ Appendix A. Acknowledgments

​1.​ Introduction
Parts 3a and 3b of the STIX specification define structured representations for observable
objects and their properties in the cyber domain. These can be used to describe data in many
different functional domains, including but not limited to:

● Malware characterization
● Intrusion detection
● Incident response & management
● Digital forensics

STIX Cyber Observables document the facts concerning ​what​ happened on a network or host,
but not necessarily the who or when, and never the why. For example, information about a file
that existed, a process that was observed running, or that network traffic occurred between two
IPs can all be captured as Cyber Observable data.

STIX Cyber Observables are used by various STIX SDOs, which provide additional context to
the data. The Observed Data SDO, for example, indicates that the raw data was observed at a
particular time and by a particular party. Outside of STIX, Observable Data can be used similarly
to describe data collected from a malware or forensic analysis.

Previously, this part of the STIX specification was a separate specification known as Cyber
Observable eXpression (CybOX). In response to lessons learned in implementing previous
versions, the specification has been significantly redesigned and, as a result, omits many of the
objects, types, and properties defined in ​CybOX 2.1.1​. It has also been merged into the STIX
specification, as the Cyber Observable layer, to improve integration and ease the burden of
implementing both. The Cyber Observable Objects chosen for inclusion in STIX 2.0 represent a
minimally viable product (MVP) that fulfills basic consumer and producer requirements. Objects
and properties not included in STIX 2.0, but deemed necessary by the community, will be
included in future releases.

This document (Part 3a) in the STIX specification describes Cyber Observable Core Concepts.
CybOX Objects (Part 3b) contains the definitions for the Cyber Observable Objects.

http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part01-overview/cybox-v2.1.1-csprd01-part01-overview.html

​1.1.​ Overview

​1.1.1.​ Cyber Observable Objects
STIX 2.0 defines a set of Cyber Observable Objects for characterizing host-based, network, and
related entities. Each of these objects correspond to a data point commonly represented in CTI
and forensics. Using the building blocks of Cyber Observable Objects alongside relationships
between these objects, individuals can create, document, and share broad and comprehensive
information about computer systems and their state.

Throughout STIX 2.0 Part 3a and 3b, Cyber Observable Objects are referred to simply as
"Observable Objects". These should not be confused with STIX Domain Objects (SDOs), as
defined in STIX 2.0, Part 1 and 2.

​1.1.2.​ Cyber Observable Relationships
A Cyber Observable Relationship is a reference linking two (or more) related Cyber Observable
Objects. Cyber Observable Relationships are only resolvable within the same Observable
Objects container. References are a property on Cyber Observable Objects that contain the ID
of a different Cyber Observable Object.

Throughout STIX 2.0 Part 3a and 3b, Cyber Observable Relationships are referred to simply as
"Relationships". These should not be confused with STIX Relationship Objects (SROs), as
defined in STIX 2.0, Part 1 and 2.

​1.1.3.​ Cyber Observable Extensions
Each Observable Object defines a set of base properties that are generally applicable across
any use case for the Object. There are a number of specific use cases that require additional
specialized properties on Objects. To enable this, STIX permits the specification of such
additional properties through the set of default Object Extensions. Where applicable, extensions
are included in the definitions of Objects. Producers may extend the Cyber Observable Objects
by defining their own custom extensions or properties. (For further information, refer to ​§5
(Customizing Cyber Observable Objects.)

​1.1.4.​ Vocabularies & Enumerations
Many Objects contain properties whose values are constrained by a predefined enumeration or
open vocabulary. In the case of enumerations, this is a requirement that producers must use the
values in the enumeration and cannot use any outside values. In the case of open vocabularies,
this is a suggestion for producers that permits the use of values outside of the suggested
vocabulary.​ ​If used consistently, as an example, vocabularies make it less likely that one entity

refers to the md5 hashing algorithm as "md5" and another as "md-5-hash", thereby making
comparison and correlation easier.

​1.2.​ Conventions

​1.2.1.​ Naming Conventions

All type names, property names, and literals are in lowercase. Words in property names are
separated with an underscore(_), while words in type names and string enumerations are
separated with a dash (-). All type names, property names, object names, and vocabulary terms
are between three and 250 characters long.

In the JSON serialization all property names and string literals ​MUST​ be exactly the same,
including case, as the names listed in the property tables in this specification. For example, the
Cyber Observable Object property ​extended_properties​ must result in the JSON key name
"extended_properties". Properties marked required in the property tables ​MUST​ be present in
the JSON serialization.

​1.2.2.​ Font Colors and Style

T​he following color, font and font style conventions are used in this document:

● The ​Consolas​ font is used for all type names, property names and literals.
○ type names are in red with a light red background - ​hashes-type
○ property names are in bold style - ​protocols
○ literals (values) are in green with a green background - ​sha-256

● In an object's property table, if a common property is being redefined in some way, then
the background is dark gray.

● All examples in this document are expressed in JSON. They are in ​Consolas​ 9 pt found,
with straight quotes, black text and a ​light blue background​. All examples have a 2 space
indentation. Parts of the example may be omitted for conciseness and clarity. These
omitted parts are denoted with the ellipses (...).

​2.​ Cyber Observable Specific Data Types
The Cyber Observable specification within STIX makes use of many common types that are
defined in STIX 2.0 Part 1, STIX Core, ​§2​. In addition, data types specific to the representation
of Cyber Observables are defined in this section. The table below lists common data types from

STIX Core with a ​gray background​ and the Cyber Observable specific types with a white
background.

Type Description

boolean A value of ​true​ or ​false​.

float An IEEE 754 double-precision number.

integer A whole number.

list An ordered sequence of values. The phrasing “​list​ of type
<type>​” is used to indicate that all values within the list must
conform to a specific type.

open-vocab A value from a STIX open (​open-vocab​) or suggested
vocabulary.

string A series of Unicode characters.

timestamp A time value (date and time).

binary A sequence of bytes.

hex An array of octets as hexadecimal.

dictionary A set of key/value pairs.

object-ref A local reference to a Cyber Observable Object.

hashes-type One or more cryptographic hashes.

observable-objects One or more Cyber Observable Objects.

​2.2.​ Binary
Type Name:​ ​binary
The ​​binary​ data type represents a sequence of bytes.

The JSON MTI serialization represents this as a base64-​encoded string as specified in
RFC4648​. Other serializations ​SHOULD​ use a native binary type, if available.

​2.3.​ Hexadecimal
Type Name:​ ​hex

The ​hex​ data type encodes an array of octets (8-bit bytes) as hexadecimal. The string ​MUST
consist of an even number of hexadecimal characters, which are the digits '0' through '9' and the
letters 'a' through 'f'.

Example
...

 "src_flags_hex": "00000002"

...​​

​2.4.​ Dictionary
Type Name:​ ​dictionary

A ​dictionary​ captures a set of key/value pairs. ​dictionary​ keys ​MUST​ be unique in that
dictionary, ​MUST​ be in ASCII, and are limited to the characters a-z (lowercase ASCII), A-Z
(uppercase ASCII), numerals 0-9, hyphen (-), and underscore (_). ​dictionary​ keys ​SHOULD
be no longer than 30 ASCII characters in length, ​MUST​ have a minimum length of 3 ASCII
characters, ​MUST​ be no longer than 256 ASCII characters in length, and ​SHOULD ​be
lowercase.

dictionary​ values ​MUST​ be valid property base types.

​2.5.​ Object Reference
Type Name:​ ​object-ref

The Object Reference data type specifies a local reference to an Observable Object, that is, one
which ​MUST​ be valid within the local scope of the Observable Objects container that holds both
the Observable Object itself and the referenced Observable Object via its ​id​.

Example
The following example demonstrates how a Network Traffic Object specifies its destination via a
reference to an IPv4 Address Object.

{

 "0": {

 "type": "ipv4addr",

 "value": "1.2.3.4"

 },

 "1":{

 "type": "network-traffic",

 "dst_ref": "0"

 }

}

​2.6.​ Hashes Type
Type Name:​ ​hashes-type

The Hashes type represents 1 or more cryptographic hashes, as a dictionary. Accordingly, the
name of each hashing algorithm ​MUST​ be specified as a key in the dictionary and ​MUST
identify the name of the hashing algorithm used to generate the corresponding value. This name
SHOULD​ either be one of the values defined in the ​hash-algo-ov​ OR a custom value
prepended with “x_” (e.g., “x_custom_hash”).
​
Examples
MD5 and Custom Hash

 {

 "MD5": "3773a88f65a5e780c8dff9cdc3a056f3",

 "x_foo_hash": "aaaabbbbccccddddeeeeffff0123457890"

 }

​2.7.​ Observable Objects
Type Name:​ ​observable-objects

The Observable Objects type represents 1 or more Observable Objects as a ​dictionary​. The
keys in the dictionary are references used to refer to the values, which are objects. Each key in
the dictionary ​SHOULD​ be a non-negative monotonically increasing integer, incrementing by 1
from a starting value of 0, and represented as a string within the JSON MTI serialization.
However, implementers ​MAY​ elect to use an alternate key format, provided that it complies with
the constraints as stipulated by the ​dictionary​ data type for keys.

Examples

{

 "0": {

 "type": "email-addr",

 "value": "jdoe@machine.example",

 "display_name": "John Doe"

 },

 "1": {

 "type": "email-addr",

 "value": "mary@example.net",

 "display_name": "Mary Smith"

 },

 "2": {

 "type": "email-message",

 "from_ref": "0",

 "to_refs": ["1"],

 "date": "1997-11-21T15:55:06Z",

 "subject": "Saying Hello"

 }

 }

}

​3.​ Cyber Observable Objects
This section outlines the common properties and behavior across all Cyber Observable Objects.

The JSON MTI serialization uses the JSON object type ​<todo add reference>​ when
representing Objects.

​3.1.​ Common Properties

Property Name Type Description

type​ (required) string Indicates that this object is an
Observable Object. The value
of this property ​MUST​ be a
valid Observable Object type
name.

description​ (optional) string Specifies a textual description
of the Object.

extended_properties
(optional)

dictionary Specifies any extended
properties of the object, as a
dictionary.

Dictionary keys ​MUST​ identify
the extension type by name.

The corresponding dictionary
values ​MUST​ contain the
contents of the extension

instance.

​3.2.​ Object References
Identifiers on Observable Objects are specified as keys in the ​observable-objects​ type. For
more information on how such keys may be defined, see Section 2.14.

The ​object-ref​ type is used to define Observable Object properties that are ​references​ to
other Observable Objects (such as the ​src_ref​ property on the Network Traffic Object).
Resolving​ a reference is the process of identifying and obtaining the actual Observable Object
referred to by the reference field. References resolve to an object when the value of the
property (e.g., ​src_ref​) is an exact match with the ​key​ of another Observable Object that
resides in the same parent container as the Observable Object that specifies the reference. This
specification does not address the implementation of reference resolution.

​3.3.​ Object Property Metadata

​3.3.1.​ String Encoding

Capturing the observed encoding of a particular Observable Object string is useful for
attribution, the creation of indicators, and related use cases.

Every string property in an Observable Object must be represented by one of two allowable field
names - the field name without any suffix, known as the “base name property” (e.g., ​name​ ​in the
File Object) or a base64-encoded representation of the string contained in a field with a suffix of
“_b64” (e.g., ​name_b64​ ​in the File Object). The base name property ​MUST​ be a unicode
representation of the string. If the base name property is not specified, the base64-encoded
property ​MUST​ be specified. If the property is required, either the base name property or the
“_b64” version ​MUST​ be specified, but both ​MUST NOT​ be specified. If required, an additional
field with the same base name and a suffix of “_enc” can be specified that captures the
observed encoding of the property value. All “_enc” properties MUST specify their encoding
using the corresponding name from the 2013-12-20 revision of the​ ​IANA character set registry​.
If the preferred MIME name for a character set is defined, this value ​MUST​ be used; if it is not
defined, then the Name value from the registry ​MUST​ be used instead.

As an example of how this is defined in a Object, the ​name​ property in the
file-system-properties​ type of the File Object has two sibling properties: ​name_enc​, for
capturing the observed encoding of the file name string and also ​name_b64​, for capturing the
native representation of the string. Note that as described above, ​name​ and ​name_b64​ are
mutually exclusive and cannot be used together in a File Object instance.

http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml

​

Examples

File with unicode representation of the filename and a corresponding encoding specification

{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "66e2ea40dc71d5ba701574ea215a81f1"

 },

 "name": "quêry.dll",

 "name_enc": "windows-1252"

 }

}

File with base64 encoded filename and corresponding encoding specification

{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "66e2ea40dc71d5ba701574ea215a81f1"

 },

 "name_bin": "cXXqcnkuZGxs",

 "name_enc": "windows-1252"

 }

 }

}

​3.4.​ Object Relationships

A Cyber Observable Relationship is a connection between two or more Cyber Observable
Objects within the scope of a given Observable Objects dictionary. Cyber Observable
relationships are references that are represented as properties of a Cyber Observable Object,
containing the keys of the target Cyber Observable Object(s).

Cyber Observable Object relationships may be either singletons or lists. In the case of singleton
relationships, the name of their Object property ends in ​_ref​, whereas for list relationships the
name of their Object property ends in ​_refs​.

The target(s) of Cyber Observable relationships may be restricted to a subset of Cyber
Observable Object types, as specified in the description of the property that defines the
relationship. For example, the ​belongs_to_refs​ ​property on the IPv4 Address Object specifies
that the ​only​ valid target of the relationship is an AS Object.

Example

Network Traffic with Source/Destination IPv4 Addresses and AS
{

 "0": {

 "type": "ipv4-addr",

 "value": "1.2.3.4",

 "belongs_to_refs": ["3"]

 },

 "1": {

 "type": "ipv4-addr",

 "value": "2.3.4.5"

 },

 "2": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 }

 "3": {

 "type": "as"

 "number": 42

 }

}

​3.5.​ Object Extensions
Each CybOX Object may have one or more extensions defined for it. (As previously stated, all
CybOX extensions are structs with one or more named properties.)

​3.5.1.​ Predefined Extensions
Each predefined extension can be defined at most once on a given Object. In an Object
instance, each extension is specified under the ​extended_properties​ property, which is of
type ​dictionary​. Note that this means that each extension is specified through a
corresponding key in the ​extended_properties​ property. For example, when specified in a
File Object instance, the NTFS extension would be specified using the key value of ​ntfs-ext​.

Example

{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "3773a88f65a5e780c8dff9cdc3a056f3"

 },

 "size": 25537,

 "extended_properties": {

 "ntfs-ext": {

 "sid": "1234567"

 }

 }

 }

}

​4.​ Common Vocabularies

​4.1.​ Hashing Algorithm Vocabulary

Type Name:​ ​hash-algo-ov

An open vocabulary of hashing algorithms.

When specifying a hashing algorithm not already defined within the ​hash-algo-ov​, wherever
an authoritative name for a hashing algorithm name is defined, it should be used as the value.
In cases where an there is variance in the name of a hashing algorithm, producers should
exercise their best judgement.

Vocabulary Value Description

MD5 Specifies the MD5 message digest algorithm. The corresponding
hash string for this value ​MUST​ be a valid MD5 message digest as
defined in ​RFC 1321​.

MD6 Specifies the MD6 message digest algorithm. The corresponding
hash string for this value ​MUST​ be a valid MD6 message digest as
defined in the ​MD6 proposal​.

RIPEMD-160 Specifies the RIPEMD​-160 (R​ACE​ Integrity Primitives Evaluation
Message Digest)​ cryptographic hash function. The corresponding
hash string for this value ​MUST​ be a valid RIPEMD-160 message
digest as defined in the ​RIPEMD-160 specification​.

SHA-1 Specifies the SHA​-1 (secure-​hash algorithm 1) cryptographic hash
function. The corresponding hash string for this value ​MUST​ be a

https://www.ietf.org/rfc/rfc1321.txt
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://homes.esat.kuleuven.be/~bosselae/ripemd160/pdf/AB-9601/AB-9601.pdf

valid SHA-1 message digest as defined in ​RFC 3174​.

SHA-224 Specifies the SHA-​224 cryptographic hash function (part of the
SHA​2 family). The corresponding hash string for this value ​MUST
be a valid SHA-224 message digest as defined in ​RFC 6234​.

SHA-256 Specifies the SHA-​256 cryptographic hash function (part of the
SHA​2 family). The corresponding hash string for this value ​MUST
be a valid SHA-256 message digest as defined in ​RFC 6234​.

SHA-384 Specifies the SHA-​384 cryptographic hash function (part of the
SHA​2 family). The corresponding hash string for this value ​MUST
be a valid SHA-384 message digest as defined in ​RFC 6234​.

SHA-512 Specifies the SHA-​512 cryptographic hash function (part of the
SHA​2 family). The corresponding hash string for this value ​MUST
be a valid SHA-512 message digest as defined in ​RFC 6234​.

SHA3-224 Specifies the SHA3-224 cryptographic hash function. The
corresponding hash string for this value ​MUST​ be a valid
SHA3-224 message digest as defined in ​FIPS PUB 202​.

SHA3-256 Specifies the SHA3-256 cryptographic hash function. The
corresponding hash string for this value ​MUST​ be a valid
SHA3-256 message digest as defined in ​FIPS PUB 202​.

SHA3-384 Specifies the SHA3-384 cryptographic hash function. The
corresponding hash string for this value ​MUST​ be a valid
SHA3-384 message digest as defined in ​FIPS PUB 202​.

SHA3-512 Specifies the SHA3-512 cryptographic hash function. The
corresponding hash string for this value ​MUST​ be a valid
SHA3-512 message digest as defined in ​FIPS PUB 202​.

ssdeep Specifies the ssdeep fuzzy hashing algorithm. The corresponding
hash string for this value ​MUST​ be a valid piecewise hash as
defined in the ​SSDEEP specification​.

WHIRLPOOL Specifies the whirlpool cryptographic hash function. The
corresponding hash string for this value ​MUST​ be a valid
WHIRLPOOL message digest as defined in ​ISO/IEC
10118-3:2004​.

https://tools.ietf.org/html/rfc3174
https://tools.ietf.org/html/rfc6234
https://tools.ietf.org/html/rfc6234
https://tools.ietf.org/html/rfc6234
https://tools.ietf.org/html/rfc6234
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39876
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39876

​4.2.​ Encryption Algorithm Vocabulary
Type Name: ​encryption-algo-ov

An open vocabulary of encryption algorithms.

When specifying an encryption algorithm not already defined within the ​hash-algo-ov​,
wherever an authoritative name for an encryption algorithm name is defined, it should be used
as the value. In cases where an there is variance in the name of a encryption algorithm,
producers should exercise their best judgement.

Vocabulary Value Description

AES128-ECB Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38A​.

AES128-CBC Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38A​.

AES128-CFB Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38A​.

AES128-COFB Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38A​.

AES128-CTR Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38A​.

AES128-XTS Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 800-38E​.

AES128-GCM Specifies the Advanced Encryption Standard (AES), as a defined in
NIST SP 8I00-38D​.

Salsa20 Specifies the Salsa20 stream cipher, as defined in the ​Salsa 20
specification​.

Salsa12 Specifies the Salsa20/12 stream cipher as defined in the ​Salsa20/8
and Salsa20/12​ specification.

Salsa8 Specifies the Salsa20/8 stream cipher as defined in the ​Salsa20/8
and Salsa20/12​ specification.

ChaCha20-Poly1305 Specifies the ChaCha20-Poly1305 stream cipher, as defined in ​RFC
7539​.

https://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwirzpzvvfbNAhVGNo8KHbcXBo4QFggqMAE&url=http%3A%2F%2Fcsrc.nist.gov%2Fpublications%2Fnistpubs%2F800-38a%2Fsp800-38a.pdf&usg=AFQjCNFhZcY208pEskgMzKMk89BIqj9vUw
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://cr.yp.to/snuffle/spec.pdf
https://cr.yp.to/snuffle/spec.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://cr.yp.to/snuffle/812.pdf
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539

ChaCha20 Specifies the ChaCha20 stream cipher (without poly1305
authentication), as defined in ​RFC 7539​.

DES-CBC Specifies the Data Encryption Standard algorithm with Cipher Block
Chaining (CBC) mode, as defined in ​FIPS PUB 81​.

3DES-CBC Specifies the Triple Data Encryption Standard algorithm with Cipher
Block Chaining (CBC) mode, as defined in TBD.

DES-EBC Specifies the Data Encryption Standard algorithm with Electronic
Codebook (ECB) mode, as defined in ​FIPS PUB 81​.

3DES-EBC Specifies the Triple Data Encryption Standard algorithm with
Electronic Codebook (ECB) mode, as defined in ​NIST SP 800-67​.

CAST128-CBC Specifies the CAST-128 algorithm with Cipher Block Chaining (CBC)
mode, as defined in ​RFC 2144​.

CAST256-CBC Specifies the CAST-256 algorithm with Cipher Block Chaining (CBC)
mode, as defined in ​RFC 2612​.

RSA Specifies the RSA symmetric encryption algorithm, as defined by
RFC 2313​.

DSA Specifies the Digital Signature Algorithm, as defined by ​FIPS 186-4​.

​5.​ Customizing Cyber Observable Objects
There are three means to customize Cyber Observable Objects: custom object extensions,
custom observable objects, and custom properties. Custom object extensions provide a
mechanism and requirements for the specification of extensions not defined by this specification
(including relationships) on Observable Objects. Custom observable objects provides a
mechanism and requirements to create custom Observable Objects (objects not defined by this
specification). Custom properties, as in the rest of STIX, provide a mechanism to add individual
properties anywhere in the data model.

Custom properties ​SHOULD​ be used for cases where it is necessary to add one or more simple
additional properties on an Observable Object, with the expectation that these properties are
unlikely to be standardized in the future. On the other hand, custom Object extensions ​SHOULD
be used for cases where it is necessary to describe more complex additional properties (i.e.,
those with multiple potential levels of hierarchy) that may end up being standardized in the
future. As an example, a property that expresses some custom threat score for a File Object
should be added directly to the Observable Object as a custom property, whereas a set of

https://tools.ietf.org/html/rfc7539
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf
https://tools.ietf.org/html/rfc2144
https://tools.ietf.org/html/rfc2612
https://tools.ietf.org/html/rfc2313
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

properties that represent metadata necessary to add support for a new file system to the File
Object should be done as a custom extension.

A consumer that receives a STIX document containing Custom Cyber Observable Properties or
Objects it does not understand ​MAY​ refuse to process the document or ​MAY​ ignore those
properties or objects and continue processing the document.

​5.1.​ Custom Observable Objects

There will be cases where certain information exchanges can be improved by adding objects
that are not specified nor reserved in this document; these objects are called Custom
Observable Objects. This section provides guidance and requirements for how producers can
use Custom Observable Objects and how consumers should interpret them in order to extend
STIX in an interoperable manner.

​5.1.1.​ Requirements

● Producers ​MAY​ include any number of Custom Observable Objects in an Observable
Objects dictionary.

● The type field in a Custom Observable Object ​MUST​ be in ASCII and ​MUST​ only contain
the characters a-z (lowercase ASCII), 0-9, and hyphen (-).

● The type field ​MUST NOT​ contain a hyphen (-) character immediately following another
hyphen (-) character.

● Custom Observable Object names ​MUST​ have a minimum length of 3 ASCII characters.
● Custom Observable Object names ​MUST​ be no longer than 250 ASCII characters in

length.
● The value of the ​type​ field in a Custom Observable Object ​SHOULD​ start with “x-”

followed by a source unique identifier (like a domain name with dots replaced by
dashes), a dash and then the name. For example: ​x-example-com-customobject​.

● A Custom Observable Object whose name is not prefixed with “x-” ​MAY​ be used in a
future version of the specification with a different meaning. Therefore, if compatibility with
future versions of this specification is required, the “x-” prefix ​MUST​ be used.

● A Custom Observable Object ​MUST​ have one or more Custom Properties:
○ Custom Property names ​MUST​ be in ASCII and ​MUST​ only contain the

characters a–z (lowercase ASCII), 0–9, and underscore (_).
○ Custom Property names ​MUST​ have a minimum length of 3 ASCII characters.
○ Custom Property names ​MUST​ be no longer than 250 ASCII characters in

length.
● Custom Observable Objects ​SHOULD​ only be used when there is no existing

Observable Object defined by the STIX specification that fulfills that need.
● Custom Observable Object property values ​MUST​ be a valid primitive, type, or a

homogenous list of types.

Examples
Simple Custom Observable Object

{

 "0": {

 "type": "x-example",

 "foo": "bar",

 "vals": ["this",

 "is",

 "an",

 "example"]

 }

}

​5.2.​ Custom Object Extensions
In addition to the predefined Cyber Observable Object extensions specified in this document,
STIX supports user-defined custom extensions. As with predefined extensions, custom
extension data MUST be conveyed under the ​extended_properties​ property.

​5.2.1.​ Requirements

● An Observable Object ​MAY​ have any number of Custom Extensions.
● Custom Extension names ​MUST​ be in ASCII and are limited to characters a-z

(lowercase ASCII), 0-9, and dash (-).
● Custom Extension names ​SHOULD​ start with “x-” followed by a source unique identifier

(like a domain name), a dash and then the name. For example:
x-examplecom-customextension​.

● Custom Extension names ​MUST​ have a minimum length of 3 ASCII characters.
● Custom Extension names ​MUST​ be no longer than 250 ASCII characters in length.
● Custom Extension names that are not prefixed with “x-” may be used in a future version

of the specification for a different meaning. If compatibility with future versions of this
specification is required, the “x-” prefix ​MUST​ be used.

● Custom Extensions ​SHOULD​ only be used when there is no existing extension defined
by the CybOX specification that fulfills that need.

● A Custom Extension ​MUST​ have one or more Custom Properties:
○ Custom Property names ​MUST​ be in ASCII and ​MUST​ only contain the

characters a–z (lowercase ASCII), 0–9, and underscore (_).
○ Custom Property names ​MUST​ have a minimum length of 3 ASCII characters.
○ Custom Property names ​MUST​ be no longer than 250 ASCII characters in

length.

Examples

Custom File Object Extension
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "9B996B8785BFC7C857FF346931FC4B51"

 },

 "extended_properties": {

 "x-example-com-foo": {

 "foo_val": "foo",

 "bar_val": "bar"

 }

 }

 }

}

​6.​ Custom Object Properties
There will be cases where certain information exchanges can be improved by adding properties
that are neither specified nor reserved in this document; these properties are called Custom
Properties. This section provides guidance and requirements for how producers can use
Custom Properties and how consumers should interpret them in order to extend Cyber
Observable Objects in an interoperable manner.

​6.1.​ Requirements

● A Cyber Observable Object ​MAY​ have any number of Custom Properties.
● Custom Property names ​MUST​ be in ASCII and MUST only contain the characters a–z

(lowercase ASCII), 0–9, and underscore (_).
● Custom Property names ​SHOULD​ start with “x_” followed by a source unique identifier

(such as a domain name with dots replaced by underscores), an underscore and then
the name. For example, ​x_example_com_customfield​.

● Custom Property names ​MUST​ have a minimum length of 3 ASCII characters.
● Custom Property names ​MUST​ be no longer than 250 ASCII characters in length.
● Custom Property names that do not start with “x_” may be used in a future version of the

specification for a different meaning. If compatibility with future versions of this
specification is required, the “x_” prefix MUST be used.

● Custom Properties ​SHOULD​ only be used when there is no existing properties defined
by the Cyber Observable specification that fulfils that need.

● Custom Properties ​SHOULD​ only be used to define simple properties (e.g., those of
string or integer type)

● For Custom Properties that use the ​hex​ type, the property name ​MUST​ end with '_hex'.

● For Custom Properties that use the ​binary​ type, the property name ​MUST​ end with
'_bin'.

Examples

File Object with Custom Properties
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "9B996B8785BFC7C857FF346931FC4B51"

 },

 "x_example_com_foo": "bar",

 "x_example_com_bar": 27

 }

}

​7.​ Reserved Names
This section defines names that are reserved for future use in revisions of this document. The
names defined in this section ​MUST NOT​ be used for the name of any Custom Observable
Object or Property.

The following object names are reserved:

● action

​8.​ Conformance

​8.1.​ Producers and Consumers

A "Cyber Observable Producer" is any software that creates Cyber Observable content and
conforms to the following normative requirements:

1. It ​MUST​ be able to create content encoded as JSON.
2. All required properties ​MUST​ be present in the created content.
3. All properties ​MUST​ conform to the data type and normative requirements for that

property.
4. It ​MUST​ support at least one Defined Cyber Observable Object per the Conformance

section in Part 3b, Cyber Observable Objects.

A "Cyber Observable Consumer" is any software that consumes Cyber Observable content and
conforms to the following normative requirements:

1. It ​MUST​ support parsing all required properties for the content that it consumes.

​9.​ Appendix A. Acknowledgments
CybOX Subcommittee Chairs:
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation

Contributors
The following individuals made substantial contributions in the form of normative text and
proofing of this specification, their contributions are gratefully acknowledged:

● Bret Jordan, Blue Coat Systems, Inc.
● Terry MacDonald, Cosive
● Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
● Trey Darley, Kingfisher Operations, sprl
● Jason Keirstead, IBM
● Allan Thomson, LookingGlass Cyber
● John-Mark Gurney, New Context Services, Inc.
● Christian Hunt, New Context Services, Inc.
● Greg Back, MITRE Corporation
● Sean Barnum, MITRE Corporation
● Ivan Kirillov, MITRE Corporation
● John Wunder, MITRE Corporation
● Dave Cridland, Surevine

Appendix B. Revision History

mailto:trey@kingfisherops.com
mailto:ikirillov@mitre.org

