

STIX™ 2.0 Specification
Part 4: STIX Patterning - Version 2.0-rc3

​

​Technical Committee
OASIS Cyber Threat Intelligence (CTI) TC

​Chair
Richard Struse (Richard.Struse@hq.dhs.gov), DHS Office of Cybersecurity and
Communications (CS&C)

Editors
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl

Additional Artifacts
This prose specification is one component of a Work Product, which consists of:

● STIX Version 2.0 Part 1: STIX Core Concepts
● STIX Version 2.0 Part 2: STIX Objects
● STIX Version 2.0 Part 3a: Cyber Observable Core Concepts
● STIX Version 2.0 Part 3b: Cyber Observable Objects
● STIX Version 2.0 Part 4: STIX Patterning (this document)

Table of Contents

​1.​ Introduction

​2.​ Definitions
​2.1.​ Constants

​3.​ Cyber Observable Patterns

​4.​ Pattern Expressions
​4.1.​ Observation Expressions

mailto:ikirillov@mitre.org
mailto:trey@kingfisherops.com

​4.1.1.​ Observation Expression Qualifiers
​4.1.2.​ Observation Operators
​4.1.3.​ Operator Precedence

​4.2.​ Comparison Expression
​4.2.1.​ Comparison Operators
​4.2.2.​ String Comparison
​4.2.3.​ Binary Type Comparison
​4.2.4.​ Native Format Comparison

​5.​ Object Path Syntax
​5.1.​ Basic Object Properties
​5.2.​ List Object Properties
​5.3.​ Dictionary Object Properties
​5.4.​ Object Reference Properties

​6.​ Examples
​6.1.​ Matching a File Object with a SHA-256 hash
​6.2.​ Matching an Email Message with a particular From Email Address and
Attachment File Name Using a Regular Expression
​6.3.​ Matching a File Object with a SHA-256 hash and a PDF MIME type
​6.4.​ Matching a File Object with SHA-256 or a MD5 hash (e.g., for the case of two
different end point tools generating either an MD5 or a SHA-256), and a different File
Object that has a different SHA-256 hash, against two different Observations
​6.5.​ Matching a File Object with a MD5 hash, followed by (temporally) a Registry Key
Object that matches a value, within 5 minutes
​6.6.​ Matching three different, but specific Unix User Accounts
​6.7.​ Matching an Artifact Object PCAP payload header
​6.8.​ Matching a File Object with a Windows file path
​6.9.​ Matching on a Windows PE File Object with high section entropy
​6.10.​ Matching on a mismatch between a File Object magic number and mime type
​6.11.​ Matching on a Network Traffic Object with a particular destination
​6.12.​ Matching on Malware Beaconing to a Domain Name
​6.13.​ Matching on a Domain Name with IPv4 Resolution
​6.14.​ Matching on a URL
​6.15.​ Matching on an X509 Certificate
​6.16.​ Matching on a Windows Registry Key
​6.17.​ Matching on a File with a set of properties
​6.18.​ Matching on an Email Message with specific Sender and Subject
​6.19.​ Matching on a Custom USB Device Object
​6.20.​ Matching on Two Processes Launched with a Specific Set of Command Line
Arguments Within a Certain Time Window

​6.21.​ Match on a Network Traffic IP that is part of a particular Subnet

​7.​ ANTLR Grammar

​8.​ Conformance
​8.1.​ Pattern Producer
​8.2.​ Pattern Consumer
​8.3.​ Conformance Levels

​8.3.1.​ Level 1: Basic Conformance
​8.3.2.​ Level 2: Basic Conformance plus Observation Operators
​8.3.3.​ Level 3: Full Conformance

​9.​ Appendix A. Acknowledgments

​10.​ Appendix B. Revision History

​1.​ Introduction

In order to detect a large proportion of malicious behaviour in the course of defending our
networks it is necessary to correlate telemetry from both host-based and network-based
tools. Before undertaking work on STIX Patterning, as a technical subcommittee we
made a thorough effort to evaluate whether there was already an existing patterning
language that would support our use cases available as an open standard. In particular,
we considered whether it would be possible to extend the syntax of Snort or Yara rather
than create an entirely new language. This was eventually ruled out as unfeasible, both
from a technical perspective as well as taking into consideration that from a licensing/IPR
perspective, extending either of those languages under the auspices of OASIS would
have been problematic.

Given that STIX Patterning exists to support STIX Indicators, consider what value
Indicator-sharing provides: a mechanism for communicating how to find malicious code
and/or threat actors active within a given network. Among the essential tools widely
deployed by defenders are SIEMs (or similar data processing platforms capable of
consuming, correlating, and interrogating large volumes of network and host-based
telemetry.) These data processing platforms utilize proprietary query languages. As
development began on STIX Patterning, one of the principal design goals was to create
an abstraction layer capable of serializing these proprietary correlation rules so as to
enhance the overall value proposition of indicator-sharing.

In order to enhance detection of possibly malicious activity on networks and endpoints, a
standard language is needed to describe what to look for in an cyber environment. The
patterning language allows matching against timestamped Cyber Observable data (such
as STIX Observed Data Objects) collected by a threat intelligence platform or other
similar system so that other analytical tools and systems can be configured to react and
handle incidents that might arise.

This first language release is focused on supporting a common set of use cases and
therefore allows for the expression of an initial set of patterns that producers and
consumers of STIX can utilize. As more complex patterns are deemed necessary, the
STIX patterning language will be extended in future releases to improve its effectiveness
as an automated detection/remediation method.

​2.​ Definitions
The terms defined below are used throughout this document​. ​(​Related terms are grouped
by color.)

Terms Definitions Example

whitespace Any Unicode code point that has
WSpace set as a property, for
example, line feeds, carriage returns,
tabs, and spaces.

n/a

Observation Observations represent data about
systems or networks that is observed
at a single point in time - for example,
information about a file that existed, a
process that was observed running, or
network traffic that was transmitted
between two IPs. In STIX,
Observations are represented by
Observed Data SDOs, and the
first_observed​ timestamp defines
the observation time.

n/a

Comparison Expression Comparison Expressions are the basic
components of Observation
Expressions. They consist of an Object
Path and a constant joined by a
Comparison Operator (listed in §​4,
Comparison Operators​).

user-account:value
= 'Peter'

Comparison Operators Comparison Operators are used within
Comparison Expressions to compare
an Object Path against a constant or
set of constants.

MATCHES

Object Path Object Paths define which properties of
Cyber Observable Objects should be
evaluated against as part of a
Comparison Expression. Cyber

ipv6-addr:value

Observable Objects and their
properties are defined in STIX 2.0, Part
3b.

Observation Expression Observation Expressions consist of
one or more Comparison Expressions
joined with Boolean Operators and
surrounded by square brackets.

An Observation Expression may
consist of two Observation Expressions
joined by an Observation Operator.

Observation Expressions may
optionally be followed by one or more
Qualifiers further constraining the result
set. When a Qualifier is needed to be
applied to all of the Observation
Expressions joined with Observation
Operators, parentheses may be used
around the Observation Expressions,
but before the Qualifier.

[ipv4-addr:value =
'203.0.113.1' OR
ipv4-addr:value =
'203.0.113.2']

or (with
Observation
Operator):

([ipv4-addr:value
= '192.0.2.5']
ALONGWITH
[ipv4-addr:value =
'192.0.2.10'])

or (with
Observation
Operator and
Qualifier):

([ipv4-addr:value
= '192.0.2.5']
ALONGWITH
[ipv4-addr:value =
'192.0.2.10'])
WITHIN 300 SECONDS

Boolean Operators Operators including AND or OR used
to combine or exclude Comparison
Expressions within an Observation
Expression.

user-account:value
= 'Peter' OR
user-account:value
= 'Mary'

Qualifier Qualifiers provide a restriction on the
Observations that are considered valid
for matching the preceding
Observation Expression.

[file:name =
'foo.dll'] START
'2016-06-01T00:00:
00Z' STOP
'2016-07-01T00:00:
00Z'

Observation Operators Observation Operators are used to
combine two Observation Expressions
operating on two different Observed
Data instances into a single pattern.

[ipv4-addr:value =
'192.0.2.5']
ALONGWITH [
ipv4-addr:value =
'192.0.2.10']

Pattern Expression A Pattern Expression represents a
valid instance of a CybOX pattern. A
basic Pattern Expression consists of a

[file:size =
25536]

single Observation Expression.

​2.1.​ Constants
The data types enumerated below are supported as operands within Comparison
Expressions. This table is included here as a handy reference for implementers.

Note that unlike Cyber Observable Objects (which are defined in terms of the MTI JSON
serialization), STIX Patterns are Unicode strings, regardless of the underlying
serialization. Hence the data types defined in the table below in some cases differ from
the definitions contained in Cyber Observable Core.

Constants Description

boolean The ​boolean​ type encodes truth or
falsehood. Boolean truth is denoted by the
literal "true" and falsehood by the literal
"false".

hex The ​hex​ data type encodes an array of
octets (8-bit bytes) as hexadecimal. The
string ​MUST​ consist of an even number of
hexadecimal characters, which are the
digits '0' through '9' and the letters 'a'
through 'f'.

integer The ​integer​ data type encodes a signed
decimal number in the usual fashion (e.g.,
123). In the case of positive integers, the
integer ​MUST​ be represented as-is,
omitting the ‘+' (U+002b). Negative
integers ​MUST​ be represented by
prepending a ‘-' (U+002d).

The valid range of values is defined by the
STIX 2.0 specification, Part 3a.

float The ​float​ data type encodes a floating
point number in the usual fashion (e.g.,
123.456). In the case of positive floating
point number, the floating point number
MUST​ be represented as-is, omitting the
‘+' (U+002b). Negative floating point
numbers ​MUST​ be represented by
prepending a ‘-' (U+002d).

The valid range of values is defined by the
STIX 2.0 specification, Part 3a.

string The ​string​ data type encodes a string as
a list of Unicode code points surrounded
by single quotes (U+0027).

The escape character is the backslash
(U+005c). Only the single quote or the
backslash may follow, and in that case,
the respective character is used for the
sequence.

If a string only contains codepoints less
than (U+0100), then the string ​MAY​ be
converted to a binary type value (if
needed for comparison). The mapping is
code point U+0000 to 00 through U+00ff
to ff.

timestamp The ​timestamp​ data type encodes a
STIX timestamp (as specified in STIX
Version 2.0 Part 1: STIX Core Concepts,
§2.10) as a string surrounded by single
quotes (U+0027).

​3.​ STIX Patterns

STIX Patterns are composed of multiple building blocks, ranging from simple key-value
comparisons to more complex, contextual expressions. The most fundamental building
block is the Comparison Expression, which is a comparison between a single property of
a Cyber Observable Object and a provided constant using a Comparison Operator. As a
very simple example, one might use the following Comparison Expression (contained
within an Observation Expression) to match against an IPv4 address:

[ipv4-addr:value = '198.51.100.1/32']

Moving up a level of complexity, the next building block of a STIX Pattern is the
Observation Expression, which consists of one or more Comparison Expressions joined
by Boolean operators and bounded by square brackets. An Observation Expression
refines which set of Cyber Observable data (i.e., as part of an Observation) will match the
pattern, by selecting the set that has the Cyber Observable Objects specified by the
Comparison Expressions. An Observation Expression consisting of a single Comparison

Expression is the most basic valid STIX Pattern. Building upon the previous example, one
might construct an Observation Expression to match against multiple IPv4 addresses and
an IPv6 address:

[ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR
ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128']

Observation Expressions may be followed by one or more Qualifiers, which allow for
further restrictions on the set of data matching the pattern. Continuing with the above
example, one might use a Qualifier to state that the IP addresses must be observed
several times in repetition:

[ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR
ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128'] REPEATED 5 TIMES

The final, highest level building block of STIX Patterning combines two or more Object
Expressions via Observation Operators, yielding a STIX Pattern capable of matching
across multiple STIX Observed Data SDOs. Building further upon our example, one might
use an Observation Operator to specify that an observation of a particular domain name
must follow the observation of the IP addresses (note the use of parentheses to
encapsulate the two Observation Expressions), along with a different Qualifier to state
that both the IP address and domain name must be observed within a specific time
window:

([ipv4-addr:value = '198.51.100.1/32' OR ipv4-addr:value = '203.0.113.33/32' OR
ipv6-addr:value = '2001:0db8:dead:beef:dead:beef:dead:0001/128'] FOLLOWEDBY
[domain-name:value = 'example.com']) WITHIN 600 SECONDS

The diagram below depicts a truncated version of the above example.

​4.​ Pattern Expressions
Pattern Expressions evaluate to true or false. They comprise one or more Observation
Expressions joined by Observation Operators. Pattern Expressions are evaluated against
a set of specific Observations. If one or more of those Observations match the Pattern
Expression, then it evaluates to true. Otherwise, if no Observations match, the Pattern
Expression evaluates to false.

Pattern Expressions ​MUST​ be encoded as Unicode strings.

Whitespace (i.e., Unicode code points where ​WSpace=Y)​ in the pattern string is used to
delimit parts of the pattern, including keywords, constants, and field objects. Whitespace
characters between operators, including line feeds and carriage returns, ​MUST ​be
allowed. Multiple whitespace characters in a row ​MUST​ be treated as a single whitespace
character.

​4.1.​ Observation Expressions
Observation Expressions are comprised of one or more Comparison Expressions, joined
via Boolean Operators.

Observation Expressions ​MUST​ be surrounded by square brackets ‘[‘ (U+005b) and ‘]'
(U+005d). One or more Observation Expression Qualifiers ​MAY​ be provided after the
closing square bracket or closing parenthesis of an Observation Expression. Observation
Expressions ​MAY​ be joined by an Observation Operator.

Individual Observation Expressions (e.g., ​[a = b]​) match against a single Observation,
i.e., a single STIX Observed Data entity. In cases where matching against ​multiple
Observations is required, two or more Observation Expressions may be combined via
Observation Operators, indicating that two or more distinct Observations must be
matched.

When matching an Observation against an Observation Expression, all Comparison
Expressions contained within the Observation Expression ​MUST​ match against the same
Cyber Observable Object including referenced objects. An Observation Expression ​MAY
contain Comparison Expressions with Object Paths that are based on different
object-types​, but such Comparison Expressions ​MUST ​be joined by ​OR​. The
Comparison Expressions of an Observation Expression that use ​AND​ ​MUST​ use the same
base Object Path, e.g., ​file:​.

For example, the Pattern Expression ​[(type-a:property-j = 'W' AND type-a:property-k =
'X') OR (type-b:property-m = 'Y' AND type-b:property-n = 'Z')]​ can match an Observable
with an object of either ​type-a​ or ​type-b​, but both Comparison Expressions for that specific
type must evaluate to True for the same object. The Comparison Expressions that are
intended to match a single object can be joined by either ​AND​ or ​OR​, e.g.,
[type-a:property-j = 'W' AND type-a:property-k = 'X' OR type-a:property-l = 'Z']​. As

AND​ has higher precedence than ​OR​, the preceding example requires an Observation to
have either both property-j = 'W' and property-k = 'X' or just property-l = 'Z'.

Observation Expressions along with their Observation Operators and optional Qualifiers
MAY​ be surrounded with parenthesis to restrict which Observation Expressions the
Qualifiers apply to. For example: ​([a] ALONGWITH [b] REPEATED 5 TIMES) WITHIN 5
MINUTES​ results in one a and 5 b's that all match in a 5 minute period. As another example:
([a] ALONGWITH [b]) REPEATED 5 TIMES WITHIN 5 MINUTES​ results in 5 a's and 5 b's all 10
Observations matching in a 5 minute period.

​4.1.1.​ Observation Expression Qualifiers
Each Observation Expression ​MAY​ have additional temporal or repetition restrictions
using the respective ​WITHIN​, ​START​/​STOP​, and ​REPEATED​ keywords.

Qualifiers Description

a​ ​REPEATED​ ​x​ ​TIMES a ​ MUST​ be an Observation Expression or a preceding
Qualifier. ​a​ ​MUST ​match exactly ​x​ times, where each
match is a different Observation.​ ​x ​ MUST​ be a positive
integer.

This is purely a shorthand way of writing ​a ​ followed by
x - 1 times ALONGWITH a.

Example:
[b] FOLLOWEDBY [c] REPEATED 5 TIMES

In this example, the REPEATED applies to c, and it
does not apply to b. The results will be b plus 5 c's
where all 5 c's were observed after the b. (Note that
there is only a single Qualifier in this example; more
complex patterns may use more than one.)

(Note that whether the counter gets reset upon a
successful match is not addressed in this
specification.)

a​ ​WITHIN​ ​x​ ​SECONDS a ​ MUST​ be an Observation Expression or a preceding
Qualifier.​ ​All Observations matched by ​a​ ​MUST ​occur,
or have been observed, within the specified time
window. ​x ​ MUST​ be a positive floating point value.

If there is a set of two or more Observations matched
by ​a​ , the most recent Observation timestamp
contained within that set ​MUST NOT​ be equal to or
later than the delta of the earliest Observation

timestamp within the set plus the specified time
window.

Example:
(['file:hashes.SHA-256' = '13987239847'] ALONGWITH
[win-registry-key:key = 'hkey']) WITHIN 120 SECONDS

The above Pattern Expression looks for a filehash and
a registry key that were observed within 120 seconds
of each other. The parentheses are needed to apply
the WITHIN Qualifier to both Observation Expressions.

a​ ​START​ ​x​ ​STOP​ ​y

a ​ MUST​ be an Observation Expression or a preceding
Qualifier.​ ​All Observations that match ​a​ ​MUST​ have an
observation time >= ​x​ and < ​y​ .

x​ and ​y​ ​MUST​ be a timestamp as defined in the STIX
2.0 specification.

​4.1.2.​ Observation Operators
Two or more Observation Expressions ​MAY​ be combined using an Observation Operator
in order to further constrain the set of Observations that match against the Pattern
Expression.

Observation Operators Description Associativity

[​ a​] ​ALONGWITH​ [​b ​] Both ​a​ and ​b​ ​MUST ​be Observation
Expressions and ​MUST​ evaluate to true
on ​different​ Observations.

Left to right

[​ a​] ​FOLLOWEDBY​ [​b ​] Both ​a​ and ​b​ ​MUST ​be Observation
Expressions​. ​Both​ ​a​ and ​b​ ​MUST
evaluate to true, where the​ ​ observation
timestamp associated with ​b​ ​ is greater
than or equal to the observation
timestamp associated with ​a​ and ​MUST
evaluate to true on ​different
Observations.

Left to right

For example: ​[a = 'b'] ​FOLLOWEDBY​ [c = 'd'] ​REPEATED​ 5 ​TIMES​ says to match an
Observation with a equal to 'b' that precedes 5 occurrences of Observations that have c
equal to d, for a total of 6 Observations matched. This interpretation is due to qualifiers
not being greedy, and is equivalent to ​[a = 'b'] ​FOLLOWEDBY​ ([c = 'd'] ​REPEATED​ 5
TIMES​)​.

Alternatively, using parenthesis to group the initial portion, the example ​([a = 'b']
FOLLOWEDBY​ [c = 'd']) ​REPEATED​ 5 ​TIMES​ will match 5 pairs of Observations where a
equals 'b' followed by an Observation where c is equal to 'd', for a total of 10
Observations matched.

​4.1.3.​ Operator Precedence

Operator associativity and precedence may be overridden by the use of parentheses.
Unless otherwise specified, operator associativity (including for parentheses) is
left-to-right. Precedence in the table is from highest to lowest.

Operators Associativity Valid Scope

() left to right Observation Expression or
Pattern Expression,
Observation Expression and
Qualifier

AND left to right Observation Expression

OR left to right Observation Expression

ALONGWITH​ ​FOLLOWEDBY
(Observation Operators)

left to right Pattern Expression

​4.2.​ Comparison Expression

Comparison Expressions are the most basic components of STIX Patterning, comprising
an Object Path and a constant joined by a Comparison Operator. As each Comparison
Expression is a singleton, they are evaluated from left to right.

A Boolean Operator joins two Comparison Expressions together. In the following table, ​a
or ​b​ is either a Comparison Expression, or another expression that contains a Boolean
Operator.

Boolean
Operator

Description Associativity

a​ ​AND​ ​b Both ​a​ and ​b​ ​MUST ​be Comparison Expressions
and ​MUST​ evaluate to true on the same
Observation.

Left to right

a​ ​OR​ ​b Both​ a​ and ​b ​ MUST​ be Comparison Expressions.
Either ​a​ or ​b​ ​MUST​ evaluate to true.

Left to right

​4.2.1.​ Comparison Operators

The table below describes the available Comparison Operators for use in Comparison
Expressions; in the table, ​a​ ​MUST​ be Object Path and ​b ​ MUST​ be a constant. If the
arguments to the comparison operators are of different types (e.g. the Object Path is an
integer and the constant is a string), the results are false, the sole exception is the ​!=
operator in which case the result is true.

A Comparison Operator ​MAY ​be preceded by the modifier ​NOT​, in which case the
resultant Comparison Expression ​MUST​ be logically negated.

Comparison
Operator

Description Example

a​ ​=​ ​b a​ and ​b​ ​MUST​ be equal (transitive), where ​a
MUST​ be an Object Path and ​b ​ MUST​ be a
constant of the same data type as the Object
property specified by ​a​ .

file:name =
'foo.dll'

a​ ​!=​ ​b a​ and ​b​ ​MUST​ ​NOT​ be equal (transitive),
where ​a ​ MUST​ be an Object Path and ​b
MUST​ be a constant of the same data type as
the Object property specified by ​a​ .

file:size != 4112

a​ ​>​ ​b a​ is numerically or lexically greater than ​b​ ,
where ​a​ ​MUST​ be an Object Path and ​b
MUST​ be a constant of the same data type as
the Object property specified by ​a​ .

file:size > 256

a​ ​<​ ​b a​ is numerically or lexically less than ​b​ , where
a​ ​MUST​ be an Object Path and​ b​ ​MUST​ be a
constant of the same data type as the Object
property specified by ​a​ .

file:size < 1024

a​ ​<=​ ​b a​ is numerically or lexically less than or equal
to ​b​ , where ​a​ ​MUST​ be an Object Path and ​b
MUST​ be a constant of the same data type as
the Object property specified by ​a​ .

file:size <= 25145

a​ ​>=​ ​b a​ is numerically or lexically greater than or
equal to ​b​ , where ​a ​ MUST​ be an Object Path
and ​b​ ​MUST​ be a constant of the same data
type as the Object property specified by ​a​ .

file:size >= 33312

a​ ​IN​ ​(​x​ ,​y​ ,...) a​ ​MUST​ be an Object Path and ​MUST
evaluate to one of the values enumerated in
the set of x,y,... (transitive). The set values in ​b
MUST​ be constants of homogenous data type
and ​MUST​ be valid data types for the Object
Property specified by ​a​ . ​ The return value is

process:name IN
('proccy',
'proximus',
'badproc')

true if a is equal to one of the values in the list.
If a is not equal to any of the items in the list,
then it is false.

a​ ​LIKE​ ​b a​ ​MUST ​be an Object Path and ​MUST​ match
the pattern specified in ​b​ where any '%' is 0 or
more characters and ‘_' is any one character.

This operator is based upon the SQL LIKE
clause and makes use of the same wildcards.

The string constant ​b​ ​MUST​ be NFC
normalized prior to evaluation.

directory:path
LIKE
'C:\\Windows\\%\\f
oo'

a​ ​MATCHES​ ​b a​ ​MUST​ be an Object Path and ​MUST​ be
matched by the pattern specified in ​b,​ where ​b
is a string constant containing a PCRE or
PCRE2 compliant regular expression. ​a​ ​MUST
be NFC normalized before comparison if the
property is of string type.

Regular expressions ​MUST​ be conformant to
the syntax defined by the ​Perl-compatible
Regular Expression (PCRE) library.​ The
search function ​MUST​ be used. The DOTALL
option ​MUST​ be specified. The standard
beginning and end anchors may be used in the
pattern to obtain match behavior.

In the case that the property is binary (e.g.
property name ends in _bin or _hex), then the
UNICODE flag ​MUST NOT​ be specified.

directory:path
MATCHES
'^C:\\Windows\\w+$
'

Set Operator Description Example

a​ ​ISSUBSET​ ​b When ​a​ is a set that is wholly contained by the
set ​b​ , the comparison evaluates to true. ​a
MUST​ be an Object Path referring to the
value​ property of an Object of type
ipv4-addr​ or ​ipv6-addr​.​ b​ ​MUST​ be a valid
string​ representation of the corresponding
Object type (as defined in ​<add reference to
Network Objects here>​).

In the case that both ​a​ and ​b​ evaluate to an
identical single IP address or an identical IP
subnet, the comparison evaluates to true.

ipv4-addr:value
ISSUBSET
'198.51.100.0/24'

For example, if
ipv4-addr:value

was
192.51.100.0/2
7​, ​ISSUBSET
'198.51.100.0/24'
would evaluate to
true.

a​ ​ISSUPERSET​ ​b When ​a​ is a set that wholly contains the set
specified by ​b​ , the comparison evaluates to
true. ​a​ ​MUST​ be an Object Path referring

ipv4-addr:value
ISSUPERSET
'198.51.100.0/24'

http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html
http://www.pcre.org/original/doc/html/pcrepattern.html

either an ​ipv4-addr​ or ​ipv6-addr​ Object. ​b
MUST​ be a valid ​string​ representation of the
corresponding Object type (as defined in ​<add
reference to Network Objects here>​).

In the case that both ​a​ and ​b​ evaluate to an
identical single IP address or an identical IP
subnet, the comparison evaluates to true.

For example, if
ipv4-addr:value
was
192.51.100.0/2
4​, ​ISSUPERSET
'192.51.100.0/27'
would evaluate to
true.

​4.2.2.​ String Comparison
For simple string operators, i.e., "​=​", "​!=​", "​<​", "​>​", "​<=​" and "​>=​", as collation languages
and methods are unspecifiable, a simple code point (binary) comparison ​MUST​ be used.
If one string is longer than the other, but otherwise equal, the longer string is greater, but
not equal to, than the shorter string. Unicode normalization ​MUST NOT​ be performed on
the string. This means that combining marks are sorted by their code point, not the NFC
normalized value. E.g. ‘o' U+006f < ‘oz' U+006f U+007a < ‘ò' U+006f U+0300 < ‘z'
U+007a < ‘ò' U+00f2. Though Unicode recommends normalizing strings for comparisons,
the use of combining marks may be significant, and normalizing by default would remove
this information. NFC normalization is required for other matching operators, e.g., ​LIKE
and​ ​MATCHES​.

​4.2.3.​ Binary Type Comparison
When the value of two binary object properties are compared, they are compared as
unsigned octets. That is ​00​ is less than ​ff​. If one value is longer than the other, but they
are otherwise equal, the longer value is considered greater than, but not equal to, the
shorter value.

​4.2.4.​ Native Format Comparison
The Cyber Observable Object's value ​MUST​ be in it's native format when doing the
comparison. For example, Cyber Observable Object properties that use the ​binary​ type
(defined in Part 3a §2.5) must have their value decoded into its constituent bytes before
being compared. This also means Object Properties that use the ​hex​ type must be
decoded to raw octets before being compared.

For example given the following object, where the ​payload​ property is of ​binary​ type :
{

 "0":{

 "type": "artifact",

 "mime_type": "application/octet-stream",

 "payload_bin": "dGhpcyBpcyBhIHRlc3Q="

 }

}

The pattern ​"​artifact:payload_bin = '​dGhpcyBpcyBhIHRlc3Q=​'"​ would evaluate to false,
while the patterns "​artifact:payload_bin = 'this is a test'​" and "​artifact:payload_bin =
7468697320697320612074657374​" would evaluate to true.

​5.​ Object Path Syntax
Defined below is the syntax for addressing values of Cyber Observable Objects in a STIX
Pattern. The following notation is used throughout the definitions below:

Notation Definition

<object-type> The type of Cyber Observable Object to match against.
This ​MUST ​be the value of the ​type ​field specified for a
Cyber Observable Object in an Observation.

<property_name> The name of a Cyber Observable Object property to match
against. This ​MUST ​be​ ​a valid property name as specified
in the definition of the Cyber Observable Object type
referenced by the ​<object-type>​ notation.

If any ​<property_name>​ contains a dash ('-' U+002d), the
entire Object Path ​MUST​ be enclosed in single quotes
(U+0027).

Properties that are nested, i.e. are children of other
properties in a Cyber Observable Object, ​MUST​ be
specified using the syntax
<property_name>​.​<property_name>​, where the
<property_name>​ preceding the ‘.' is the name of the
parent property and the one following is the name of the
child property.

If the property name is a reference to another Cyber
Observable Object, the referenced Object ​MUST​ be
dereferenced, so that its properties are effectively nested in
the Object that it is referenced by. For example, if the
src_ref​ property of the Network Traffic Object references
an IPv4 Address Object, the value of this address would be
specified by ​network-traffic​:​src_ref.value​.

​5.1.​ Basic Object Properties
Any non-​dictionary​ and non-​list​ property that is directly specified on a Cyber
Observable Object.

Syntax
<object-type> ​: ​<property_name>

Example
file:size

​5.2.​ List Object Properties
Any property on a Cyber Observable Object that uses the ​list​ data type.

​Syntax
<object-type> ​: ​<property_name>[list_index] ​. ​<property_name>

Where ​property_name ​ ​MUST​ be the name of an Object property of type ​list​ and
[list_index] ​ MUST​ be one of the following:

● An integer in the range of 0..N-1, where N is the length of the list. If list_index is
out of range, the result of any operation is false.

● The literal ​'*'​, which indicates that if any of the items contained within a list match
the Comparison Expression, it evaluates to true.

Example

file:extended_properties.windows-pebinary.sections[*].entropy > 7.0

The above example will return true if any PE section has an entropy property whose
value is greater than 7.0.

​5.3.​ Dictionary Object Properties
Any property on a Cyber Observable Object that uses the ​dictionary​ data type.

​Syntax
<object-type> ​: ​<property_name> ​. ​<key_name>

Where ​<property_name> ​ MUST​ be the name of an Object property of type
dictionary​ and ​<key_name> ​ MUST ​be the name of key in the dictionary.

Examples
file:hashes.MD5

file:extended_properties.raster-image.image_height

​5.4.​ Object Reference Properties
Any property on a Cyber Observable Object that uses the ​object-ref​ data type, either
as a singleton or as a list (i.e., ​list​ of type ​object-ref​).

​Syntax
<object-type> ​: ​<property_name> ​. ​<dereferenced_object_property>

Where ​<property_name> ​ MUST​ be the name of an Object property of type
object-ref​ and ​<dereferenced_object_property> ​ MUST ​be the name of the
property of the dereferenced Object (i.e., one that in an Observation is specified via the
<property_name> ​ as a reference).

Examples
email-message:from_ref.value = 'mary@example.com'

directory:contains_refs[*].name = 'foobar.dll'

​6.​ Examples

​6.1.​ Matching a File Object with a SHA-256 hash
['file:hashes.SHA-256' =
'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f']

​6.2.​ Matching an Email Message with a particular From Email Address
and Attachment File Name Using a Regular Expression
[email-message:from_ref.value MATCHES '.+\\@example\\.com$' AND
email-message:body_multipart[*].body_raw_ref.name MATCHES '^Final Report.+\\.exe$']

​6.3.​ Matching a File Object with a SHA-256 hash and a PDF MIME
type
['file:hashes.SHA-256' =
'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f' AND file:mime_type =
'application/x-pdf']

​6.4.​ Matching a File Object with SHA-256 or a MD5 hash (e.g., for the
case of two different end point tools generating either an MD5 or a
SHA-256), and a different File Object that has a different SHA-256
hash, against two different Observations
['file:hashes.SHA-256' =
'bf07a7fbb825fc0aae7bf4a1177b2b31fcf8a3feeaf7092761e18c859ee52a9c' OR file:hashes.MD5 =
'cead3f77f6cda6ec00f57d76c9a6879f']
 ALONGWITH ['file:hashes.SHA-256' =
'aec070645fe53ee3b3763059376134f058cc337247c978add178b6ccdfb0019f']

​6.5.​ Matching a File Object with a MD5 hash, followed by (temporally)
a Registry Key Object that matches a value, within 5 minutes
[file:hashes.MD5 = '79054025255fb1a26e4bc422aef54eb4'] FOLLOWEDBY [win-registry-key:key
= 'HKEY_LOCAL_MACHINE\\foo\\bar'] WITHIN 300 SECONDS

​6.6.​ Matching three different, but specific Unix User Accounts
[user-account:account_type = 'unix' AND user-account:user_id = '1007' AND
user-account:account_login = 'Peter'] ALONGWITH [user-account:account_type = 'unix' AND
user-account:user_id = '1008' AND user-account:user_id = 'Paul'] ALONGWITH
[user-account:account_type = 'unix' AND user-account:user_id = '1009' AND
user-account:user_id = 'Mary']

​6.7.​ Matching an Artifact Object PCAP payload header
[artifact:mime_type = 'application/vnd.tcpdump.pcap' AND artifact:payload_bin MATCHES
'\\xd4\\xc3\\xb2\\xa1\\x02\\x00\\x04\\x00']

​6.8.​ Matching a File Object with a Windows file path
[file:name = 'foo.dll' AND file:parent_directory_ref.path = 'C:\\Windows\\System32']

​6.9.​ Matching on a Windows PE File Object with high section entropy
[file:extended_properties.windows-pebinary-ext.sections[*].entropy > 7.0]

​6.10.​ Matching on a mismatch between a File Object magic number
and mime type
[file:mime_type = 'image/bmp' AND file:magic_number_hex = 'ffd8']

​6.11.​ Matching on a Network Traffic Object with a particular
destination
[network-traffic:dst_ref.type = 'ipv4-addr' AND network-traffic:dst_ref.value =
'203.0.113.33/32']

​6.12.​ Matching on Malware Beaconing to a Domain Name
[network-traffic:dst_ref.type = 'domain-name' AND network-traffic:dst_ref.value =
'example.com'] REPEATED 5 TIMES WITHIN 1800 SECONDS

​6.13.​ Matching on a Domain Name with IPv4 Resolution
[domain-name:value = 'www.5z8.info' AND domain-name:resolves_to_refs[*].value =
'198.51.100.1/32']

​6.14.​ Matching on a URL
[url:value = 'http://example.com/foo' OR url:value = 'http://example.com/bar']

​6.15.​ Matching on an X509 Certificate
[x509-certificate:issuer = 'CN=WEBMAIL' AND x509-certificate:serial_number =
'4c:0b:1d:19:74:86:a7:66:b4:1a:bf:40:27:21:76:28']

​6.16.​ Matching on a Windows Registry Key
[windows-registry-key:key = 'HKEY_CURRENT_USER\\Software\\CryptoLocker\\Files' OR
windows-registry-key:key =
'HKEY_CURRENT_USER\\Software\\Microsoft\\CurrentVersion\\Run\\CryptoLocker_0388']

​6.17.​ Matching on a File with a set of properties
[(file:name = 'pdf.exe' OR file:size = '371712') AND file:created =
'2014-01-13T07:03:17Z']

​6.18.​ Matching on an Email Message with specific Sender and Subject
[email-message:sender_ref.value = 'jdoe@example.com' AND email-message:subject =
'Conference Info']

​6.19.​ Matching on a Custom USB Device Object
[x-usb-device:usbdrive.serial_number = '575833314133343231313937']

​6.20.​ Matching on Two Processes Launched with a Specific Set of
Command Line Arguments Within a Certain Time Window
[process:arguments = '>-add GlobalSign.cer -c -s -r localMachine Root'] FOLLOWEDBY
[process:arguments = '>-add GlobalSign.cer -c -s -r localMachineTrustedPublisher']
WITHIN 300 SECONDS

​6.21.​ Match on a Network Traffic IP that is part of a particular Subnet
[network-traffic:dst_ref.type = 'ipv4-addr' AND network-traffic:dst_ref.value ISSUBSET
'2001:0db8:dead:beef:0000:0000:0000:0000/64']

​7.​ ANTLR Grammar
The latest ANTLR grammar for the patterning specification can be found ​here​. Note that
this grammar is non-normative and is intended solely as an aid to implementers.

​8.​ Conformance
Implementers of the STIX Patterning language are not required to support the full
capabilities provided by the language. Rather, implementers are strongly encouraged to
support as much of STIX Patterning as feasible, given the capabilities of their products,
but only required to support the minimum conformance level (defined below) necessary
for their particular use case(s). For example, the vendor of a network intrusion detection
system (NIDS) that looks for malicious network traffic may only need to implement the
Comparison Operators and support basic Observation Expressions to explicitly match
against network traffic and IP addresses.

While the STIX Patterning language specification is tightly coupled with the STIX Cyber
Observable object data models, it is understood that in many (or even most)
implementations STIX Patterns will be used as an abstraction layer for transcoding into
other proprietary query formats. STIX Patterns may be evaluated directly against a
corpus of STIX Observed Data entities but they may also, for example, be translated into
some query syntax for a packet inspection device. In this second case, the STIX Patterns
are in fact evaluated in the context of data passing on the wire, not in the form of STIX
Cyber Observables.

The STIX Patterning language's Observation Operators allow the creation of patterns that
explicitly match across multiple Observations but says nothing about the source of the
underlying data for each Observation. Consider the example of a pattern matching on
both network traffic and Windows registry keys. In the case of vendor Foo, makers of an
endpoint agent capable of inspecting both network traffic and registry keys, the data
source for our hypothetical pattern could be a single host. In the case of vendor Bar,
makers of an endpoint agent only capable of processing registry keys, in order to process
our hypothetical pattern, the netflow data would have to come from some other source
and the pattern could only be evaluated within the context of a system with access to both
data sources.

https://github.com/oasis-open/cti-pattern-validator/blob/master/pattern_validator/grammars/CyboxPattern.g4

​8.1.​ Pattern Producer
A product that creates STIX patterns is known as a "Pattern Producer". Such products
MUST ​support the creation of patterns that conform to all normative statements and
formatting rules in this document.​ ​Pattern Producers ​MUST​ specify their conformance in
terms of the conformance levels defined in ​§​6.3.

​8.2.​ Pattern Consumer
A product that consumes STIX patterns is known as a "Pattern Consumer". Such
products ​MUST ​support the consumption of patterns that conform to all normative
statements and formatting rules in this document.​ ​Pattern Consumers ​MUST​ specify their
conformance in terms of the conformance levels defined in ​§​6.3.

​8.3.​ Conformance Levels

​8.3.1.​ Level 1: Basic Conformance
Products that conform to the minimum required aspects of the patterning specification,
and is known as a “Level 1 STIX Patterning Implementation”.

Such products ​MUST​ support the following features by conforming to all normative
statements and behaviors in the referenced sections:

● Single Observation Expressions (omitting Qualifiers), as described in ​§​4.1
● All Comparison Operators, as described in ​§​4.2.1

(This level of conformance is intended primarily for products that are deployed at end
points or network boundaries and which are architecturally unable to maintain state as
would be required in order to support Qualifiers such as ​WITHIN​.)

​8.3.2.​ Level 2: Basic Conformance plus Observation Operators
Products that support the minimum required aspects of the patterning specification but
can operate on multiple Observations, and is known as a “Level 2 STIX Patterning
Implementation”.

Such products ​MUST​ support the following features by conforming to all normative
statements and behaviors in the referenced sections:

● Compound Observation Expressions (omitting Qualifiers) as described in ​§​4.1
● All Comparison Operators, as described in ​§​4.2.1
● The ​ALONGWITH​ Observation Operator, as described in ​§​4.1.2

(This level of conformance is intended primarily for products such as HIDS that can detect
patterns across separate Observations but may not support temporal-based patterning.)

​8.3.3.​ Level 3: Full Conformance
A product that is fully conformant with the ​all​ of the capabilities of the patterning
specification is known as a "Level 3 STIX Patterning Implementation".

Such products ​MUST​ support the following features by conforming to all normative
statements and behaviors in the referenced sections:

● ​§2.​ Definitions
● §​3.​ STIX Patterns
● §​4.​ Pattern Expressions
● §​5.​ Object Path Syntax

(This level of conformance is intended primarily for products such as SIEMs that support
temporal-based patterning and can also aggregate and detect patterns across multiple
and disparate sources of Observations.)

​9.​ Appendix A. Acknowledgments
CybOX Subcommittee Chairs​:
Trey Darley (​trey@kingfisherops.com​), Kingfisher Operations, sprl
Ivan Kirillov, (​ikirillov@mitre.org​), MITRE Corporation

Contributors
The following individuals made substantial contributions in the form of normative text and
proofing of this specification, their contributions are gratefully acknowledged:

● Bret Jordan, Blue Coat Systems, Inc.
● Terry MacDonald, Cosive
● Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
● Trey Darley, Kingfisher Operations, sprl
● Jason Keirstead, IBM
● Allan Thomson, LookingGlass Cyber
● John-Mark Gurney, New Context Services, Inc.
● Christian Hunt, New Context Services, Inc.
● Greg Back, MITRE Corporation
● Sean Barnum, MITRE Corporation
● Ivan Kirillov, MITRE Corporation
● John Wunder, MITRE Corporation
● Dave Cridland, Surevine

​10.​ Appendix B. Revision History

