

STIX 2.0 Specification
Part 3b: Cyber Observable Objects - Version 2.0-rc3

​Technical Committee
OASIS Cyber Threat Intelligence (CTI) TC

​Chair
Richard Struse (Richard.Struse@hq.dhs.gov), DHS Office of Cybersecurity and
Communications (CS&C)

Editors
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl

Additional Artifacts
This prose specification is one component of a Work Product, which consists of:

● STIX Version 2.0 Part 1: STIX Core Concepts
● STIX Version 2.0 Part 2: STIX Objects
● STIX Version 2.0 Part 3a: Cyber Observable Core Concepts
● STIX Version 2.0 Part 3b: Cyber Observable Objects (this document)
● STIX Version 2.0 Part 4: STIX Patterning

Table of Contents

​1.​ Cyber Observable Objects

​2.​ Defined Object Data Models
​2.1.​ Artifact Object

​2.1.1.​ Properties
​2.1.2.​ Examples

​2.2.​ AS Object

mailto:ikirillov@mitre.org
mailto:trey@kingfisherops.com

​2.2.1.​ Properties
​2.2.2.​ Examples

​2.3.​ Directory Object
​2.3.1.​ Properties
​2.3.2.​ Examples

​2.4.​ Domain Name Object
​2.4.1.​ Properties
​2.4.2.​ Examples

​2.5.​ Email Address Object
​2.5.1.​ Properties
​2.5.2.​ Examples

​2.6.​ Email Message Object
​2.6.1.​ Properties
​2.6.2.​ Email MIME Component Type

​2.6.2.1.​ Properties
​2.6.3.​ Examples

​2.7.​ File Object
​2.7.1.​ Properties
​2.7.2.​ Examples
​2.7.3.​ Archive File Extension

​2.7.3.1.​ Properties
​2.7.3.2.​ Example

​2.7.4.​ NTFS File Extension
​2.7.4.1.​ Properties
​2.7.4.2.​ Alternate Data Stream Type

​2.7.4.2.1.​ Properties
​2.7.4.3.​ Example

​2.7.5.​ PDF File Extension
​2.7.5.1.​ Properties
​2.7.5.2.​ Example

​2.7.6.​ Raster Image File Extension
​2.7.6.1.​ Properties
​2.7.6.2.​ Example

​2.7.7.​ Windows™ PE Binary File Extension
​2.7.7.1.​ Properties
​2.7.7.2.​ Windows PE Binary Vocabulary
​2.7.7.3.​ PE Optional Header Type

​2.7.7.3.1.​ Properties
​2.7.7.4.​ Windows PE Section Type

​2.7.7.4.1.​ Properties
​2.7.7.5.​ Example

​2.8.​ IPv4 Address Object
​2.8.1.​ Properties
​2.8.2.​ Examples

​2.9.​ IPv6 Address Object
​2.9.1.​ Properties
​2.9.2.​ Examples

​2.10.​ MAC Address Object
​2.10.1.​ Properties
​2.10.2.​ Examples

​2.11.​ Mutex Object
​2.11.1.​ Properties
​2.11.2.​ Examples

​2.12.​ Network Traffic
​2.12.1.​ Properties
​2.12.2.​ Examples
​2.12.3.​ HTTP Extension

​2.12.3.1.​ Properties
​2.12.3.2.​ Example

​2.12.4.​ ICMP Extension
​2.12.4.1.​ Properties
​2.12.4.2.​ Example

​2.12.5.​ Network Socket Extension
​2.12.5.1.​ Properties
​2.12.5.2.​ Network Socket Address Family Enumeration
​2.12.5.3.​ Network Socket Protocol Family Enumeration
​2.12.5.4.​ Network Socket Type Enumeration
​2.12.5.5.​ Example

​2.12.6.​ TCP Extension
​2.12.6.1.​ Properties
​2.12.6.2.​ Example

​2.13.​ Process Object
​2.13.1.​ Properties
​2.13.2.​ Examples
​2.13.3.​ Windows Process Extension

​2.13.3.1.​ Properties
​2.13.3.2.​ Example

​2.13.4.​ Windows Service Extension

​2.13.4.1.​ Properties
​2.13.4.2.​ Windows Service Start Type Enumeration
​2.13.4.3.​ Windows Service Type Enumeration
​2.13.4.4.​ Window Service Status Enumeration
​2.13.4.5.​ Example

​2.14.​ Software Object
​2.14.1.​ Properties
​2.14.2.​ Examples

​2.15.​ URL Object
​2.15.1.​ Properties
​2.15.2.​ Examples

​2.16.​ User Account Object
​2.16.1.​ Properties
​2.16.2.​ Account Type Vocabulary
​2.16.3.​ Examples
​2.16.4.​ UNIX Account Extension

​2.16.4.1.​ Properties
​2.16.4.2.​ Example

​2.17.​ Windows Registry Key Object
​2.17.1.​ Properties
​2.17.2.​ Windows Registry Value Type

​2.17.2.1.​ Properties
​2.17.3.​ Registry Datatype Enumeration
​2.17.4.​ Examples

​2.18.​ X509 Certificate Object
​2.18.1.​ Properties
​2.18.2.​ X509 v3 Extensions Type

​2.18.2.1.​ Properties
​2.18.3.​ Examples

​3.​ Conformance
​3.1.​ Defined Object Producers
​3.2.​ Defined Object Consumers

​4.​ Appendix A. Acknowledgments

​5.​ Appendix B. Revision History

​1.​ Cyber Observable Objects
A Cyber Observable Object represents an instance of information observed on a host or
network; for example, this could include the properties of a PDF file observed on an endpoint or
a network connection between two IP addresses as observed by a firewall.

STIX defines a set of ​object data models,​ such as the ​File Object​ , for the normalized capture
of observed data as supporting evidence in STIX Domain Objects or outside of STIX in a
similar, higher-level language.

Defined ​object data models ​provide a base set of ​properties​ which are applicable across a
broad spectrum of use cases relevant to the particular data model as well as (in certain cases) a
set of object ​extensions​ targeting more specific use cases. The full set of Defined Object Data
Models is defined in ​§​2.

​2.​ Defined Object Data Models

​2.1.​ Artifact Object
Type Name:​ ​artifact

The Artifact Object permits capturing an array of bytes (8-bits), as a base64-encoded string
string, or linking to a file-like payload. The size of the base64-encoded data captured in the
payload​ property ​MUST​ be less than or equal to ​10MB​.

One of ​payload_bin​ or ​url​ ​MUST​ be provided. It is incumbent on object creators to ensure
that the URL is accessible for downstream consumers. If a URL is provided, then the ​hashes
property ​MUST ​contain the hash of the URL contents.

​2.1.1.​ Properties

Common Properties

type, description, extended_properties

Artifact Object Specific Properties

mime_type, payload_bin, url, hashes

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
artifact​.

mime_type​ ​(optional) string The value of this property ​MUST​ be
a valid MIME type as specified in the
IANA Media Types registry​.

payload_bin​ (optional) binary Specifies the binary data contained
in the artifact as a base64-encoded
string. This property ​MUST NOT​ be
present if ​url​ is provided.

url​ ​(optional) string The value of this property ​MUST​ be
a valid URL that resolves to the
unencoded content. This property
MUST NOT​ be present if
payload_bin​ is provided.

hashes​ (optional) hashes-type Specifies a dictionary of hashes for
the contents of the ​url​ or the
payload_bin​. This ​MUST​ be
provided when the ​url​ property is
present.

​2.1.2.​ Examples

Basic Image Artifact
{

 "0": {

 "type": "artifact",

 "mime_type": "image/jpeg",

 "payload_bin": "VBORw0KGgoAAAANSUhEUgAAADI== ..."

 }

}

​2.2.​ AS Object
Type Name:​ ​autonomous-system

http://www.iana.org/assignments/media-types/media-types.xhtml

The AS object represents the properties of an Autonomous Systems (AS).

​2.2.1.​ Properties

Common Properties

type, description, extended_properties

AS Object Specific Properties

number, name, rir

Property Name Type Description

type​ (required) string The value of this property ​MUST
be ​as​.

number​ ​(required) integer Specifies the number assigned to
the AS. Such assignments are
typically performed by a Regional
Internet Registries (RIR).

name​ ​(optional) string Specifies the name of the AS.

rir​ ​(optional) string Specifies the name of the
Regional Internet Registry (RIR)
that assigned the number to the
AS.

​2.2.2.​ Examples
Basic AS Object
{

 "0": {

 "type": "as",

 "number": "15139",

 "name": "Wayne Industries",

 "rir": "ARIN"

 }

}

​2.3.​ Directory Object
Type Name:​ ​directory

The Directory Object represents the properties common to a file system directory. A Directory
Object ​MUST​ contain at least one of ​path​ OR ​path_bin​.

​2.3.1.​ Properties

Common Properties

type, description, extended_properties

File Object Specific Properties

path, path_enc, path_bin, created, modified, accessed, contains_refs

Property Name Type Description

type​ (required) string The value of this property ​MUST
be ​directory​.

path​ ​(optional) string Specifies the path, as originally
observed, to the directory on the
file system.

path_enc​ ​(optional) string Specifies the observed encoding
for the path. The value ​MUST​ be
specified if the path is stored in a
non-Unicode encoding. This
value ​MUST​ be specified using
the corresponding name from
the 2013-12-20 revision of the
IANA character set registry​. If
the preferred MIME name for a
character set is defined, this
value ​MUST​ be used; if it is not
defined, then the Name value
from the registry ​MUST​ be used
instead.

path_bin​ ​(optional) binary Specifies the directory path as a
base64-encoded string. This
property ​MUST​ ​NOT​ be
specified in conjunction with the
path​ property; only one of ​path
OR ​path_bin​ may be used.

created​ ​(optional) timestamp Specifies the date/time the
directory was created.

http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml

modified​ ​(optional) timestamp Specifies the date/time the
directory was last written
to/modified.

accessed​ ​(optional) timestamp Specifies the date/time the
directory was last accessed.

contains_refs​ ​(optional) list​ of type ​object-ref Specifies a list of references to
other File and/or Directory
Objects contained within the
directory.

​2.3.2.​ Examples
Basic directory
{

 "0": {

 "type": "directory",

 "path": "C:\\Windows\\System32"

 }

}

​2.4.​ Domain Name Object
Type Name:​ ​domain-name

The Domain Name represents the properties of a network domain name.

​2.4.1.​ Properties

Common Properties

type, description, extended_properties

Domain Name Object Specific Properties

value, resolves_to_refs

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
domain-name​.

value​ ​(required) string Specifies the value of the domain

name.

resolves_to_refs list​ of type ​object-ref Specifies a list of references to one
or more IP addresses or domain
names that the domain name
resolves to.

The objects referenced in this list
SHOULD ​be of type ​ipv4-addr​ or
ipv6-addr​ or ​MAY​ be of type
domain-name​ for cases such as
CNAME records.

​2.4.2.​ Examples
Basic FQDN
{

 "0": {

 "type": "domain-name",

 "value": "www.example.com",

 "resolves_to_refs": [

 "1"

]

 },

 "1": {

 "type": "ipv4-addr",

 "value": "1.2.3.4"

 }

}

​2.5.​ Email Address Object
Type Name:​ ​email-addr

The Email Address Object represents a single email address.

​2.5.1.​ Properties

Common Properties

type, description, extended_properties

Email Address Object Specific Properties

value, display_name, belongs_to_ref

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be ​email-addr​.

value​ ​(required) string Specifies a single email address. This ​MUST ​not
include the display name.

This property corresponds to the ​addr-spec
construction in RFC 5322 Section 3.4, for
example, ​jane.smith@example.com.

display_name
(optional)

string Specifies a single email display name, i.e., the
name that is displayed to the human user of a mail
application.

This property​ ​corresponds to the ​display-name
construction in RFC 5322 Section 3.4, for
example, ​“Jane Smith”​ .

belongs_to_ref
(optional)

object-ref Specifies the user account that the email address
belongs to, as a reference to a User Account
Object.

The object referenced in this property ​MUST​ be of
type ​user-account​.

​2.5.2.​ Examples
{

 "0": {

 "type": "email-addr",

 "value": "bruce@wayneindustries.com",

 "display_name": "Bruce Wayne"

 }

}

​2.6.​ Email Message Object

Type Name:​ ​email-message

The Email Message Object represents an instance of an email message, corresponding to the
internet message format described in RFC 5322 and related RFCs.

Header field values that have been encoded as described in Section 2 of ​RFC 2047​ ​MUST ​be
decoded before inclusion in Email Message Object properties. For example, ​this is some
text​ ​MUST​ be used instead of ​=?iso-8859-1?q?this=20is=20some=20text?=​. Any
characters in the encoded value which cannot be decoded into Unicode ​SHOULD ​be replaced
with the 'REPLACEMENT CHARACTER' (U+FFFD). If it is necessary to capture the header
value as observed, this can be achieved by referencing an Artifact Object through the
raw_email_ref​ ​ property.

​2.6.1.​ Properties

Common Properties

type, description, extended_properties

Email Message Object Specific Properties

is_multipart, date, content_type, from_ref, sender_ref, to_refs,
cc_refs, bcc_refs, subject, received_lines, additional_header_fields,
body, body_multipart, raw_email_ref

Property Name Type Description

type​ ​(required) string The value of this property ​MUST​ be
email-message​.

is_multipart​ (required) boolean Indicates whether the email body
contains multiple MIME parts.

date​ ​(optional) timestamp Specifies the date/time that the email
message was sent.

content_type​ ​(optional) string Specifies the value of the
“Content-Type” header of the email
message.

from_ref​ ​(optional) object-ref Specifies the value of the “From:”
header of the email message. The
"From:" field specifies the author(s) of
the message, that is, the mailbox(es)
of the person(s) or system(s)
responsible for the writing of the
message. The object referenced in
this property ​MUST ​be of type
email-address​.

https://www.ietf.org/rfc/rfc2047.txt

sender_ref​ ​(optional) object-ref Specifies the value of the “From” field
of the email message. The "Sender:"
field specifies the mailbox of the
agent responsible for the actual
transmission of the message. The
object referenced in this property
MUST ​be of type ​email-address​.

to_refs​ ​(optional) list​ of type

object-ref

Specifies the mailboxes that are “To:”
recipients of the email message. The
objects referenced in this list ​MUST
be of type ​email-address​.

cc_refs​ ​(optional) list​ of type

object-ref

Specifies the mailboxes that are
“CC:” recipients of the email
message. The objects referenced in
this list ​MUST ​be of type
email-address​.

bcc_refs​ ​(optional) list​ of type

object-ref

Specifies the mailboxes that are
“BCC:” recipients of the email
message.

As per RFC 5322, this list may be
empty, which should not be treated
the same as the key being absent.
The objects referenced in this list
MUST ​be of type ​email-address​.

subject​ ​(optional) string Specifies the subject of the email
message.

received_lines​ ​(optional) list​ of type

string

Specifies one or more ​Received
header fields that may be included in
the email headers.

List values ​MUST​ appear in the same
order as present in the email
message.

additional_header_fields

(optional)

dictionary Specifies any other header fields
(except for ​date​, ​received_lines​,
content_type​, ​from_ref​,
sender_ref​, ​to_refs​, ​cc_refs​,
bcc_refs​, and ​subject​) found in the
email message, as a dictionary.

Each key/value pair in the dictionary
represents the name/value of a single
header field or names/values of a
header field that occurs more than
once. Each dictionary key ​SHOULD
be a case-preserved version of the
dictionary key name. For cases
where a header field occurs exactly
once, the corresponding value for the
dictionary key ​MUST​ be a ​string​.
For cases where a header field
occurs more than once, the
corresponding value for the dictionary
key ​MUST​ be a ​list​ of type ​string​,
where each ​string​ in the ​list
represents a single value of the
header field.

body​ ​(optional) string

Specifies a ​string​ containing the
email body. This field ​MAY ​only be
used if ​is_multipart​ ​is false​.

body_multipart ​(optional) list​ of type

mime-part-type

Specifies a list of the MIME parts that
make up the email body. This
property ​MAY ​only be used if
is_multipart​ ​is true​.

raw_email_ref​ ​(optional) object-ref Specifies the raw binary contents of
the email message, including both
the headers and body, as a reference
to an Artifact Object.

The object referenced in this field
MUST ​be of type ​artifact​.

​2.6.2.​ Email MIME Component Type
Type Name:​ ​mime-part-type

Specifies a component of a multi-part email body.

There is no property to capture the value of the “Content-Transfer-Encoding” header field, since
the body ​MUST ​be decoded before being represented in the ​body​ ​property.

One of ​body​ OR ​body_raw_ref​ ​MUST​ be included.

​2.6.2.1.​ Properties

Property Name Type Description

body​ ​(optional) string Specifies the contents of the MIME part if the
content_type​ ​is not provided​ OR​ starts with
text/​ (e.g., in the case of plain text or HTML
email).

For inclusion in this property, the contents ​MUST
be decoded to Unicode. Note that the charset
provided in ​content_type​ is for informational
usage and not for decoding of this property.

body_raw_ref

(optional)

object-ref Specifies the contents of non-textual MIME parts,
that is those whose ​content_type​ does not start
with ​text/​, as a reference to an Artifact Object or
File Object.

The object referenced in this field ​MUST ​be of type
artifact​ or ​file​. For use cases where conveying
the actual data contained in the MIME part is of
primary importance, the ​artifact​ ​SHOULD​ be
used. Otherwise, for use cases where conveying
metadata about the file-like properties of the MIME
part is of primary importance, the ​file​ ​SHOULD
be used.

content_type
(optional)

string Specifies the value of the “Content-Type” header
field of the MIME part.

Any additional “Content-Type” header field
parameters such as ​charset​ ​SHOULD ​be included
in this property.

Example:
text/html; charset=UTF-8

content_dispositio

n​ ​(optional)

string Specifies the value of the “Content-Disposition”
header field of the MIME part.

​2.6.3.​ Examples

Simple message

{

 "0": {

 "type": "email-address",

 "value": "jdoe@machine.example",

 "display_name": "John Doe"

 },

 "1": {

 "type": "email-address",

 "value": "mary@example.net",

 "display_name": "Mary Smith"

 },

 "2": {

 "type": "email-message",

 "from_ref": "0",

 "to_refs": ["1"],

 "date": "1997-11-21T15:55:06Z",

 "subject": "Saying Hello"

 }

}

Simple message with Additional Header Properties
{

 "0": {

 "type": "email-address",

 "value": "joe@example.com",

 "display_name": "Joe Smith"

 },

 "1": {

 "type": "email-address",

 "value": "bob@example.net",

 "display_name": "Bob Smith"

 },

 "2": {

 "type": "email-message",

 "from_ref": "0",

 "to_refs": [

 "1"

],

 "date": "2004-04-19T12:22:23Z",

 "subject": "Did you see this?",

 "additional_header_fields": {

 "Reply-To": [

 "steve@example.com",

 "jane@example.com"

]

 }

 }

}

Complex MIME Message
{

 "0": {

 "type": "email-message",

 "is_multipart": true,

 "received_lines": [

 "from mail.wayneindustries.com ([1.2.3.4]) by smtp.gmail.com with ESMTPSA id

q23sm23309939wme.17.2016.07.19.07.20.32 (version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-SHA256

bits=128/128); Tue, 19 Jul 2016 07:20:40 -0700 (PDT)"

],

 "content_type": "multipart/mixed",

 "date": "2016-06-19T14:20:40Z",

 "from_ref": "1",

 "to_refs": [

 "2"

],

 "cc_refs": [

 "3"

],

 "subject": "Check out this picture of the Riddler!",

 "additional_header_fields": {

 "Content-Disposition": "inline",

 "X-Mailer": "Mutt/1.5.23",

 "X-Originating-IP": "1.2.3.4"

 },

 "body_multipart": [

 {

 "content_type": "text/plain; charset=utf-8",

 "content_disposition": "inline",

 "body": "The Riddler is such a funny guy!"

 },

 {

 "content_type": "image/png",

 "content_disposition": "attachment; filename=\"riddler.png\"",

 "body_raw_ref": "4"

 },

 {

 "content_type": "application/zip",

 "content_disposition": "attachment; filename=\"riddler_pics.zip\"",

 "body_raw_ref": "5"

 }

],

 "1": {

 "type": "email-address",

 "value": "bwayne@wayneindustries.com",

 "display_name": "Bruce Wayne"

 },

 "2": {

 "type": "email-address",

 "value": "robin@batcave.com",

 "display_name": "Robin"

 },

 "3": {

 "type": "email-address",

 "value": "apennyworth@wayneindustries.com",

 "display_name": "Alfred Pennyworth"

 },

 "4":{

 "type": "artifact",

 "mime_type": "image/jpeg",

 "payload_bin": "VBORw0KGgoAAAANSUhEUgAAADI== ...",

 "hashes": {

 "MD5": "69D0D97D02A03C43782DD571394E6869"

 }

 },

 "5": {

 "type": "file",

 "name": "riddler_pics.zip",

 "magic_number_hex": "504B0304",

 "hashes": {

 "MD5": "22A0FB8F3879FB569F8A3FF65850A82E"

 }

 }

 }

}

​

​2.7.​ File Object
Type Name:​ ​file

The File Object represents the properties of a file. A File Object ​MUST​ contain at least one of
hashes​ OR ​name​ OR ​name_bin​.

​2.7.1.​ Properties

Common Properties

type, description, extended_properties

File Object Specific Properties

hashes, size, name, name_enc, name_bin, magic_number, mime_type, created,
modified, accessed, parent_directory_ref, is_encrypted,
encryption_algorithm, decryption_key, contains_refs, content_ref

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be ​file​.

extended_properties
(optional)

dictionary The File Object defines the following
extensions. In addition to these, producers
MAY​ create their own.

ntfs-ext​, ​raster-image-ext​, ​pdf-ext​,
archive-ext​, ​windows-pebinary-ext

Dictionary keys ​MUST​ identify the extension
type by name.

The corresponding dictionary values ​MUST
contain the contents of the extension
instance.

hashes​ ​(optional) hashes-type Specifies a dictionary of hashes for the file.

size​ ​(optional) integer Specifies the size of the file, in bytes, as a
non-negative integer.

name​ ​(optional) string Specifies the name of the file.

name_enc​ ​(optional) string Specifies the observed encoding for the
name of the file. This value ​MUST​ be
specified using the corresponding name from
the 2013-12-20 revision of the​ ​IANA
character set registry​. If the value from the
the Preferred MIME Name column for a
character set is defined, this value ​MUST​ be
used; if it is not defined, then the value from
the Name column in the registry ​MUST​ be
used instead.

This property allows for the capture of the
original text encoding for the file name,
which may be forensically relevant; for
example, a file on an NTFS volume whose
name was created using the windows-1251
encoding, commonly used for languages
based on Cyrillic script

name_bin​ ​(optional) binary Specifies the name of the file as a
base64-encoded string. This property ​MUST
NOT​ be specified in conjunction with the
name​ property; only one of ​name​ OR
name_bin​ may be used.

http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.iana.org/assignments/character-sets/character-sets.xhtml

magic_number_hex
(optional)

hex Specifies the hexadecimal constant (“magic
number”) associated with a specific file
format that corresponds to the file, if
applicable.

mime_type​ ​(optional) string Specifies the MIME type name specified for
the file, e.g., “application/msword”.

Whenever feasible, this value ​SHOULD​ be
one of the values defined in the Template
column in the ​IANA media type registry​.

Maintaining a comprehensive universal
catalog of all extant file types is obviously not
possible. When specifying a mime_type not
included in the IANA registry, implementers
should use their best judgement so as to
facilitate interoperability.

created​ ​(optional) timestamp Specifies the date/time the file was created.

modified​ ​(optional) timestamp Specifies the date/time the file was last
written to/modified.

accessed​ ​(optional) timestamp Specifies the date/time the file was last
accessed.

parent_directory_ref
(optional)

object-ref Specifies the parent directory of the file, as a
reference to a Directory Object.

The object referenced in this property ​MUST
be of type ​directory​.

is_encrypted​ ​(optional) boolean Specifies whether the file is encrypted.

encryption_algorithm
(optional)

open-vocab Specifies the name of the encryption
algorithm used to encrypt the file. This is an
open vocabulary and values ​SHOULD​ come
from the ​encryption-algorithm-ov
vocabulary.

This property ​MUST NOT​ be used if
is_encrypted​ is ​false​ or not included.

decryption_key
(optional)

string Specifies the decryption key used to decrypt
the archive file.

This property ​MUST NOT​ be used if

http://www.iana.org/assignments/media-types/media-types.xhtml

is_encrypted​ is ​false​ or not included.

contains_refs​ ​(optional) list​ of type
object-ref

Specifies a list of references to other
Observable Objects contained within the file,
such as another file that is appended to the
end of the file, or an IP address that is
contained somewhere in the the file.

(This is intended for use cases other than
those targeted by the Archive extension.)

content_ref​ ​(optional) object-ref Specifies the content of the file, represented
as an Artifact Object.

The object referenced in this property ​MUST
be of type ​artifact​.

​2.7.2.​ Examples
Basic file with file system properties without observed encoding
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "4472ea40dc71e5bb701574ea215a81a1"

 },

 "size": 25536,

 "name": "foo.dll"

 }

 }

}

Basic file with file system properties with observed encoding
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "66e2ea40dc71d5ba701574ea215a81f1"

 },

 "name": "quêry.dll",

 "name_enc": "windows-1252"

}

In this example, the file name would have originally appeared using the bytes 71 75 ​ea​ 72 79 2e
64 6c 6c. Representing it in UTF-8, as required for JSON, would use the bytes 71 75 ​c3 aa​ 72
79 2e 64 6c 6c.

Basic file with parent directory
{

 "0": {

 "type": "directory",

 "path": "C:\\Windows\\System32"

 },

 "1": {

 "type": "file",

 "hashes": {

 "MD5": "A2FD2B3F4D5A1BD5E7D283299E01DCE9"

 },

 "parent_directory_ref": "0",

 "name": "qwerty.dll"

}

​2.7.3.​ Archive File Extension
Type Name:​ ​archive-ext

The Archive File extension specifies a default extension for capturing properties specific to
archive files. The key for this extension when used in the ​extended_properties​ dictionary
MUST​ be ​archive-ext​ .

​2.7.3.1.​ Properties

Property Name Type Description

contains_refs
(required)

list​ of type ​object-ref Specifies the files contained in
the archive, as a reference to
one or more other File Objects.
The objects referenced in this
list ​MUST ​be of type
file-object​.

version​ ​(optional) string Specifies the version of the
archive type used in the archive
file.

comment​ ​(optional) string Specifies a comment included
as part of the archive file.

​2.7.3.2.​ Example
Basic unencrypted ZIP Archive
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "66e2ea40dc71d5ba701574ea215a81f1"

 }

 },

 "1": {

 "type": "file",

 "hashes": {

 "MD5": "22A0FB8F3879FB569F8A3FF65850A82E"

 }

 },

 "2": {

 "type": "file",

 "hashes": {

 "MD5": "8D98A25E9D0662B1F4CA3BF22D6F53E9"

 }

 },

 "3": {

 "type": "file",

 "hashes": {

 "MD5": "B365B9A80A06906FC9B400C06C33FF43"

 },

 "mime_type": "application/zip",

 "extended_properties": {

 "archive-ext": {

 "contains_refs": [

 "0",

 "1",

 "2"

],

 "version": "5.0"

 }

 }

 }

}

​

​2.7.4.​ NTFS File Extension
Type Name:​ ​ntfs-ext

The NTFS file extension specifies a default extension for capturing properties specific to the
storage of the file on the NTFS file system. The key for this extension when used in the
extended_properties​ dictionary MUST be ​ntfs-ext​ .

​2.7.4.1.​ Properties

Property Name Type Description

sid​ ​(optional) string Specifies the security ID (SID)
value assigned to the file.

alternate_data_stream
s​ ​(optional)

list​ of type
alternate-data-stream

Specifies a list of NTFS
alternate data streams that exist
for the file.

​2.7.4.2.​ Alternate Data Stream Type
Type Name:​ ​alternate-data-stream

The Alternate Data Stream type represents an NTFS alternate data stream.

​2.7.4.2.1.​ Properties

Property Name Type Description

name​ ​(required) string Specifies the name of the alternate data
stream.

hashes​ ​(optional) hashes-type Specifies a dictionary of hashes for the data
contained in the alternate data stream.

size​ ​(optional) integer Specifies the size of the alternate data
stream, in bytes, as a non-negative integer.

​2.7.4.3.​ Example
NTFS File with a single alternate data stream
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "B4D33B0C7306351B9ED96578465C5579"

 },

 "extended_properties": {

 "ntfs-ext": {

 "alternate_data_streams": [

 {

 "type": "alternate-data-stream",

 "name": "second.stream",

 "size": 25536

 }

]

 }

 }

 }

}

​2.7.5.​ PDF File Extension
Type Name:​ ​pdf-ext

The PDF file extension specifies a default extension for capturing properties specific to PDF
files. The key for this extension when used in the ​extended_properties​ dictionary ​MUST​ be
pdf-ext​ .

​2.7.5.1.​ Properties

Property Name Type Description

version​ ​(optional) string Specifies the decimal version number of the
string from the PDF header that specifies the
version of the PDF specification to which the
PDF file conforms. E.g., “1.4”.

is_optimized
(optional)

boolean Specifies whether the PDF file has been
optimized.

document_info_d
ict​ ​(optional)

dictionary Specifies details of the PDF document
information dictionary (DID), which includes
properties like the document creation data
and producer, as a dictionary. Each key in the
dictionary ​SHOULD​ be a case-preserved
version of the corresponding entry in the
document information dictionary without the
prepended forward slash, e.g., “Title”. The
corresponding value for the key ​MUST​ be the
value specified for the document information
dictionary entry, as a ​string​.

pdfid0​ ​(optional) string Specifies the first file identifier found for the
PDF file.

pdfid1​ ​(optional) string Specifies the second file identifier found for
the PDF file.

​2.7.5.2.​ Example
Basic PDF file
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "66e2ea40dc71d5ba701574ea215a81f1"

 },

 "extended_properties": {

 "pdf-ext": {

 "version": "1.7",

 "document_info_dict": {

 "Title": "Sample document",

 "Author": "Adobe Systems Incorporated",

 "Creator": "Adobe FrameMaker 5.5.3 for Power Macintosh",

 "Producer": "Acrobat Distiller 3.01 for Power Macintosh",

 "CreationDate": "20070412090123-02"

 },

 "pdfid0": "DFCE52BD827ECF765649852119D",

 "pdfid1": "57A1E0F9ED2AE523E313C"

 }

 }

 }

}

​2.7.6.​ Raster Image File Extension
Type Name:​ ​raster-image-ext

The Raster Image file extension specifies a default extension for capturing properties specific to
image files. The key for this extension when used in the ​extended_properties​ dictionary
MUST​ be ​raster-image-ext​ .

​2.7.6.1.​ Properties

Property Name Type Description

image_height​ ​(optional) integer Specifies the height of the image in
the image file, in pixels.

image_width​ ​(optional) integer Specifies the width of the image in the

image file, in pixels.

bits_per_pixel​ ​(optional) integer Specifies the sum of bits used for
each color channel in the image in the
image file, and thus the total number
of pixels used for expressing the color
depth of the image.

image_compression_algorithm
(optional)

string Specifies the name of the
compression algorithm used to
compress the image in the image file,
if applicable.

exif_tags​ ​(optional) dictionary Specifies the set of EXIF tags found in
the image file, as a dictionary. Each
key/value pair in the dictionary
represents the name/value of a single
EXIF tag. Accordingly, each dictionary
key ​MUST​ be a case-preserved
version of the EXIF tag name, e.g.,
“XResolution”. Each dictionary value
MUST​ be either an ​integer​ (for int*
EXIF datatypes) or a ​string​ (for all
other EXIF datatypes).

​2.7.6.2.​ Example
Simple Image File with EXIF Data
{

 "0": {

 "type": "file",

 "name": "picture.jpg",

 "hashes": {

 "MD5": "B4D33B0C7306351B9ED96578465C5579"

 },

 "extended_properties": {

 "raster-image-ext": {

 "exif_tags": {

 "Make": "Nikon",

 "Model": "D7000",

 "XResolution": 4928,

 "YResolution": 3264

 }

 }

 }

 }

}

​2.7.7.​ Windows™ PE Binary File Extension
Type Name:​ ​windows-pebinary-ext

The Windows PE Binary File extension specifies a default extension for capturing properties
specific to Windows portable executable (PE) files. The key for this extension when used in the
extended_properties​ dictionary ​MUST​ be ​windows-pebinary-ext​ .

​2.7.7.1.​ Properties

Property Name Type Description

pe_type​ ​(required) open-vocab Specifies the type of the PE
binary. This is an open
vocabulary and values
SHOULD​ come from the
windows-pebinary-type-ov
vocabulary.

imphash​ ​(optional) string Specifies the special import
hash, or ‘imphash’, calculated
for the PE Binary based on its
imported libraries and
functions. For more information
on the imphash algorithm, see
the original article by
Mandiant/FireEye:
https://www.fireeye.com/blog/th
reat-research/2014/01/tracking-
malware-import-hashing.html

machine_hex​ ​(optional) hex Specifies the type of target
machine.

number_of_sections
(optional)

integer Specifies the number of
sections in the PE binary, as a
non-negative integer.

time_date_stamp​ ​(optional) timestamp Specifies the time when the PE
binary was created. The
timestamp value ​MUST BE
precise to the second.

pointer_to_symbol_table
_hex​ ​(optional)

hex Specifies the file offset of the
COFF symbol table.

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html

number_of_symbols
(optional)

integer Specifies the number of entries
in the symbol table of the PE
binary, as a non-negative
integer.

size_of_optional_header
(optional)

integer Specifies the size of the
optional header of the PE
binary.

characteristics_hex
(optional)

hex Specifies the flags that indicate
the file’s characteristics.

file_header_hashes
(optional)

hashes-type Specifies any hashes that were
computed for the file header.

optional_header​ ​(optional) windows-pe-optional-h
eader-type

Specifies the PE optional
header of the PE binary.

sections​ ​(optional) list​ of type
windows-pe-section

Specifies metadata about the
sections in the PE file.

​2.7.7.2.​ Windows PE Binary Vocabulary
Type Name:​ ​windows-pebinary-type-ov

An open vocabulary of Windows PE binary types.

Value Description

exe Specifies that the PE binary is an executable image (i.e., not an OBJ or
DLL).

dll Specifies that the PE binary is a dynamically linked library (DLL).

sys Specifies that the PE binary is a device driver (SYS).

​2.7.7.3.​ PE Optional Header Type
Type Name:​ ​windows-pe-optional-header-type

The Windows PE Optional Header type represents the properties of the PE optional header.

​2.7.7.3.1.​ Properties

Property Name Type Description

magic_hex​ ​(optional) hex Specifies the unsigned integer that
indicates the type of the PE binary.

major_linker_version
(optional)

integer Specifies the linker major version number.

minor_linker_version
(optional)

integer Specifies the linker minor version number.

size_of_code​ ​(optional) integer Specifies the size of the code (text)
section. If there are multiple such
sections, this refers to the sum of the
sizes of each section.

size_of_initialized_da
ta​ ​(optional)

integer Specifies the size of the initialized data
section. If there are multiple such
sections, this refers to the sum of the
sizes of each section.

size_of_uninitialized_
data​ ​(optional)

integer Specifies the size of the uninitialized data
section. If there are multiple such
sections, this refers to the sum of the
sizes of each section.

address_of_entry_point
(optional)

integer Specifies the address of the entry point
relative to the image base when the
executable is loaded into memory.

base_of_code​ ​(optional) integer Specifies the address that is relative to
the image base of the beginning-of-code
section when it is loaded into memory.

base_of_data​ ​(optional) integer Specifies the address that is relative to
the image base of the beginning-of-data
section when it is loaded into memory.

image_base​ ​(optional) integer Specifies the preferred address of the first
byte of the image when loaded into
memory.

section_alignment
(optional)

integer Specifies the alignment (in bytes) of PE
sections when they are loaded into
memory.

file_alignment​ ​(optional) integer Specifies the factor (in bytes) that is used
to align the raw data of sections in the
image file.

major_os_version integer Specifies the major version number of the

(optional) required operating system.

minor_os_version
(optional)

integer Specifies the minor version number of the
required operating system.

major_image_version
(optional)

integer Specifies the major version number of the
image.

minor_image_version
(optional)

integer Specifies the minor version number of the
image.

major_subsystem_versio
n​ ​(optional)

integer Specifies the major version number of the
subsystem.

minor_subsystem_versio
n​ ​(optional)

integer Specifies the minor version number of the
subsystem.

win32_version_value_he
x​ ​(optional)

hex Specifies the reserved win32 version
value.

size_of_image​ ​(optional) integer Specifies the size, in bytes, of the image,
including all headers, as the image is
loaded in memory.

size_of_headers​ ​(optional) integer Specifies the combined size of the
MS-DOS, PE header, and section
headers, rounded up a multiple of the
value specified in the file_alignment
header.

checksum_hex​ ​(optional) hex Specifies the checksum of the PE binary.

subsystem_hex​ ​(optional) hex Specifies the subsystem (e.g., GUI,
device driver, etc.) that is required to run
this image.

dll_characteristics​_he
x​(optional)

hex Specifies the flags that characterize the
PE binary.

size_of_stack_reserve
(optional)

integer Specifies the size of the stack to reserve.

size_of_stack_commit
(optional)

integer Specifies the size of the stack to commit.

size_of_heap_reserve
(optional)

integer Specifies the size of the local heap space
to reserve.

size_of_heap_commit integer Specifies the size of the local heap space

(optional) to commit.

loader_flags_hex
(optional)

hex Specifies the reserved loader flags.

number_of_rva_and_size
s​ ​(optional)

integer Specifies the number of data-directory
entries in the remainder of the optional
header.

hashes​ ​(optional) hashes-type Specifies any hashes that were computed
for the optional header.

​

​2.7.7.4.​ Windows PE Section Type
Type Name:​ ​windows-pe-section

The PE Section type specifies metadata about a PE file section.

​2.7.7.4.1.​ Properties

Property Name Type Description

name​ ​(required) string Specifies the name of the section.

size​ ​(optional) integer Specifies the size of the section,
in bytes.

entropy​ ​(optional) float Specifies the calculated entropy
for the section, as calculated
using the Shannon algorithm
(​https://en.wiktionary.org/wiki/Sha
nnon_entropy​). The size of each
input character is defined as a
byte, resulting in a possible range
of 0 through 8.

hashes​ ​(optional) hashes-type Specifies any hashes computed
over the section.

​2.7.7.5.​ Example
Typical EXE File

{

https://en.wiktionary.org/wiki/Shannon_entropy
https://en.wiktionary.org/wiki/Shannon_entropy

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "1C19FC56AEF2048C1CD3A5E67B099350"

 },

 "extended_properties": {

 "windows-pebinary-ext": {

 "pe_type": "exe",

 "file_header": {

 "machine_hex": "014c",

 "number_of_sections": 4,

 "time_date_stamp": "2016-01-22T12:31:12",

 "pointer_to_symbol_table_hex": "74726144",

 "number_of_symbols": 4542568,

 "size_of_optional_header": 224,

 "characteristics_hex": "818f"

 },

 "optional_header": {

 "magic_hex": "010b",

 "major_linker_version": 2,

 "minor_linker_version": 25,

 "size_of_code": 512,

 "size_of_initialized_data": 283648,

 "size_of_unitialized_data": 0,

 "address_of_entrypoint": 4096,

 "base_of_code": 4096,

 "base_of_data": 8192,

 "image_base": 14548992,

 "section_alignment": 4096,

 "file_alignment": 4096,

 "major_operating_system_version": 1,

 "minor_operating_system_version": 0,

 "major_image_version": 0,

 "minor_image_version": 0,

 "major_subsystem_version": 4,

 "minor_subsystem_version": 0,

 "win32_version_value": "00",

 "size_of_image": 299008,

 "size_of_headers": 4096,

 "checksum_hex": "00",

 "subsystem_hex": "03",

 "dll_characteristics_hex": "00",

 "size_of_stack_reserve": 100000,

 "size_of_stack_commit": 8192,

 "size_of_heap_reserve": 100000,

 "size_of_heap_commit": 4096,

 "loader_flags_hex": "abdbffde",

 "number_of_rva_and_sizes_hex": "dfffddde"

 },

 "sections": [

 {

 "name": "CODE",

 "entropy": 0.061089

 },

 {

 "name": "DATA",

 "entropy": 7.980693

 },

 {

 "name": "NicolasB",

 "entropy": 0.607433

 },

 {

 "name": ".idata",

 "entropy": 0.607433

 }

]

 }

 }

 }

}

​2.8.​ IPv4 Address Object
Type Name:​ ​ipv4-addr

The IPv4 Address Object represents one or more IPv4 addresses expressed using CIDR
notation.

​2.8.1.​ Properties

Common Properties

type, description, extended_properties

IPv4 Address Object Specific Properties

value, resolves_to_refs, belongs_to_refs

Property Name Type Description

type​ ​(required) string The value of this property ​MUST​ be ​ipv4-addr​.

value​ ​(required) string Specifies one or more IPv4 addresses expressed
using CIDR notation.

If a given IPv4 Address Object represents a single

IPv4 address, the CIDR /32 suffix ​MAY ​be omitted.

Example: 10.2.4.5/24

resolves_to_ref
s​ ​(optional)

list​ of type
object-ref

Specifies a list of references to one or more Layer 2
Media Access Control (MAC) addresses that the IPv4
address resolves to.

The objects referenced in this list ​MUST ​be of type
mac-addr​.

belongs_to_refs
(optional)

list​ of type
object-ref

Specifies a reference to one or more autonomous
systems (AS) that the IPv4 address belongs to.

The objects referenced in this list ​MUST ​be of type ​as​.

​2.8.2.​ Examples
IPv4 Single Address
{

 "0": {

 "type": "ipv4-addr",

 "value": "1.2.3.4"

 }

}

IPv4 CIDR Block
{

 "0": {

 "type": "ipv4-addr",

 "value": "192.168.0.0/16"

 }

}

​2.9.​ IPv6 Address Object
Type Name:​ ​ipv6-addr

The IPv6 Address Object represents one or more IPv6 addresses expressed using CIDR
notation.

​2.9.1.​ Properties

Common Properties

type, description, extended_properties

IPv6 Address Object Specific Properties

value, resolves_to_refs, belongs_to_refs

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be ​ipv6-addr​.

value​ ​(required) string Specifies one or more IPv6 addresses
expressed using CIDR notation.

If a given IPv6 Address Object represents a
single IPv6 address, the CIDR /128 suffix ​MAY
be omitted.

resolves_to_refs
(optional)

list​ of type
object-ref

Specifies a list of references to one or more
Layer 2 Media Access Control (MAC) addresses
that the IPv6 address resolves to.

The objects referenced in this list ​MUST ​be of
type ​mac-addr​.

belongs_to_refs
(optional)

list​ of type
object-ref

Specifies a reference to one or more
autonomous systems (AS) that the IPv6 address
belongs to.

The objects referenced in this list ​MUST ​be of
type ​as​.

​2.9.2.​ Examples
IPv6 Single Address
{

 "0": {

 "type": "ipv6-addr",

 "value": "2001:0db8:85a3:0000:0000:8a2e:0370:7334"

 }

}

IPv6 CIDR block
{

 "0": {

 "type": "ipv6-addr",

 "value": "2001:db8::/96"

 }

}

​2.10.​ MAC Address Object
Type Name:​ ​mac-addr

The MAC Address Object represents a single Media Access Control (MAC) address.

​2.10.1.​ Properties

Common Properties

type, description, extended_properties

MAC Address Object Specific Properties

value

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be ​mac-addr​.

value​ ​(required) string Specifies a single MAC address.

The MAC address value ​MUST​ be represented as a
single colon-delimited, lowercase MAC-48 address,
which ​MUST​ include leading zeros for each octet.

Example: 00:00:ab:cd:ef:01

​2.10.2.​ Examples
Typical MAC address
{

 "0": {

 "type": "mac-addr",

 "value": "d2:fb:49:24:37:18"

 }

}

​2.11.​ Mutex Object
Type Name:​ ​mutex

The Mutex Object represents the properties of a mutual exclusion (mutex) object.

​2.11.1.​ Properties

Common Properties

type, description, extended_properties

File Object Specific Properties

name

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
mutex​.

name​ ​(required) string Specifies the name of the mutex
object.

​

​2.11.2.​ Examples
Malware mutex
{

 "0": {

 "type": "mutex",

 "name": "__CLEANSWEEP__"

 }

}

​2.12.​ Network Traffic
Type Name:​ ​network-traffic

The Network Traffic Object represents arbitrary network traffic that originates from a source and
is addressed to a destination. The network traffic ​MAY​ or ​MAY NOT​ constitute a valid unicast,
multicast, or broadcast network connection. ​This ​MAY​ also include traffic that is not established,
such as a syn flood.

To allow for use cases where a source or destination address may be sensitive and not
amenable for sharing, such as addresses that are internal to an organization’s network, the
source and destination properties (​src_ref​ and ​dst_ref​, respectively) are defined as optional
in the properties table below. However, a Network Traffic Object ​MUST​ contain the ​protocols
property and at least one of the ​src_ref​ OR ​dst_ref​ ​properties​ ​and ​SHOULD​ contain the
src_port​ and ​dst_port​ ​properties.

​2.12.1.​ Properties

Common Properties

type, description, extended_properties

Network Traffic Specific Properties

start, end, is_active, src_ref, dst_ref, src_port, dst_port, protocols,
src_byte_count, dst_byte_count, src_packets, dst_packets, ipfix,
src_payload_ref, dst_payload_ref, encapsulates_refs, encapsulated_by_ref

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
network-traffic​.

extended_properties
(optional)

dictionary The Network Traffic Object defines
the following extensions. In addition
to these, producers ​MAY​ create their
own.

http-ext​, ​tcp-ext​, ​icmp-ext​,
socket-ext

Dictionary keys ​MUST​ identify the
extension type by name.

The corresponding dictionary values
MUST​ contain the contents of the
extension instance.

start​ ​(optional) timestamp Specifies the date/time the network
traffic was initiated, if known.

end​ ​(optional) timestamp Specifies the date/time the network
traffic ended, if known.

If the ​is_active​ property is true,

then the ​end​ property ​MUST​ ​NOT
be included.

is_active​ ​(optional) boolean Indicates whether the network traffic
is still ongoing.

src_ref​ ​(optional) object-ref Specifies the source of the network
traffic, as a reference to one or more
Observable Objects.

The objects referenced in this list
SHOULD ​be of type ​ipv4-addr​,
ipv6-addr​,
mac-addr​ or ​MAY ​be of type
domain-name​ for cases where the IP
address for a domain name is
unknown.

dst_ref​ ​(optional) object-ref Specifies the destination of the
network traffic, as a reference to one
or more Observable Objects.

The objects referenced in this list
SHOULD ​be of type ​ipv4-addr​,
ipv6-addr​,
mac-addr​ or ​MAY ​be of type
domain-name​ for cases where the IP
address for a domain name is
unknown.

src_port​ ​(optional) integer Specifies the source port used in the
network traffic, as an integer in the
range of 0 - 65535.

dst_port​ ​(optional) integer Specifies the destination port used in
the network traffic, as an integer in
the range of 0 - 65535.

protocols​ ​(optional) list​ of type ​string Specifies the protocols observed in
the network traffic, along with their
corresponding state.

Protocols ​MUST​ be listed in low to
high order, from outer to inner in
terms of packet encapsulation. That
is, the protocols in the outer level of
the packet, such as IP, ​MUST​ be
listed first.

The protocol names ​SHOULD​ come
from the service names defined in
the Service Name column of the
IANA Service Name and Port
Number Registry​. In cases where an
there is variance in the name of a
network protocol not included in the
IANA Registry, content producers
should exercise their best judgement,
and it is recommended that
lowercase names be used for
consistency with the IANA registry.

Examples:
ipv4, tcp, http
ipv4, udp
ipv6, tcp, http
ipv6, tcp, ssl, https

src_byte_count
(optional)

integer Specifies the number of bytes sent
from the source to the destination.

dst_byte_count
(optional)

integer Specifies the number of bytes sent
from the destination to the source.

src_packets​ ​(optional) integer Specifies the number of packets sent
from the source to the destination.

dst_packets​ ​(optional) integer Specifies the number of packets sent
destination to the source.

ipfix​ ​(optional) dictionary Specifies any ​IP Flow Information
Export​ (IPFIX) data for the traffic, as
a dictionary. Each key/value pair in
the dictionary represents the
name/value of a single IPFIX
element. Accordingly, each dictionary
key ​SHOULD​ be a case-preserved
version of the IPFIX element name,
e.g., “octetDeltaCount”. Each
dictionary value ​MUST​ be either an
integer or a string.

src_payload_ref
(optional)

object-ref Specifies the bytes sent from the
source to the destination.

The object referenced in this property

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/ipfix/ipfix.xhtml
http://www.iana.org/assignments/ipfix/ipfix.xhtml

MUST ​be of type ​artifact​.

dst_payload_ref
(optional)

object-ref Specifies the bytes sent from the
destination to the source.

The object referenced in this property
MUST ​be of type ​artifact​.

encapsulates_refs
(optional)

list​ of type ​object-ref Links to other ​network-traffic
objects encapsulated by a
network-traffic.

The objects referenced in this
property ​MUST ​be of type
network-traffic​.

encapsulated_by_ref
(optional)

object-ref Links to another ​network-traffic
object which encapsulates this
object.

The object referenced in this property
MUST ​be of type ​network-traffic​.

​2.12.2.​ Examples
Basic TCP Network Traffic
{

 "0": {

 "type": "ipv4-addr",

 "value": "1.2.3.4"

 },

 "1":{

 "type": "ipv4-addr",

 "value": "2.3.4.5"

 },

 "2": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "protocols": [

 "tcp"

]

 }

}

Basic HTTP Network Traffic
{

 "0": {

 "type": "domain-name",

 "value": "example.com"

 },

 "1": {

 "type": "network-traffic",

 "dst_ref": "1",

 "protocols": [

 "ipv4",

 "tcp",

 "http"

]

 }

}

Network Traffic with Netflow Data
{

 "0": {

 "type": "ipv4-addr",

 "value": "192.168.43.9"

 },

 "1": {

 "type": "ipv4-addr",

 "value": "192.168.22.101"

 },

 "2": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "protocols": [

 "ipv4",

 "tcp"

],

 "src_bytes": 147600,

 "src_packets": 100,

 "ipfix": {

 "minimumIpTotalLength": 32,

 "maximumIpTotalLength": 2556

 }

 }

}

Basic Tunneled Network Traffic
{

 "0": {

 "type": "ipv4-addr",

 "value": "172.16.12.34"

 },

 "1": {

 "type": "ipv4-addr",

 "value": "192.168.1.34"

 },

 "2": {

 "type": "ipv4-addr",

 "value": "192.168.1.54"

 },

 "3": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "src_port": 2487,

 "dst_port": 1723,

 "protocols": [

 "ipv4",

 "pptp"

],

 "src_byte_count": 35779,

 "dst_byte_count": 935750,

 "encapsulates_refs": [

 "4"

]

 },

 "4": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "2",

 "src_port": 24678,

 "dst_port": 80,

 "protocols": [

 "ipv4",

 "tcp",

 "http"

],

 "src_packets": 14356,

 "dst_packets": 14356,

 "encapsulated_by_ref": "3"

 }

}

Web traffic tunneled over DNS
{

 "0": {

 "type": "ipv4-addr",

 "value": "172.16.12.34"

 },

 "1": {

 "type": "ipv4-addr",

 "value": "192.168.1.34"

 },

 "2": {

 "type": "ipv4-addr",

 "value": "192.168.1.54"

 },

 "3": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "src_port": 2487,

 "dst_port": 53,

 "protocols": [

 "ipv4",

 "udp",

 "dns"

],

 "src_byte_count": 35779,

 "dst_byte_count": 935750,

 "encapsulates_refs": [

 "4"

]

 },

 "4":{

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "2",

 "src_port": 24678,

 "dst_port": 443,

 "protocols": [

 "ipv4",

 "tcp",

 "ssl",

 "http"

],

 "src_packets": 14356,

 "dst_packets": 14356,

 "encapsulated_by_ref": "3"

 }

}

​2.12.3.​ HTTP Extension
Type Name:​ ​http-ext

The HTTP extension specifies a default extension for capturing network traffic properties
specific to HTTP. The key for this extension when used in the ​extended_properties
dictionary MUST be ​http-ext​ .

​2.12.3.1.​ Properties

Property Name Type Description

request_method​ ​(required) string Specifies the HTTP
method portion of the
HTTP request line, as a
lowercase string.

request_value​ ​(required) string Specifies the value
(typically a resource
path) portion of the HTTP
request line.

request_version​ ​(optional) string Specifies the HTTP
version portion of the
HTTP request line, as a
lowercase string.

request_header​ ​(optional) dictionary Specifies all of the HTTP
header fields that may be
found in the HTTP client
request, as a dictionary.

Each key in the
dictionary ​MUST ​be the
name of the header field
and ​SHOULD​ preserve
case, e.g., “User-Agent”.
The corresponding value
for each dictionary key
MUST​ be a ​string​.

message_body_length​ ​(optional) integer Specifies the length of
the HTTP message
body, if included, in
bytes.

message_body_data_ref
(optional)

object-ref Specifies the data
contained in the HTTP
message body, if
included.

The object referenced in
this property ​MUST ​be of
type ​artifact​.

​2.12.3.2.​ Example
{

 "0": {

 "type": "ipv4-addr",

 "value": "192.0.2.53"

 },

 "1": {

 "type": "network-traffic",

 "dst_ref": "0",

 "protocols": [

 "tcp",

 "http"

],

 "extended_properties": {

 "http-ext": {

 "request_method": "get",

 "request_value": "/download.html",

 "request_version": "http/1.1",

 "request_header": {

 "Accept-Encoding": "gzip,deflate",

 "User-Agent": "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.6)

Gecko/20040113",

 "Host": "www.example.com"

 }

 }

 }

 }

}

​2.12.4.​ ICMP Extension
Type Name:​ ​icmp-ext

The ICMP extension specifies a default extension for capturing network traffic properties
specific to ICMP. The key for this extension when used in the ​extended_properties​ dictionary
MUST be ​icmp-ext​ .

​2.12.4.1.​ Properties

Property Name Type Description

icmp_type_hex
(required)

hex Specifies the ICMP type byte.

icmp_code_hex
(required)

hex Specifies the ICMP code byte.

​

​2.12.4.2.​ Example
{

 "0": {

 "type": "ipv4-addr",

 "value": "192.168.43.9"

 },

 "1": {

 "type": "ipv4-addr",

 "value": "8.8.8.8"

 },

 "2": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "protocols": [

 "icmp"

],

 "extended_properties": {

 "icmp-ext": {

 "icmp_type_hex": "08",

 "icmp_code_hex": "00"

 }

 }

 }

}

​2.12.5.​ Network Socket Extension
Type Name:​ ​socket-ext

The Network Socket extension specifies a default extension for capturing network traffic
properties associated with network sockets. The key for this extension when used in the
extended_properties​ dictionary ​MUST​ be ​socket-ext​ .

​2.12.5.1.​ Properties

Property Name Type Description

address_family
(required)

socket-address-family
-enum

Specifies the address family
(AF_*) that the socket is
configured for.

is_blocking​ ​(optional) boolean Specifies whether the socket is
in blocking mode.

is_listening​ ​(optional) boolean Specifies whether the socket is
in listening mode.

protocol_family
(optional)

socket-protocol-famil
y-enum

Specifies the protocol family
(PF_*) that the socket is
configured for.

options​ ​(optional) dictionary Specifies any options (SO_*)
that may be used by the
socket, as a dictionary. Each
key in the dictionary ​SHOULD
be a case-preserved version of
the option name, e.g.,
“SO_ACCEPTCONN”. Each
key value in the dictionary
MUST​ be the value for the
corresponding options key.

socket_type​ ​(optional) network-socket-type-e
num

Specifies the type of the
socket.

socket_descriptor
(optional)

integer Specifies ​the socket file
descriptor value associated
with the socket, as a
non-negative integer.

socket_handle​ ​(optional) integer Specifies the handle or inode
value associated with the
socket.

​2.12.5.2.​ Network Socket Address Family Enumeration
Type Name:​ ​network-socket-address-family-enum

An enumeration of network socket address family types.

Vocabulary Value Description

AF_UNSPEC Specifies an unspecified address family.

AF_INET Specifies the IPv4 address family.

AF_IPX Specifies the IPX (Novell Internet Protocol) address family.

AF_APPLETALK Specifies the APPLETALK DDP address family.

AF_NETBIOS Specifies the NETBIOS address family.

AF_INET6 Specifies the IPv6 address family.

AF_IRDA Specifies IRDA sockets.

AF_BTH Specifies BTH sockets.

​

​2.12.5.3.​ Network Socket Protocol Family Enumeration
Type Name:​ ​network-socket-protocol-family-enum

An enumeration of network socket protocol family types.

Vocabulary Value Description

PF_INET Specifies the IP protocol family.

PF_AX25 Specifies the amateur radio AX.25 family.

PF_IPX Specifies the Novell Internet Protocol family.

PF_INET6 Specifies the IP version 6 family.

PF_APPLETALK Specifies the Appletalk DDP protocol family.

PF_NETROM Specifies the Amateur radio NetROM protocol family.

PF_BRIDGE Specifies the Multiprotocol bridge protocol family.

PF_ATMPVC Specifies the ATM PVCs protocol family.

PF_X25 Specifies the protocol family reserved for the X.25 project.

PF_ROSE Specifies the PF_KEY key management API family.

PF_DECNET Specifies the protocol family reserved for the DECnet project.

PF_NETBEUI Specifies the protocol family reserved for the 802.2LLC project.

PF_SECURITY Specifies the Security callback pseudo AF protocol family.

PF_KEY Specifies the PF_KEY key management API protocol family.

PF_NETLINK Specifies the netlink routing API family.

PF_ROUTE Specifies the PF_ROUTE routing API family.

PF_PACKET Specifies the packet family.

PF_ASH Specifies the Ash family.

PF_ECONET Specifies the Acorn Econet family.

PF_ATMSVC Specifies the ATM SVCs protocol family.

PF_SNA Specifies the Linux SNA Project protocol family.

PF_IRDA Specifies IRDA sockets.

PF_PPPOX Specifies PPPoX sockets.

PF_WANPIPE Specifies Wanpipe API sockets.

PF_BLUETOOTH Specifies Bluetooth sockets.

​2.12.5.4.​ Network Socket Type Enumeration
Type Name:​ ​network-socket-type-enum

An enumeration of network socket types.

Vocabulary Value Description

SOCK_STREAM Specifies a pipe-like socket which operates over a connection with a
particular remote socket, and transmits data reliably as a stream of
bytes.

SOCK_DGRAM Specifies a socket in which individually-addressed packets are sent
(datagram).

SOCK_RAW Specifies raw sockets which allow new IP protocols to be
implemented in user space. A raw socket receives or sends the raw
datagram not including link level headers.

SOCK_RDM Specifies a socket indicating a reliably-delivered message.

SOCK_SEQPACKET Specifies a datagram congestion control Protocol socket.

​2.12.5.5.​ Example
Basic Stream Socket
{

 "0": {

 "type": "ipv4-addr",

 "value": "192.168.1.2"

 },

 "1": {

 "type": "network-traffic",

 "src_ref": "0",

 "src_port": 223,

 "protocols": [

 "ip",

 "tcp"

],

 "extended_properties": {

 "socket": {

 "is_listening": "true",

 "address_family": "AF_INET",

 "protocol_family": "PF_INET",

 "socket_type": "SOCK_STREAM"

 }

 }

 }

}

​2.12.6.​ TCP Extension
Type Name:​ ​tcp-ext

The TCP extension specifies a default extension for capturing network traffic properties specific
to TCP. The key for this extension when used in the ​extended_properties​ dictionary ​MUST
be ​tcp-ext​ .

​2.12.6.1.​ Properties

Property Name Type Description

src_flags_hex​ ​(optional) hex Specifies the source TCP flags,
as the union of all TCP flags
observed between the start of
the traffic (as defined by the
start​ property) and the end of
the traffic (as defined by the
end​ property).

If the start and end times of the
traffic are not specified, it is
assumed that this represents
the union of all TCP flags
observed over the entirety of
the network traffic being
reported upon.

dst_flags_hex​ ​(optional) hex Specifies the destination TCP
flags, as the union of all TCP

flags observed between the
start of the traffic (as defined
by the ​start​ property) and the
end of the traffic (as defined by
the ​end​ property).

If the start and end times of the
traffic are not specified, it is
assumed that this represents
the union of all TCP flags
observed over the entirety of
the network traffic being
reported upon.

​2.12.6.2.​ Example
{

 "0": {

 "type": "ipv4-addr",

 "value": "1.2.3.4"

 },

 "1": {

 "type": "ipv4-addr",

 "value": "2.3.4.5"

 },

 "2": {

 "type": "network-traffic",

 "src_ref": "0",

 "dst_ref": "1",

 "src_port": 3372,

 "dst_port": 80,

 "protocols": [

 "tcp"

],

 "extended_properties": {

 "tcp-ext": {

 "src_flags_hex": "00000002"

 }

 }

 }

}

​2.13.​ Process Object
Type Name:​ ​process

The Process Object represents common properties of an instance of a computer program as
executed on an operating system.

​2.13.1.​ Properties

Common Properties

type, description, extended_properties

Process Object Specific Properties

is_hidden, pid, name, created, cwd, arguments, environment_variables,
opened_connection_refs, creator_user_ref, binary_ref, parent_ref,
child_refs

Property Name Type Description

type​ (required) string The value of this property
MUST​ be ​process​.

extended_properties
(optional)

dictionary The Process Object defines
the following extensions. In
addition to these, producers
MAY​ create their own.

windows-process-ext​,
windows-service-ext

Dictionary keys ​MUST​ identify
the extension type by name.

The corresponding dictionary
values ​MUST​ contain the
contents of the extension
instance.

is_hidden​ ​(optional) boolean Specifies whether the process
is hidden.

pid​ ​(optional) integer Specifies the Process ID, or
PID, of the process.

name​ ​(optional) string Specifies the name of the
process.

created​ ​(optional) timestamp Specifies the date/time at
which the process was
created.

cwd​ ​(optional) string Specifies the current working
directory of the process.

arguments​ ​(optional) list​ of type ​string Specifies the list of arguments
used in executing the
process. Each argument
should be captured separately
as a string.

environment_variables
(optional)

dictionary Specifies the list of
environment variables
associated with the process
as a dictionary. Each key in
the dictionary ​MUST​ be a
case preserved version of the
name of the environment
variable, and each
corresponding value ​MUST
be the environment variable
value as a string.

opened_connection_refs
(optional)

list​ of type ​object-ref Specifies the list of network
connections opened by the
process, as a reference to
one or more Network
Connection Objects.

The objects referenced in this
list ​MUST​ be of type
network-connection​.

creator_user_ref
(optional)

object-ref Specifies the user that
created the process, as a
reference to a User Account
Object.

The object referenced in this
property ​MUST​ be of type
user-account​.

binary_ref​ ​(optional) object-ref Specifies the executable
binary that was executed as
the process, as a reference to
a File Object.

The object referenced in this
property ​MUST ​be of type
file​.

parent_ref​ ​(optional) object-ref Specifies the other process
that spawned (i.e. is the
parent of) this one, as
represented by a Process
Object.

The object referenced in this
property ​MUST ​be of type
process​.

child_refs​ ​(optional) list​ of type ​object-ref Specifies the other processes
that were spawned by (i.e.
children of) this process, as a
reference to one or more
other Process Objects.

The objects referenced in this
list ​MUST ​be of type
process​.

​2.13.2.​ Examples
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "B4D33B0C7306351B9ED96578465C5579"

 },

 "1": {

 "type": "process",

 "pid": 1221,

 "name": "gedit-bin",

 "created": "2016-01-20T14:11:25.55Z",

 "arguments" :[

 "--new-window"

],

 "binary_ref": "0"

 }

 }

}

​2.13.3.​ Windows Process Extension
Type Name:​ ​windows-process-ext

The Windows Process extension specifies a default extension for capturing properties specific
to Windows processes. The key for this extension when used in the ​extended_properties
dictionary MUST be ​windows-process-ext​ .

​2.13.3.1.​ Properties

Property Name Type Description

aslr_enabled​ ​(optional) boolean Specifies whether Address Space
Layout Randomization (ASLR) is
enabled for the process.

dep_enabled​ ​(optional) boolean Specifies whether Data Execution
Prevention (DEP) is enabled for the
process.

priority​ ​(optional) string Specifies the current priority class of
the process in Windows. This value
SHOULD​ be a string that ends in
“_CLASS”.

owner_sid​ ​(optional) string Specifies the Security ID (SID) value
of the owner of the process.

window_title​ ​(optional) string Specifies the title of the main window
of the process.

startup_info​ ​(optional) dictionary Specifies the STARTUP_INFO struct
used by the process, as a dictionary.

Each name/value pair in the struct
MUST​ be represented as a key/value
pair in the dictionary. For example.,
given a name of ‘lpDesktop’ the
corresponding key would be
‘lpDesktop’.

​2.13.3.2.​ Example
{

 "0": {

 "type": "process",

 "pid": 314,

 "name": "foobar.exe",

 "extended_properties": {

 "windows-process-ext": {

 "aslr_enabled": true,

 "dep_enabled": true,

 "priority": "HIGH_PRIORITY_CLASS",

 "owner_sid": "S-1-5-21-186985262-1144665072-74031268-1309"

 }

 }

 }

}

​2.13.4.​ Windows Service Extension
Type Name:​ ​windows-service-ext

The Windows Service extension specifies a default extension for capturing properties specific to
Windows services. The key for this extension when used in the ​extended_properties
dictionary ​MUST​ be ​windows-service-ext​ .

​2.13.4.1.​ Properties

Property Name Type Description

service_name​ ​(required) string Specifies the name of the
service.

descriptions​ ​(optional) list​ of type ​string Specifies the descriptions defined
for the service.

display_name​ ​(optional) string Specifies the displayed name of
the service in Windows GUI
controls.

group_name​ ​(optional) string Specifies the name of the load
ordering group of which the
service is a member.

start_command_line
(optional)

string Specifies the full command line
used to start the service.

start_type​ ​(optional) windows-service-sta

rt-enum

Specifies the start options
defined for the service.

service_dll_refs
(optional)

list​ of type
object-ref

Specifies the DLLs loaded by the
service, as a reference to one or
more File Objects.

The objects referenced in this
property ​MUST ​be of type ​file​.

service_type​ ​(optional) windows-service-enu

m

Specifies the type of the service.

service_status​ ​(optional) windows-service-sta

tus-enum

Specifies the current status of the
service.

​2.13.4.2.​ Windows Service Start Type Enumeration
Type Name:​ ​windows-service-start-enumeration

An enumeration of Windows service start types.

Vocabulary Value Description

SERVICE_AUTO_START A service started automatically by the service control
manager during system startup.

SERVICE_BOOT_START A device driver started by the system loader. This value is
valid only for driver services.

SERVICE_DEMAND_START A service started by the service control manager when a
process calls the StartService function.

SERVICE_DISABLED A service that cannot be started. Attempts to start the
service result in the error code
ERROR_SERVICE_DISABLED.

SERVICE_SYSTEM_ALERT A device driver started by the IoInitSystem function. This
value is valid only for driver services.

​2.13.4.3.​ Windows Service Type Enumeration
Type Name: ​windows-service-enum

An enumeration of Windows service start types.

Vocabulary Value Description

SERVICE_KERNEL_DRIVER The service is a device driver.

SERVICE_FILE_SYSTEM_DRIVER The service is a file system driver.

SERVICE_WIN32_OWN_PROCESS The service runs in its own process.

SERVICE_WIN32_SHARE_PROCESS The service shares a process with other services.

​2.13.4.4.​ Window Service Status Enumeration
Type Name:​ ​windows-service-status-enum

An enumeration of Windows service statuses.

Value Description

SERVICE_CONTINUE_PENDING The service continue is pending.

SERVICE_PAUSE_PENDING The service pause is pending.

SERVICE_PAUSED The service is paused.

SERVICE_RUNNING The service is running.

SERVICE_START_PENDING The service is starting.

SERVICE_STOP_PENDING The service is stopping.

SERVICE_STOPPED The service is not running.

​2.13.4.5.​ Example
{

 "0": {

 "type": "file",

 "hashes": {

 "MD5": "B4D33B0C7306351B9ED96578465C5579"

 },

 "name": "sirvizio.exe"

 },

 "1":{

 "type": "process",

 "pid": 2217,

 "name": "sirvizio",

 "binary_ref": "0",

 "extended_properties": {

 "windows-service-ext": {

 "display_name": "Sirvizio",

 "start_command_line": "C:\\Windows\\System32\\sirvizio.exe /s",

 "start_type": "SERVICE_AUTO_START",

 "service_type": "SERVICE_WIN32_OWN_PROCESS",

 "service_status": "SERVICE_RUNNING"

 }

 }

 }

}

​2.14.​ Software Object
Type Name:​ ​software

The Software Object represents high-level properties associated with software, including
software products.

​2.14.1.​ Properties

Common Properties

type, description, extended_properties

Software Object Specific Properties

name, language, vendor, version, swid

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
software​.

name​ ​(required) string Specifies the name of the software.

cpe ​(optional) string Specifies the ​Common Platform
Enumeration (CPE)​ entry for the software,
if available. The value for this property
MUST​ be a CPE v2.3 entry from the
official ​NVD CPE Dictionary​.

While the CPE dictionary does not contain
entries for ​all​ software, whenever it ​does
contain an identifier for a given instance of
software, this property ​SHOULD​ be
present.

language​ ​(optional) string Specifies the language of the software.
The value of this property ​MUST ​be an
ISO 639-2 language code.

vendor​ ​(optional) string Specifies the name of the vendor of the
software.

version​ ​(optional) string Specifies the version of the software.

​

​2.14.2.​ Examples
Typical Software Instance
{

 "0": {

 "type": "software",

 "name": "word",

 "cpe": "cpe:2.3:a:microsoft:word:2000:*:*:*:*:*:*:*",

 "version": "2002",

 "vendor": "microsoft"

 }

}

​2.15.​ URL Object
Type Name:​ ​url

The URL Object represents the properties of a uniform resource locator (URL).

https://nvd.nist.gov/cpe.cfm
https://nvd.nist.gov/cpe.cfm
https://nvd.nist.gov/cpe.cfm

​2.15.1.​ Properties

Common Properties

type, description, extended_properties

URL Object Specific Properties

value

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
url​.

value​ ​(required) string Specifies the value of the URL.

​2.15.2.​ Examples
Basic URL
{

 "0": {

 "type": "url",

 "value": "https://wayneindustries.com/research/index.html"

 }

}

​2.16.​ User Account Object
Type Name:​ ​user-account

The User Account Object represents an instance of any type of user account, including but not
limited to operating system, device, messaging service, and social media platform accounts.

​2.16.1.​ Properties

Common Properties

type, description, extended_properties

User Account Object Specific Properties

user_id, account_login, account_type, display_name, is_service_account,
is_privileged, can_escalate_privs, is_disabled, account_created,

account_expires, password_last_changed, account_first_login,
account_last_login

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be
user-account​.

extended_properties
(optional)

dictionary The User Account Object defines the
following extensions. In addition to these,
producers ​MAY​ create their own.

unix-account-ext

Dictionary keys ​MUST​ identify the extension
type by name.

The corresponding dictionary values ​MUST
contain the contents of the extension
instance.

user_id​ ​(required) string Specifies the identifier of the account. The
format of the identifier depends on the system
the user account is maintained in, and may
be a numeric ID, a GUID, an account name,
an email address, etc. The ​user_id​ property
should be populated with whatever field is the
unique identifier for the system the account is
a member of. For example, on UNIX systems
it would be populated with the UID.

account_login​ (optional) string Specifies the account login string, used in
cases where the ​user_id​ property specifies
something other than what a user would type
when they login.

For example, in the case of a Unix account
with user_id 0, the account_login might be
“root”.

account_type​ ​(optional) open-vocab Specifies the type of the account.

This is an open vocabulary and values
SHOULD​ come from the ​account-type-ov
vocabulary.

display_name​ ​(optional) string Specifies the display name of the account, to
be shown in user interfaces, if applicable.

On Unix, this is equivalent to the GECOS
field.

is_service_account
(optional)

boolean Indicates that the account is associated with a
network service or system process (daemon),
not a specific individual.

is_privileged​ (optional) boolean Specifies that the account has elevated
privileges (i.e., in the case of root on Unix or
the Windows Administrator account).

can_escalate_privs
(optional)

boolean Specifies that the account has the ability to
escalate privileges (i.e., in the case of sudo
on Unix or a Windows Domain Admin
account)

is_disabled​ (optional) boolean Specifies if the account is disabled.

account_created
(optional)

timestamp Specifies when the account was created.

account_expires
(optional)

timestamp Specifies the expiration date of the account.

password_last_changed
(optional)

timestamp Specifies when the account password was
last changed.

account_first_login
(optional)

timestamp Specifies when the account was first
accessed.

account_last_login
(optional)

timestamp Specifies when the account was last
accessed.

​2.16.2.​ Account Type Vocabulary
Type Name:​ ​account-type-ov

An open vocabulary of User Account types.

Vocabulary Value Description

unix Specifies a POSIX account.

windows local Specifies a Windows local account.

windows domain Specifies a Windows domain account.

ldap Specifies an LDAP account.

tacacs Specifies a TACACS account.

radius Specifies a RADIUS account.

nis Specifies a NIS account

openid Specifies an OpenID account.

facebook Specifies a Facebook account.

skype Specifies a Skype account.

twitter Specifies a Twitter account.

kavi Specifies an OASIS Kavi account.

​2.16.3.​ Examples
Basic Unix Account
{

 "0": {

 "type": "user-account",

 "user_id": "1001",

 "account_login": "bwayne",

 "account_type": "unix",

 "display_name": "Bruce Wayne",

 "is_service_account": false,

 "is_privileged": false,

 "can_escalate_privs": true,

 "account_created": "2016-01-20T12:31:12Z",

 "password_last_changed": "2016-01-20T14:27:43Z",

 "account_first_login": "2016-01-20T14:26:07Z",

 "account_last_login": "2016-07-22T16:08:28Z"

 }

 }

}

Basic Twitter Account
{

 "0": {

 "type": "user-account",

 "user_id": "thegrugq_ebooks",

 "account_login": "thegrugq_ebooks",

 "account_type": "twitter",

 "display_name": "the grugq"

 }

 }

}

​2.16.4.​ UNIX Account Extension
Type Name:​ ​unix-account-ext

The UNIX account extension specifies a default extension for capturing the additional
information for an account on a UNIX system. The key for this extension when used in the
extended_properties​ dictionary MUST be ​unix​ .

​2.16.4.1.​ Properties

Property Name Type Description

gid​ ​(optional)

number

Specifies the primary group ID of the account.

groups​ ​(optional) list​ of type ​string Specifies a list of names of groups that the
account is a member of.

home_dir
(optional)

string Specifies the home directory of the account.

shell​ ​(optional) string Specifies the account’s command shell.

​2.16.4.2.​ Example
{

 "0": {

 "type": "user-account",

 "user_id": "1001",

 "user_login": "bwayne",

 "account_type": "unix",

 "display_name": "Bruce Wayne",

 "is_service_account": false,

 "is_privileged": false,

 "can_escalate_privs": true,

 "extended_properties": {

 "unix-account-ext": {

 "gid": 1001,

 "groups": ["wheel"],

 "home_dir": "/home/bwayne",

 "shell": "/bin/bash"

 }

 }

 }

}

​2.17.​ Windows Registry Key Object
Type Name:​ ​windows-registry-key

The Registry Key Object represents the properties of a Windows registry key.

​2.17.1.​ Properties

Common Properties

type, description, extended_properties

File Object Specific Properties

key, values, modified, creator_ref, number_of_subkeys

Property Name Type Description

type​ (required) string The value of this property ​MUST
be ​windows-registry-key​.

key ​(required) string Specifies the full registry key
including the hive.

The value of the key, including the
hive portion, ​SHOULD​ be
case-preserved. The hive portion
of the key ​MUST​ be fully
expanded and not truncated; e.g.,
HKEY_LOCAL_MACHINE must
be used instead of HKLM.

values ​(optional) list​ of type
windows-registry-value-
type

Specifies the values found under
the registry key.

modified ​(optional) timestamp Specifies the last date/time that
the registry key was modified.

creator_user_ref
(optional)

object-ref Specifies a reference to a user
account, represented as a User
Account Object, that created the
registry key.

The object referenced in this
property ​MUST ​be of type
user-account​.

number_of_subkeys
(optional)

integer Specifies the number of subkeys
contained under the registry key.

​2.17.2.​ Windows Registry Value Type
Type Name:​ ​windows-registry-value-type

​2.17.2.1.​ Properties

Property Name Type Description

name​ ​(required) string Specifies the name of the registry value.
For specifying the default value in a
registry key, an empty string ​MUST​ be
used.

data​ ​(optional) string Specifies the data contained in the
registry value.

data_type​ ​(optional) windows-registry-d

atatype-enum

Specifies the registry (REG_*) data type
used in the registry value.

​2.17.3.​ Registry Datatype Enumeration
Type Name:​ ​windows-registry-datatype-enum

An enumeration of Windows registry data types.

Vocabulary Value Description

REG_NONE No defined value type.

REG_SZ A null-terminated string. This will be either a Unicode or
an ANSI string, depending on whether you use the
Unicode or ANSI functions.

REG_EXPAND_SZ A null-terminated string that contains unexpanded
references to environment variables (for example,
"%PATH%"). It will be a Unicode or ANSI string
depending on whether you use the Unicode or ANSI
functions.

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

REG_DWORD_BIG_ENDIAN A 32-bit number in big-endian format.

REG_LINK A null-terminated Unicode string that contains the target
path of a symbolic link.

REG_MULTI_SZ A sequence of null-terminated strings, terminated by an
empty string (\0).

REG_RESOURCE_LIST A series of nested lists designed to store a resource list
used by a hardware device driver or one of the physical
devices it controls. This data is detected and written into
the ResourceMap tree by the system and is displayed in
Registry Editor in hexadecimal format as a Binary Value.

REG_FULL_RESOURCE_DESCRIP
TION

A series of nested lists designed to store a resource list
used by a physical hardware device. This data is detected
and written into the HardwareDescription tree by the
system and is displayed in Registry Editor in hexadecimal
format as a Binary Value.

REG_RESOURCE_REQUIREMENTS
_LIST

Device driver list of hardware resource requirements in
Resource Map tree.

REG_QWORD A 64-bit number.

REG_INVALID_TYPE Specifies an invalid key.

​

​2.17.4.​ Examples
Simple registry key
{

 "0": {

 "type": "windows-registry-key",

 "key": "HKEY_LOCAL_MACHINE\\System\\Foo\\Bar"

 }

}

Registry key with values
{

 "0": {

 "type": "windows-registry-key",

 "key": "hkey_local_machine\\system\\bar\\foo",

 "values": [

 {

 "name": "Foo",

 "value": "qwerty",

 "data_type": "REG_SZ"

 },

 {

 "name": "Bar",

 "value": "42",

 "data_type": "REG_DWORD"

 }

]

 }

}

​2.18.​ X509 Certificate Object
Type Name:​ ​x509-certificate

The X509 Certificate Object represents the properties of an X.509 certificate, as defined by ​ITU
recommendation X.509​.

​2.18.1.​ Properties

Common Properties

type, description, extended_properties

File Object Specific Properties

is_self_signed, hashes, version, serial_number, signature_algorithm, issuer,
validity_not_before, validity_not_after, subject, subject_public_key_modulus,
subject_public_key_exponent, x509_v3_extensions

Property Name Type Description

type​ (required) string The value of this property ​MUST​ be

https://www.itu.int/rec/T-REC-X.509/
https://www.itu.int/rec/T-REC-X.509/

x509-certificate​.

is_self_signed​ ​(optional) boolean Specifies whether the certificate is
self-signed, i.e., whether it​ is signed by the
same entity whose identity it certifies.

hashes​ ​(optional) hashes-type Specifies any hashes that were calculated
for the entire contents of the certificate.

version​ ​(optional) string Specifies the version of the encoded
certificate.

serial_number​ ​(optional) string Specifies the unique identifier for the
certificate, as issued by a specific Certificate
Authority.

signature_algorithm
(optional)

string Specifies the name of the algorithm used to
sign the certificate.

issuer​ ​(optional) string Specifies the name of the Certificate
Authority that issued the certificate.

validity_not_before
(optional)

timestamp Specifies the date on which the certificate
validity period begins.

validity_not_after​ ​(optional) timestamp Specifies the date on which the certificate
validity period ends.

subject​ ​(optional) string Specifies the name of the entity associated
with the public key stored in the subject
public key field of the certificate.

subject_public_key_algori
thm​ ​(optional)

string Specifies the name of the algorithm with
which to encrypt data being sent to the
subject.

subject_public_key_modulu
s​ ​(optional)

string Specifies the modulus portion of the
subject’s public RSA key.

subject_public_key_expone
nt​ ​(optional)

integer Specifies the exponent portion of the
subject’s public RSA key, as an integer.

x509_v3_extensions​ ​(optional) x509-v3-exte
nsions-type

Specifies any standard X.509 v3 extensions
that may be used in the certificate.

​2.18.2.​ X509 v3 Extensions Type
Type Name:​ ​x509-v3-extensions-type

​2.18.2.1.​ Properties

Property Name Type Description

basic_constraints​ ​(optional) string Specifies ​a multi-valued extension
which indicates whether a certificate
is a CA certificate. The first
(mandatory) name is CA followed by
TRUE or FALSE. If CA is TRUE then
an optional pathlen name followed by
an non-negative value can be
included. Also equivalent to the
object ID (OID) value of 2.5.29.19.

name_constraints​ ​(optional) string Specifies a namespace within which
all subject names in subsequent
certificates in a certification path
MUST be located. Also equivalent to
the object ID (OID) value of
2.5.29.30.

policy_constraints
(optional)

string Specifies ​any constraints on path
validation for certificates issued to
CAs. Also equivalent to the object ID
(OID) value of 2.5.29.36.

key_usage​ ​(optional) string Specifies a multi-valued extension
consisting of a list of names of the
permitted key usages. Also
equivalent to the object ID (OID)
value of 2.5.29.15.

extended_key_usage
(optional)

string Specifies a list of usages indicating
purposes for which the certificate
public key can be used for. Also
equivalent to the object ID (OID)
value of 2.5.29.37.

subject_key_identifier
(optional)

string Specifies the identifier that provides a
means of identifying certificates that
contain a particular public key. Also
equivalent to the object ID (OID)
value of 2.5.29.14.

authority_key_identifier
(optional)

string Specifies the identifier that provides a
means of identifying the public key
corresponding to the private key
used to sign a certificate. Also
equivalent to the object ID (OID)
value of 2.5.29.35.

subject_alternative_name
(optional)

string Specifies the additional identities to
be bound to the subject of the
certificate. Also equivalent to the
object ID (OID) value of 2.5.29.17.

issuer_alternative_name
(optional)

string Specifies the additional identities to
be bound to the issuer of the
certificate. Also equivalent to the
object ID (OID) value of 2.5.29.18.

subject_directory_attribu
tes​ ​(optional)

string Specifies the identification attributes
(e.g., nationality) of the subject. Also
equivalent to the object ID (OID)
value of 2.5.29.9.

crl_distribution_points
(optional)

string Specifies how CRL information is
obtained. Also equivalent to the
object ID (OID) value of 2.5.29.31.

inhibit_any_policy
(optional)

string Specifies the number of additional
certificates that may appear in the
path before anyPolicy is no longer
permitted. Also equivalent to the
object ID (OID) value of 2.5.29.54.

private_key_usage_period_
not_before​ ​(optional)

timestamp Specifies the date on which the
validity period begins for the private
key, if it is different from the validity
period of the certificate.

private_key_usage_period_
not_after​ ​(optional)

timestamp Specifies the date on which the
validity period ends for the private
key, if it is different from the validity
period of the certificate.

certificate_policies
(optional)

string Specifies a sequence of one or more
policy information terms, each of
which consists of an object identifier
(OID) and optional qualifiers. Also
equivalent to the object ID (OID)
value of 2.5.29.32.

policy_mappings​ ​(optional) string Specifies one or more pairs of OIDs;
each pair includes an
issuerDomainPolicy and a
subjectDomainPolicy. The pairing
indicates whether the issuing CA
considers its issuerDomainPolicy
equivalent to the subject CA's
subjectDomainPolicy. Also equivalent
to the object ID (OID) value of
2.5.29.33.

​2.18.3.​ Examples
Basic X.509 certificate

{

 "0": {

 "type": "x509-certificate",

 "issuer": "C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, OU=Certification

Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com",

 "subject": "C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,

CN=www.freesoft.org/emailAddress=baccala@freesoft.org",

 "validity_not_before": "2016-03-12T12:00:00Z",

 "validity_not_after": "2016-08-21T12:00:00Z"

 }

}

​3.​ Conformance

​3.1.​ Defined Object Producers

A "Defined Object Producer" that creates an Object from Section 2 (Defined Object Data
Models) is a “Producer” of that Object. Defined Object Producers ​MUST​ conform to all
normative requirements in the section for that Object along with all of the general requirements
pertaining to Objects as defined in ​Part 3a Section 3​ (Cyber Observable Objects).

For example, a "Defined Object Producer" that can produce File Object is a "File Object
Producer". That producer has to conform to all normative requirements in Cyber Observable
Objects Section 2.1, File Object.

​3.2.​ Defined Object Consumers

A "Defined Object Consumer" that receives an Object from Section 2 (Defined Object Data
Models) is a "Consumer" of that Object. Defined Object Consumers ​MUST​ conform to all
normative requirements in the section for that Object along with all of the general requirements
pertaining to Objects as defined in ​Part 3a Section 3​ (Cyber Observable Objects).

For example, an "Object Consumer" that can receive Network Traffic Objects is a "Network
Traffic Object Consumer". That consumer has to conform to all normative requirements in
Cyber Observable Objects Section 2.20, Network Traffic Object.

​4.​ Appendix A. Acknowledgments
CybOX Subcommittee Chairs​:
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation

Contributors
The following individuals made substantial contributions in the form of normative text and
proofing of this specification, their contributions are gratefully acknowledged:

● Bret Jordan, Blue Coat Systems, Inc.
● Terry MacDonald, Cosive
● Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
● Trey Darley, Kingfisher Operations, sprl
● Jason Keirstead, IBM
● Allan Thomson, LookingGlass Cyber
● John-Mark Gurney, New Context Services, Inc.
● Christian Hunt, New Context Services, Inc.
● Greg Back, MITRE Corporation
● Sean Barnum, MITRE Corporation
● Ivan Kirillov, MITRE Corporation
● John Wunder, MITRE Corporation
● Dave Cridland, Surevine

​5.​ Appendix B. Revision History

