[bookmark: _t32x0azc539r]TAXII™ 2.0 Specification
Version 2.0-draft-3

Technical Committee
OASIS Cyber Threat Intelligence (CTI) TC

​Chair
Richard Struse (Richard.Struse@hq.dhs.gov), DHS Office of Cybersecurity and Communications (CS&C)

​Editors
Bret Jordan (bret.jordan@bluecoat.com), Blue Coat Systems, Inc.
Mark Davidson (mdavidson@soltra.com), Soltra

Document Table of Contents

​1.​ Introduction
​1.1.​ Terminology
​1.2.​ Overview
​1.2.1.​ Channels Overview
​1.2.2.​ Collections Overview
​1.3.​ Document Conventions
​1.3.1.​ Naming Conventions
​1.3.2.​ Font Colors and Style
​2.​ HTTPS Requirements
​3.​ DNS SRV Records
​3.1.​ Requirements
​3.2.​ Example
​4.​ Discovery API
​4.1.​ Requirements
​4.2.​ Examples
​5.​ API Root
​5.1.​ Requirements
​5.2.​ Examples
​6.​ Content Negotiation
​6.1.​ TAXII Media Type
​6.1.1.​ Requirements
​6.2.​ STIX Media Type
​6.2.1.​ Requirements
​7.​ Primitive Types
​8.​ TAXII API
​8.1.​ URL Endpoint Summary
​8.2.​ URL Parameters
​8.3.​ Global Requirements
​8.3.1.​ Property and String Requirements
​8.3.2.​ Server Requirements
​8.3.3.​ Client Requirements
​8.4.​ HTTP Status Codes
​8.5.​ GET <discovery>
​8.5.1.​ Requirements
​8.5.2.​ Examples
​8.6.​ GET <api-root>
​8.6.1.​ Requirements
​8.6.2.​ Examples
​8.7.​ GET /collections
​8.7.1.​ Requirements
​8.7.2.​ Examples
​8.8.​ GET /collections/<name>
​8.8.1.​ Requirements
​8.8.2.​ Examples
​8.9.​ GET /collections/<name>/manifest
​8.9.1.​ Requirements
​8.9.2.​ Examples
​8.10.​ GET /collections/<name>/objects
​8.10.1.​ Requirements
​8.10.2.​ Examples
​8.11.​ POST /collections/<name>/objects
​8.11.1.​ Requirements
​8.11.2.​ Examples
​8.12.​ GET /collections/<name>/objects/<object-id>
​8.12.1.​ Requirements
​8.12.2.​ Examples
​8.13.​ GET /object-search
​8.13.1.​ Requirements
​8.13.2.​ Examples
​8.14.​ GET /status/<status-id>
​8.14.1.​ Requirements
​8.14.2.​ Examples
​9.​ TAXII Resources
​9.1.​ API Root Resource
​9.2.​ Discovery Resource
​9.3.​ Collection Resource
​9.4.​ Error Resource
​9.4.1.​ Example
​9.5.​ Manifest Resource
​9.6.​ Object Resource
​9.7.​ Status Resource
​10.​ Customizing TAXII Resources
​10.1.​ Custom Properties
​10.1.1.​ Requirements
​11.​ Conformance
​11.1.​ TAXII Servers
​11.2.​ Mandatory Features
​11.2.1.​ TODO
​11.3.​ Optional Features
​11.3.1.​ TODO
​12.​ Appendix A. Acknowledgments
​13.​ Appendix B. Changes from TAXII 1.1
​14.​ Appendix C - End to End Workflow
​15.​ Appendix D - Security Considerations

[bookmark: _p93xzd8olzi2]​1.​ Introduction​1.​ Introduction
TAXII is an open application layer protocol for the communication of cyber threat information. Focusing on simplicity and scalability, TAXII enables authenticated and secure communication of cyber threat information across products and organizations.

This specification defines the TAXII RESTful API and its resources along with the requirements for TAXII Client and Server implementations.
[bookmark: _zcasp8dvxi0s]​1.1.​ Terminology​1.1.​ Terminology
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119 (REF:RFC2119).

API Root - An instance of the TAXII API that is often used to align to trust groups.
API Root URL - Is the “root” URL for any particular instance of the TAXII API.
Channel - A publish-subscribe communications method where messages are exchanged.
CTI - Cyber Threat Intelligence
Collection - Is a logical group of CTI objects.
Consumer - Any entity that receives content via TAXII.
Discovery Resource - Contains information about a TAXII Server, including the various API Roots that it knows about.
Message - A resource transmitted over a Channel from producer to consumer.
MTI - Mandatory to Implement
Object Resource - CTI that is often represented in STIX.
Producer - Any entity that sends content via TAXII.
Status Resource - Contains information about an action that was processed asynchronously.
STIX - Structured Threat Information Expression
STIX Content - STIX documents, including STIX Objects, grouped as STIX Bundles.
STIX Object - A STIX Domain Object (SDO) or STIX Relationship Object (SRO)
TAXII - Trusted Automated Exchange of Indicator Information
TAXII API -
TAXII Client -
TAXII Server - A system that supports the exchange of CTI between TAXII Clients known as producers and consumers.

[bookmark: _g6vzg6qixpic]​1.2.​ Overview​1.2.​ Overview
This specification defines two communication methods - Channels and Collections - for transmitting CTI. TAXII is designed around a RESTful architecture and requires HTTPS-only communications (i.e., HTTP communications are not conformant with this specification).

Figure 1.1
[image:]
[bookmark: _pvch43p5vc0z]​1.2.1.​ Channels Overview​1.2.1.​ Channels Overview
A Channel enables producers and consumers to exchange information in an asynchronous, event-based manner where both producers and consumers are TAXII clients of a TAXII server and the Channel is maintained by the TAXII server. A TAXII Server may contain multiple Channels per API Root and Channels are used to exchange information in a publish–subscribe manner.

Figure 1 below illustrates how Channel communications are used when a single producer sends a message to the TAXII Server, and that TAXII Server then distributes the message to all authorized consumers that have previously registered with the TAXII server. Normative requirements for Channels are defined later in this document.
[bookmark: _802in1vgfpd]​1.2.2.​ Collections Overview​1.2.2.​ Collections Overview
A Collection is used by TAXII clients to send information to the TAXII server or request information from the TAXII server. A TAXII Server may support multiple Collections per API Root, and Collections are used to exchange information in a request–response manner.

Figure 2 below illustrates how Collection based communications are used when a single TAXII Client makes a request to a TAXII Server and the TAXII Server fulfills that request with information available to the TAXII Server (nominally from a database). Normative requirements for Collections are defined later in this document.

	Figure 1.2
	Figure 1.3

	[image:]

[bookmark: _ag2gxbmaqwjw]​1.3.​ Document Conventions​1.3.​ Document Conventions
[bookmark: _kv0cuh34vz98]​1.3.1.​ Naming Conventions​1.3.1.​ Naming Conventions
All type names, property names and literals are in lowercase. Words in property names are separated with an underscore (_), while words in type names and string enumerations are separated with a dash (-). All type names, property names, object names, and vocabulary terms are between three and 250 characters long.
[bookmark: _oh4kptyswepb]​1.3.2.​ Font Colors and Style​1.3.2.​ Font Colors and Style
The following color, font and font style conventions are used in this document:
· The Consolas font is used for all type names, property names and literals.
· resource and type names are in red with a light red background – collection
· property names are in bold style – description
· literals (values) are in green with a green background – complete
· All examples in this document are expressed in Consolas 9 pt font, with straight quotes and have a two space indentation. Parts of the example may be omitted for conciseness and clarity. These omitted parts are denoted with the ellipses (...).
​

[bookmark: _p6ecyqmxyc28]​2.​ HTTPS Requirements​2.​ HTTPS Requirements
The TAXII Protocol defined in this specification requires HTTPS as the transport for all communications.

· TAXII Servers and Clients MUST implement HTTPS [RFC7230].
· TAXII Servers and Clients MUST implement TLS version 1.2 [RFC5246], and MAY implement later versions.
· The default strategy for authenticating certificates MUST be PKIX as defined in RFC 5280, RFC 6818, RFC 6125 et al.
· TAXII Servers and Clients MAY support other certification verification policies such as:
· Certificate Pinning: A single or limited set of either hard-coded or physically distributed pinned certificate authorities or end-entity certificates.
· DANE: DNS-based Authentication of Named Entities [RFC 7671]
· Note that Self-Signed Certificates (like other certificates which cannot be verified by PKIX) MAY be supported via Certificate Pinning and/or DANE as noted above.

[bookmark: _u96rtngphsyd]​3.​ DNS SRV Records​3.​ DNS SRV Records
This specification defines a DNS SRV record [RFC 2782] that can be used to allow clients to auto-discover the server that the TAXII server is running on.
[bookmark: _a53mif7bp6u8]​3.1.​ Requirements​3.1.​ Requirements
· Organizations MAY implement a DNS SRV record in their DNS server to advertise the location of their TAXII Server.
· The service name for this version of TAXII MUST be “taxii”.
· Future versions of TAXII MAY define alternate service names.
· TAXII Clients MUST support looking up and using the TAXII SRV record from DNS.
[bookmark: _3tfp5dw5jix2]​3.2.​ Example​3.2.​ Example
The following example is for a DNS SRV record advertising a TAXII server for the domain “example.com” located at taxii-hub-1.example.com:443:

_taxii._tcp.example.com. 86400 IN SRV 0 5 443 taxii-hub-1.example.com

[bookmark: _siot3t264oqc]​4.​ Discovery API​4.​ Discovery API
This specification defines a Discovery API that clients can use to discover the capabilities that the TAXII Server offers as well as meta-information about the TAXII Server (e.g., contact information). This specification uses the notation <discovery> to refer to the Discovery API URL.
[bookmark: _nmxe82szeuim]​4.1.​ Requirements​4.1.​ Requirements
· TAXII Servers SHOULD implement the Discovery API
· The URL of the Discovery API MUST be /taxii and MUST be located at the root of the server, e.g., https://someserver.com/taxii
· A TAXII Server MAY advertise TAXII services that are not running on this server.
[bookmark: _3bi0ydmdni7f]​4.2.​ Examples​4.2.​ Examples
https://taxii.example.com:443/taxii
https://someserver.foo.com/taxii

[bookmark: _v0ej2u2q3xsd]​5.​ API Root​5.​ API Root
An API Root is the "root" URL of a particular instance of the TAXII API. Hosting multiple API Roots allows an implementer to mimic trust groups or groups of interest on a single TAXII Server.
[bookmark: _a5dhqu6o459w]​5.1.​ Requirements​5.1.​ Requirements
· A TAXII Server MUST host at least one API Root.
· A TAXII Server MAY host more than one API Root.
· Each API Root MUST have a unique URL within the scope of the TAXII Server.
· Each API Root MAY have different authentication requirements.
[bookmark: _p2jdsjfawjov]​5.2.​ Examples​5.2.​ Examples
https://subdomain.example.com:12345/api-root-1
https://subdomain.example.com:12345/api-root-2
[bookmark: _vwl52ujjvbnw]​6.​ Content Negotiation​6.​ Content Negotiation
TAXII 2 uses HTTP content negotiation as defined below.
[bookmark: _j42p2xcnwfj0]​6.1.​ TAXII Media Type​6.1.​ TAXII Media Type
This specification defines the media type for TAXII.
[bookmark: _7hr210mq3phv]​6.1.1.​ Requirements​6.1.1.​ Requirements
· The TAXII media type representing any version of TAXII is: application/vnd.oasis.taxii+json
· The TAXII media type representing TAXII 2.0 is: application/vnd.oasis.taxii+json; version=2.0
· TAXII Clients SHOULD include the version token wherever a TAXII media type is used.
· If the version token is omitted from a TAXII media type, implementations SHOULD respond with the highest version of TAXII that the server supports.
· TAXII Servers MUST honor the version token during content negotiation. If the server does not support the version, it should return a HTTP 406 (Not Acceptable) error.

[bookmark: _mp0mg6dhwpg2]​6.2.​ STIX Media Type ​6.2.​ STIX Media Type
This specification makes use of the STIX media type for representing Object and Message resources.
[bookmark: _d9gfdglkgj8o]​6.2.1.​ Requirements​6.2.1.​ Requirements
· The STIX media type representing any version of STIX is: application/vnd.oasis.stix+json
· The STIX media type representing STIX 2.0 is:
 application/vnd.oasis.stix+json; version=2.0
· TAXII Clients SHOULD include the version token wherever a STIX media type is used.
· If the version token is omitted from a STIX media type, implementations SHOULD respond with the highest version of STIX that the server supports.
· TAXII Servers MUST honor the version token during content negotiation. If the server does not support the version, it should return a HTTP 406 (Not Acceptable) error.

[bookmark: _1fev7l7zi12l]​7.​ Primitive Types​7.​ Primitive Types
This section defines the primitive types used throughout TAXII. These types will be referenced by the “Type” column in other sections. This section defines the names and permitted values of common types that are used in TAXII; it does not, however, define the meaning of any fields using these types. These types may be further restricted elsewhere in the document.

	Type
	Description

	boolean
	A boolean is a value of either true or false. Properties with this type MUST have a literal (unquoted) value of true or false.

	integer
	The integer data type represents a whole number. Unless otherwise specified, all integers MUST be capable of being represented as a signed 64-bit value. Additional restrictions MAY be placed on the type as described where it is used.

	list
	The list type defines an ordered sequence of one or more values. The phrasing “list of type <type>” is used to indicate that all values within the list must conform to a specific type. For instance, list of type string means that all values of the list must be of the string type.

This definition does not specify the maximum or minimum number of allowed values in a list, however specific TAXII resource properties may define more restrictive upper and/or lower bounds for the length of the list.

If a list property is required but no data is available, then an empty list MUST be returned.

	string
	The string data type represents a finite-length string of valid characters from the Unicode coded character set [REF:ISO.10646] that are encoded in UTF-8. Unicode incorporates ASCII [REF: RFC20] and the characters of many other international character sets.

	timestamp
	The timestamp type defines how timestamps are represented in TAXII and is represented in serialization as a string.

· The timestamp field MUST be a valid RFC 3339-formatted timestamp [TODO add reference] using the format YYYY-MM-DDTHH:mm:ss[.s+]Z where the “s+” represents 1 or more sub-second values. The brackets denote that sub-second precision is optional, and that if no digits are provided, the decimal place MUST NOT be present.
· The timestamp MUST be represented in the UTC timezone and MUST use the “Z” designation to indicate this.

​

[bookmark: _dwru50atx72x]​8.​ TAXII API​8.​ TAXII API
This section defines the TAXII API and all of the URL endpoints that are part of this specification.
[bookmark: _elkweoitcg95]​8.1.​ URL Endpoint Summary​8.1.​ URL Endpoint Summary
	Resource URL
	Methods
	Resource Type

	<discovery>
	GET
	discovery

	<api-root>
	GET
	api

	Collections
	
	

	<api-root>/status/<status-id>
	GET
	status

	<api-root>/collections
	GET
	list of type collection

	<api-root>/collections/<name>
	GET
	collection

	<api-root>/collections/<name>/manifest
	GET
	list of type manifest

	<api-root>/collections/<name>/objects
	GET, POST
	object*

	<api-root>/collections/<name>/objects/<object-id>
	GET
	object*

	<api-root>/object-search
	GET
	object*

	Channels
	
	

	<TBD in a future RC>
	
	

* The actual format of objects is dependent on HTTP Content negotiation, as discussed in Section [TODO REF]
​
[bookmark: _w16tj2673s8q]​8.2.​ URL Parameters​8.2.​ URL Parameters
This section defines URL parameters and their meaning. The URL parameters defined in this section are used in the query portion of a URL. Each URL section defines which URL parameters are used.

	URL Parameter
	Description

	id
	The identifier of the object that you are requesting. This is often a STIX ID. One or more identifiers MAY be specified in a single URL ID Parameter, comma separated.

Example
?id=1234,123,12334

	type
	The object type that you want to filter on.
TAXII Servers MUST support the following values:
· campaign	Comment by Mark Davidson: Discussion point: Which values should be included and why?
· course-of-action
· indicator
· malware
· relationship
· report
· sighting
· threat-actor

TAXII Servers MAY support other values.

Implementers are strongly recommended to support all SDO and SRO types from all STIX versions that they support.

	version
	The version of the STIX object that you are wanting.
· latest tells the server to give you the latest one it knows about,
· first tell the server to give you the first one it knows about.
· all tells the server to give you all versions it knows about.
· An actual version number aka "2" tells the server to give you version 2.
· If the version parameter is not present in the request, it defaults to latest.

	added_after
	Filters the result set to only include items added to the Channel or Collection after the specified datetime. The value of this is a timestamp

[bookmark: _q0a03pfr5x7n]​8.3.​ Global Requirements​8.3.​ Global Requirements
This section defines the behavior and requirements that apply globally to all URLs listed in this section.
[bookmark: _d9ck4mk7uz34]​8.3.1.​ Property and String Requirements​8.3.1.​ Property and String Requirements
· All property names and string literals MUST be exactly the same, including case, as the names listed in the property tables in this specification.
· For example, the discovery resource has a property called api_roots and it must result in the JSON key name "api_roots".
· Properties marked required in the property tables MUST be present in the JSON serialization.
[bookmark: _vsjiqzz0xi0c]​8.3.2.​ Server Requirements​8.3.2.​ Server Requirements
· TAXII Servers MUST implement all URLs and HTTP methods defined in this section.
· TAXII Servers MAY implement other URLs and/or methods.
· TAXII Servers MUST include the version parameter in the Content-Type header when responding to Accept: headers of application/vnd.oasis.taxii+json and application/vnd.oasis.stix+json; . For example: Content-Type:application/vnd.oasis.taxii+json; version=2.0
· The status resource MUST be returned when an HTTP 202 (Accepted) response is given to a POST request.
· A server generating an HTTP error response SHOULD also include the error message in the response payload to give additional application specific details about the error.
· Servers MAY silently ignore unauthorized requests from clients.
· If a TAXII Client is unauthorized to access one or more objects or resources in a returned list, the server SHOULD filter those records from the returned list instead of refusing to fulfill the request.
[bookmark: _j42im6jb6cop]​8.3.3.​ Client Requirements​8.3.3.​ Client Requirements
· Requests MUST include an Accept: header.
· Requests that expect a STIX or TAXII response SHOULD include an appropriate media range in the accept header.
· A media range of application/vnd.oasis.taxii+json in the accept header indicates that any version of TAXII is acceptable in the response.
· A media range of application/vnd.oasis.taxii+json; version=2.0 in the accept header indicates that ONLY TAXII 2.0 is acceptable in the response.
· A media range of application/vnd.oasis.stix+json in the accept header indicates that any version of STIX is acceptable in the response.
· A media range of application/vnd.oasis.stix+json; version=2.0 in the accept header indicates that ONLY STIX 2.0 is acceptable in the response.
[bookmark: _stvpbojnarvw]​8.4.​ HTTP Status Codes​8.4.​ HTTP Status Codes
This section lists commonly used HTTP status codes as a reference for implementers. This specification does not modify the usage or meaning of HTTP status codes, and implementations are not restricted to using HTTP status codes listed in this section.

	HTTP Code
	Text Value
	Notes (if any)

	HTTP 200
	OK
	

	HTTP 202
	Accepted
	The request was accepted but has not yet been processed. This is used when a group of Objects or Messages are POSTed, and the server will process them asynchronously.

	HTTP 400
	Bad Request
	

	HTTP 401
	Unauthorized
	

	HTTP 403
	Forbidden
	

	HTTP 404
	Not Found
	

	HTTP 405
	Method Not Allowed
	Each section defines requirements for certain HTTP Methods (e.g., GET, POST); each of these methods is said to be a supported method for the URL. HTTP requests that use a supported method MUST NOT result in an HTTP response with a status of 405 (Method Not Allowed). Other methods MAY result in an HTTP response with a status of 405. For example, the <api-root> defines requirements for the GET method, but not other methods. In this case, GET requests cannot result in an HTTP response with a status of 405; but POST requests may.

	HTTP 406
	Not Acceptable
	For HTTP responses that contain a message body, the format of the message body is negotiated using the HTTP Accept header. Formats that are specified in the HTTP Accept header that the server is capable of providing are said to be acceptable. Formats specified in the HTTP Accept header that the server is not capable of providing are said to be unacceptable.

If all options listed in the HTTP request’s Accept header are unacceptable, the HTTP response must have a status code of HTTP 406 (Not Acceptable). Each section defines which response formats must be acceptable.

	HTTP 410
	Gone
	

	HTTP 415
	Unsupported Media Type
	For HTTP requests that contain a message body, the format of the message body is identified using the HTTP Content-Type header. For Content-Types that the server does not support, the HTTP response must have a status code of HTTP 415 (Unsupported Media Type). Each section defines which Content-Types must be supported. Additional Content-Types, beyond those listed, MAY be supported.

	HTTP 429
	Too Many Requests
	

	HTTP 500
	Internal Server Error
	

[bookmark: _rqkm7tkh8t9g]​8.5.​ GET <discovery>​8.5.​ GET <discovery>
This URL allows TAXII Clients to discover information about a TAXII Server and learn the API Roots that this TAXII Server knows about.

The following tables illustrate a conformant request/response pair.

Figure XX - Discovery Request Properties
	Request Properties

	Request Line
	GET <discovery>

	URL Variable(s)
	n/a

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Discovery Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	discovery

[bookmark: _gwp8881s74nw]​8.5.1.​ Requirements​8.5.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain a JSON discovery object.

[bookmark: _rdwsl0x8vzgi]​8.5.2.​ Examples​8.5.2.​ Examples
GET Request
	GET /taxii HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
{
 "display_name": "Some TAXII Server",
 "description": "This TAXII server contains a listing of...",
 "contact": "string containing contact information",
 "default": "https://example.com/api2",
 "api_roots": [
 "https://example.com/api1",
 "https://example.com/api2",
 "https://companyfoo.com/trustgroup1"
]
}

[bookmark: _subu0a1w5bvt]​8.6.​ GET <api-root>​8.6.​ GET <api-root>
This URL allows TAXII Clients to discover the available channels and collections at this specific API Root.

The following tables illustrate a conformant request/response pair.

Figure XX - API Root Request Properties
	Request Properties

	Request Line
	GET <api-root>

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - API Root Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	api-root

[bookmark: _o5w53j5ujrf3]​8.6.1.​ Requirements​8.6.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain a JSON api-root object.
· Servers MAY elide results from the response. For example, a server might choose to elide an API root if the requestor did not have sufficient permissions to view it.

[bookmark: _w13xtrxniipa]​8.6.2.​ Examples​8.6.2.​ Examples
GET Request
	GET /some-api-base HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
{
 "display_name": "Malware Research Group",
 "description": "A trust group setup for malware researchers",
 "versions": ["taxii-2.0"],
 "channels": [],
 "collections": [
 {
 "url": "https://example.com/api-1/collections/high-value-indicators",
 "display_name": "High Value Indicator Collection",
 "description": "This data collection is for collecting high value IOCs",
 "can_read": true,
 "can_write": false,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "objects_count": 923
 },
 {
 "url": "https://example.com/tg1/collections/24-hour-indicators",
 "display_name": "Indicators from the past 24-hours",
 "description": "This data collection is for collecting current IOCs",
 "can_read": true,
 "can_write": false,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "objects_count": 7
 }
],
 "max_content_length": 9765625,
}

[bookmark: _g5nhvit9iwpo]​8.7.​ GET /collections​8.7.​ GET /collections
This URL allows TAXII Clients to get a list of Collection resources that are available within an API Root.

The following tables illustrate a conformant request/response pair.

Figure XX - Collections Request Properties
	Request Properties

	Request Line
	GET <api-root>/collections

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Collections Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	list of type collection

[bookmark: _pc8xid62pihu]​8.7.1.​ Requirements​8.7.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain a JSON list, where each item in the list is a collection.
· If there are zero collection to return, the result is an empty list.
· If there is one collection to return, the result is a list with one item.
· Servers MAY elide results from the response. For example, a server might choose to elide a collection if the requestor did not have sufficient permissions to view it.

[bookmark: _slh9qy7irtbs]​8.7.2.​ Examples​8.7.2.​ Examples
GET Request
	GET https://example.com/api-1/collections HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
[
 {
 "url": "https://example.com/api-1/collections/high-value-indicators",
 "display_name": "High Value Indicator Collection",
 "description": "This data collection is for collecting high value IOCs",
 "can_read": true,
 "can_write": false,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "objects_count": 923
 },
 {
 "url": "https://example.com/tg1/collections/24-hour-indicators",
 "display_name": "Indicators from the past 24-hours",
 "description": "This data collection is for collecting current IOCs",
 "can_read": true,
 "can_write": false,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "objects_count": 7
 }
]

[bookmark: _8akkdelgbkrg]​8.8.​ GET /collections/<name>​8.8.​ GET /collections/<name>
This URL allows TAXII Clients to get details about this specific Collection.

The following tables illustrate a conformant request/response pair.

Figure XX - Collection Request Properties
	Request Properties

	Request Line
	GET <api-root>/collections/<name>

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection
<name> - the name of the collection being requested

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Collection Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	collection

Figure XX - Common Errors
	Common Errors

	Status Code
	Possible Reason

	HTTP 404
	The Collection is not found

[bookmark: _7gv0zwr5d6w2]​8.8.1.​ Requirements​8.8.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain a JSON collection object.
· If no collection is returned, the result is an HTTP 404 (Not Found).
· Servers MAY elide results from the response. For example, a server might choose to elide a collection if the requestor did not have sufficient permissions to view it.

[bookmark: _29z35kort578]​8.8.2.​ Examples​8.8.2.​ Examples
GET Request
	GET https://example.com/api-1/collections/high-value-indicators HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
{
 "url": "https://example.com/api-1/collections/high-value-indicators",
 "display_name": "High Value Indicator Collection",
 "description": "This data collection is for collecting high value IOCs",
 "can_read": true,
 "can_write": false,
 "media_types": [
 "application/vnd.oasis.stix+json; version=2.0"
],
 "objects_count": 923
}

[bookmark: _4jiwyx7i0uyw]​8.9.​ GET /collections/<name>/manifest​8.9.​ GET /collections/<name>/manifest
This URL allows TAXII Clients to get a Manifest of Objects in this collection. This URL supports URL parameters to filter the results.

The following tables illustrate a conformant request/response pair.

Figure XX - Collection Manifest Request Properties
	Request Properties

	Request Line
	GET <api-root>/collections/<name>/manifest

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection
<name> - the name of the collection being requested

	URL Parameters
	id
type
version
added_after

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Collection Manifest Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	list of type manifest

[bookmark: _p4b92bhu0t34]​8.9.1.​ Requirements​8.9.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain a JSON list, where each item in the list is a manifest.
· If there are zero manifest to return, the result is an empty list.
· If there is one manifest to return, the result is a list with one item.
· Servers MAY elide results from the response. For example, a server might choose to elide a manifest if the requestor did not have sufficient permissions to view it.
· The id, type, version, and added_after URL parameters MUST be supported at this URL endpoint.

[bookmark: _ilpyypj1oxcn]​8.9.2.​ Examples​8.9.2.​ Examples
GET Request
	GET https://example.com/api-1/collections/high-value-indicators/manifest HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
[
 {
 "url": "https://example.com/api-1/collections/high-value-indicators/objects/
 indicator--c410e480-...-85307c12bcbf",
 "date_added": "2016-11-01T03:04:05Z",
 "last_modified": "2016-11-03T12:30:59Z",
 "versions": [1,2,4,6,9],
 "media_types": ["application/vnd.oasis.stix+json; version=2.0"]
 },
 {
 "url": "https://example.com/api-1/collections/high-value-indicators/objects/
 indicator--c410e480-...-85307c121112",
 "date_added": "2016-11-01T10:29:05Z",
 "last_modified": "2016-11-01T10:29:05Z",
 "versions": [4],
 "media_types": ["application/vnd.oasis.stix+json; version=2.0"]
 }
]

[bookmark: _xlss9yvcfjov]​8.10.​ GET /collections/<name>/objects​8.10.​ GET /collections/<name>/objects
This URL allows TAXII Clients to get multiple Objects in this collection. This URL supports URL parameters to filter the results.

The following tables illustrate a conformant request/response pair.

Figure XX - Collection Objects Request Properties
	Request Properties

	Request Line
	GET <api-root>/collections/<name>/objects

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection
<name> - the name of the collection being requested

	URL Parameters
	id
type
version
added_after

	Accept Header
	application/vnd.oasis.stix+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Collection Objects Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.stix+json; version=2.0

	Message Body
	object*

* The actual format of objects is dependent on HTTP Content negotiation, as discussed in Section [TODO REF]

[bookmark: _5la3bxa91pil]​8.10.1.​ Requirements​8.10.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.stix+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.stix+json MUST contain an object resource.
· If there are no object to return, the result is an HTTP 404 (Not Found).
· Servers MAY elide results from the response. For example, a server might choose to elide a manifest if the requestor did not have sufficient permissions to view it.
· The id, type, version, and added_after URL parameters MUST be supported at this URL endpoint.

[bookmark: _qc26j74jmr4m]​8.10.2.​ Examples​8.10.2.​ Examples
GET Request
	GET https://example.com/api-1/collections/high-value-indicators/objects HTTP/1.1
Accept: application/vnd.oasis.stix+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.stix+json; version=2.0
{
 "type": "bundle",
 ...,
 "indicators": [
 {
 "type": "indicator",
 ...,
 }
]
}

[bookmark: _4miz6vh6cpf5]​8.11.​ POST /collections/<name>/objects​8.11.​ POST /collections/<name>/objects
This URL allows TAXII Clients to create an Object in this collection.

The following tables illustrate a conformant request/response pair.

Figure XX - Collection Objects Request Properties
	Request Properties

	Request Line
	POST <api-root>/collections/<name>/objects

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection
<name> - the name of the collection being requested

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	application/vnd.oasis.stix+json; version=2.0

	Message Body
	object

Figure XX - Collection Objects Response Properties
	Response Properties

	Status Line
	HTTP/1.1 202 Accepted

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	status

[bookmark: _gqml9e7wxzhp]​8.11.1.​ Requirements​8.11.1.​ Requirements
· A TAXII Server MUST support POST requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· Requests with a Content-Type header that contains application/vnd.oasis.stix+json MUST NOT result in an HTTP 415 (Unsupported Media Type) response.
· HTTP 202 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain an status resource.
· The client should periodically poll the URL contained in the status url property to retrieve the most up-to-date status, until such a time that the status property returns a value of complete.
· TAXII Servers SHOULD NOT delete status messages for at least 24 hours.	Comment by Bret Jordan: What should we do here if anything?

[bookmark: _ct7u7f9jo87m]​8.11.2.​ Examples​8.11.2.​ Examples
​​POST Request
	POST https://example.com/api-1/collections/high-value-indicators/objects HTTP/1.1
Accept: application/vnd.oasis.taxii+json
Content-Type: application/vnd.oasis.stix+json; version=2.0
{
 "type": "bundle",
 ...,
 "indicators": [
 {
 "type": "indicator",
 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",
 ...,
 }
]
}

​POST Response
	HTTP/1.1 202 Accepted
Content-Type: application/vnd.oasis.taxii+json; version=2.0
{
 "url": "https://example.com/api-1/status/1234",
 "status": "pending",
 "request_url": "https://example.com/api-1/collections/coll1/objects",
 "request_timestamp": "2016-11-02T12:34:34.12345Z",
 "total_items": 1,
 "success_count": 1,
 "success_items": [
 {
 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",
 "url": "https://example.com/api-1/collections/coll1/objects/indicator--
 c410e480-e42b-47d1-9476-85307c12bcbf"
 }
],
}

[bookmark: _9y37u2nt5euw]​8.12.​ GET /collections/<name>/objects/<object-id>​8.12.​ GET /collections/<name>/objects/<object-id>
This URL allows TAXII Clients to get a specific Object from this collection. This URL only supports the version URL parameters to filter the results.

The following tables illustrate a conformant request/response pair.

Figure XX - Collection Objects ID Request Properties
	Request Properties

	Request Line
	GET <api-root>/collections/<name>/objects/<object-id>

	URL Variable(s)
	<api-root> - the base URL of the API Root containing the collection
<name> - the name of the collection being requested
<object-id> - the ID of the object being requested

	URL Parameters
	version

	Accept Header
	application/vnd.oasis.stix+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Collection Objects ID Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.stix+json; version=2.0

	Message Body
	object*

* The actual format of objects is dependent on HTTP Content negotiation, as discussed in Section [TODO REF]

[bookmark: _3lxnc6obj31j]​8.12.1.​ Requirements​8.12.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.stix+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.stix+json MUST contain an object resource..
· If no object is returned, the result is an HTTP 404 (Not Found).
· Servers MAY elide results from the response. For example, a server might choose to elide an object if the requestor did not have sufficient permissions to view it.
· The version URL parameter MUST be supported at this URL endpoint.

[bookmark: _p8xy89pw8463]​8.12.2.​ Examples​8.12.2.​ Examples
GET Request
	GET https://example.com/api-1/collections/high-value-indicators/object/indicator--252c7c11- daf2-42bd-843b-be65edca9f61 HTTP/1.1
Accept: application/vnd.oasis.stix+json; version=2.0

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.stix+json; version=2.0
{
 "type": "bundle",
 ...,
 "indicators": [
 {
 "type": "indicator",
 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
 ...,
 }
]
}

[bookmark: _j7iynwo77sal]​8.13.​ GET /object-search​8.13.​ GET /object-search
This URL allows TAXII Clients to retrieve multiple Objects from any collection in this API Root. This URL supports URL parameters to filter the results.

The following tables illustrate a conformant request/response pair.

Figure XX - Object Search Request Properties
	Request Properties

	Request Line
	GET <api-root>/object-search

	URL Variable(s)
	<api-root> - the base URL of the API Root

	URL Parameters
	id
type
version
added_after

	Accept Header
	application/vnd.oasis.stix+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Object Search Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.stix+json; version=2.0

	Message Body
	object*

* The actual format of objects is dependent on HTTP Content negotiation, as discussed in Section [TODO REF]

[bookmark: _cqvlfse0u84o]​8.13.1.​ Requirements​8.13.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.stix+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.stix+json MUST contain an object resource..
· If no object is returned, the result is an HTTP 404 (Not Found).
· Servers MAY elide results from the response. For example, a server might choose to elide an object if the requestor did not have sufficient permissions to view it.
· The id, type, version, and added_after URL parameters MUST be supported at this URL endpoint.

[bookmark: _oi3pb45wosrb]​8.13.2.​ Examples​8.13.2.​ Examples
GET Request
	GET https://example.com/api-1/object-search?type=indicator HTTP/1.1
Accept: application/vnd.oasis.stix+json; version=2.0

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.stix+json; version=2.0
{
 "type": "bundle",
 ...,
 "indicators": [
 {
 "type": "indicator",
 ...,
 }
]
}

[bookmark: _qhki2dow699u]​8.14.​ GET /status/<status-id>​8.14.​ GET /status/<status-id>
This URL allows TAXII Clients to get a Status of a previous request. This is used to monitor the status of requests that have resulted in an HTTP 202 (Accepted) response.

The following tables illustrate a conformant request/response pair.

Figure XX - Status Request Properties
	Request Properties

	Request Line
	GET <api-root>/status/<status-id>

	URL Variable(s)
	<api-root> - the base URL of the API Root
<status-id> - the ID of the status message being requested

	URL Parameters
	n/a

	Accept Header
	application/vnd.oasis.taxii+json; version=2.0

	Content-Type Header
	n/a

	Message Body
	n/a

Figure XX - Status Response Properties
	Response Properties

	Status Line
	HTTP/1.1 200 OK

	Content-Type Header
	application/vnd.oasis.taxii+json; version=2.0

	Message Body
	status

Figure XX - Common Errors
	Common Errors

	Status Code
	Possible Reason

	HTTP 404
	The Status ID is not found

[bookmark: _oskl9x63r9bj]​8.14.1.​ Requirements​8.14.1.​ Requirements
· A TAXII Server MUST support GET requests at this URL and MAY support other request types.
· Requests with an Accept header that contains application/vnd.oasis.taxii+json MUST NOT result in an HTTP 406 (Not Acceptable) response.
· HTTP 200 Responses with a Content-Type of application/vnd.oasis.taxii+json MUST contain an status resource..
· If no status is returned, the result is an HTTP 404 (Not Found).
· Servers MAY elide results from the response. For example, a server might choose to elide the status if the requestor did not have sufficient permissions to view it.

[bookmark: _zebb4as1lofe]​8.14.2.​ Examples​8.14.2.​ Examples
GET Request
	GET /some-api-root/status/123456 HTTP/1.1
Accept: application/vnd.oasis.taxii+json

GET Response
	HTTP/1.1 200 OK
Content-Type: application/vnd.oasis.taxii+json; version=2.0
{
 "url": "https://example.com/api-1/status/1234",
 "status": "pending",
 "request_url": "https://example.com/api-1/collections/coll1/objects",
 "request_timestamp": "2016-11-02T12:34:34.12345Z",
 "total_items": 4,
 "success_count": 1,
 "success_items": [
 {
 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",
 "url": "https://example.com/api-1/collections/coll1/objects/indicator--
 c410e480-e42b-47d1-9476-85307c12bcbf"
 }
],
 "failure_count": 1,
 "failure_items": [
 {
 "id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",
 "message": "Unable to process object"
 }
],
 "pending_count": 2,
 "pending_items": [
 "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
 "relationship--045585ad-a22f-4333-af33-bfd503a683b5"
]
}

[bookmark: _yeo5yj6uksa9]​9.​ TAXII Resources​9.​ TAXII Resources
This section defines the TAXII resources and their representations.
[bookmark: _3n5r3cjoheja]​9.1.​ API Root Resource​9.1.​ API Root Resource
Resource Name: api-root
	Property Name
	Type
	Description

	display_name (required)
	string
	A human readable text/plain name used to identify this API instance. This is not the name of this API Root that is found in the URL.

	description (optional)
	string
	A human readable text/plain description for this API Root.

	versions (required)
	list of type string
	Lists the versions of TAXII that this API Root is compatible with. taxii-2.0 MUST be included in this list to indicate conformance with this specification.

	channels (required)
	list of type channel
	<TODO>

	collections (required)
	list of type collection
	<TODO>

	max_content_length (optional)
	integer
	The maximum value of the request body "Content-Length" in octets (8-bit bytes) that the server can support. This applies to requests and responses and is determined by the server. Requests or responses with total body lengths values smaller than this value MUST NOT result in an HTTP 413 (Request Entity Too Large) response.

Absence of this value means the server is choosing to not provide this information..

This property is needed to help make sure a client does not have to keep guessing at how much data it can send. For example, if a server only supports payloads up to 10MB and a client wants to send 50MB of data, without this, the client would have to keep guessing as to what the server will support.

[bookmark: _cnwttwtm2b4k]​9.2.​ Discovery Resource​9.2.​ Discovery Resource
Resource Name: discovery
	Property Name
	Type
	Description

	display_name (require)
	string
	A human readable text/plain name used to identify this server.

	description (optional)
	string
	A human readable text/plain description for this server.

	contact (optional)
	string
	The human readable text/plain contact information for this server and or the administrator of this server.

	default (optional)
	string
	The default API Root that a TAXII Client MAY use. Absence of this field indicates that there is no default API Root.

	api_roots (required)
	list of type string
	A list of URLs that identify API Roots that are hosted on this server or that this server knows about. This list MAY be filtered on a per-client basis.

[bookmark: _868250i2vzaz]​9.3.​ Collection Resource​9.3.​ Collection Resource
Resource Name: collection
	Property Name
	Type
	Description

	url (optional)
	string
	The full URL of this collection. This property MUST be present in GET responses.

	display_name (required)
	string
	A human readable text/plain name used to identify this Collection.

	description (optional)
	string
	A human readable text/plain description for this Collection.

	can_read (optional)
	boolean
	Indicates if the requester can read (i.e., GET) objects from this Collection. Absence of this field is equivalent to a value of false.

	can_write (optional)
	boolean
	Indicates if the the requester can write (i.e., POST) objects to this Collection. Absence of this field is equivalent to a value of false.

	media_types (optional)
	list of type string
	A list of supported media types for Objects in this collection. Absence of this field is equivalent to a value of application/vnd.oasis.stix+json.

	objects_count (required)
	integer
	The current number of objects contained in this Collection.

[bookmark: _x3qvuund7mi1]​9.4.​ Error Resource​9.4.​ Error Resource
Resource Name: error
	Property Name
	Type
	Description

	error_id (optional)
	string
	An identifier for this particular error. A TAXII Server might choose to assign each error occurrence it's own identifier in order to facilitate debugging.

	display_name (required)
	string
	A human readable text/plain name describing this error.

	description (optional)
	string
	A human readable text/plain description that gives details about the error or problem that was encountered by the application.

	error_code (optional)
	string
	The error code for this error. A TAXII Server might choose to assign a common error code to all errors of the same type.

	http_status (optional)
	string
	The HTTP status code applicable to this error.

	external_details (optional)
	string
	A URL that points to additional details. Absence of this field indicates that there are not additional details.

	details (optional)
	object
	The details objects provide a location for additional application specific details.

[bookmark: _b9atqvcnppmp]​9.4.1.​ Example​9.4.1.​ Example
{
 "error_id": "1234",
 "display_name": "Error condition XYZ",
 "description": "This error is caused when the application tries to access data...",
 "error_code": "581234",
 "http_status": "409",
 "external_details": "http://someserver.com/ticketnumber1/errorid-1234",
 "details": {
 "somekey1": "somevalue",
 "somekey2": "some other value"
 }
}

[bookmark: _wnjjf6o4mwjt]​9.5.​ Manifest Resource​9.5.​ Manifest Resource
Resource Name: manifest
	Property Name
	Type
	Description

	url (required)
	string
	The full URL of this object

	date_added (optional)
	timestamp
	The date this object was add to the server.

	last_modified (optional)
	timestamp
	The date this object was last updated or the last modified date of the most current version.

For example, if version 2 was added after version 3, this date would contain the last modified date from version 3 not version 2 as version 3 is the most current version.

	versions (optional)
	list of type string
	A list of available STIX versions. This field is only meaningful for objects that are available in a STIX format.

	media_types (optional)
	list of type string
	The media types that this object can be requested in.

[bookmark: _mzunvkrv37rh]​9.6.​ Object Resource​9.6.​ Object Resource
Resource Name: object
This resource type is negotiated by the media type. If the media type in the Accept or Content-Type header contains application/vnd.oasis.stix+json; version=2.0 then this resource type is a STIX Bundle version 2.0 as defined in the STIX specification located here [TODO add reference].

[bookmark: _21tzry6u9dbz]​9.7.​ Status Resource​9.7.​ Status Resource
Resource Name: status
This resource is returned when an HTTP 202 (Accepted) response is given to a POST request. This resource conveys the status of a bulk creation.

	Property Name
	Type
	Description

	url (required)
	string
	The full URL of the this Status resource. Absence of this field means that there is no URL to get this status again.	Comment by Bret Jordan: do we really need this clause?

	status (required)
	string
	The overall status of a previous POST request where an HTTP 202 (Accept) was returned. The value of this property MUST be one of complete or pending. A value of complete indicates that this resource will not be updated further and MAY be removed in the future. A status of pending indicates that this resource MAY update in the future.

	request_url (optional)
	string
	The URL of the request that this status resource is monitoring.

	request_timestamp (optional)
	timestamp
	The datetime of the request that this status resource is monitoring.

	total_items (required)
	integer
	The total number of items that were in the request. For a STIX Bundle this would be the number of objects in the Bundle.

	success_count (optional)
	integer
	The number of items that were successfully created. Absence of this field is equivalent to a value of “0” (zero).

	success_items (optional)
	list of type success-items
	A list of items that were successfully processed.

	failure_count (optional)
	integer
	The number of items that failed to be created. Absence of this field is equivalent to a value of “0” (zero).

	failure_items (optional)
	list of type failure-items
	A list of items that were not successfully processed.

	pending_count (optional)
	integer
	The number of items that have yet to be processed.

	pending_items (optional)
	list of type string
	A list of identifiers for items that have yet to be processed.

Type Name: success-items
This type contains a list of success items by ID and location.
	Property Name
	Type
	Description

	id (required)
	string
	The identifier of the item that was created. For types that have an identifier, that identifier should be used here.

	url (required)
	string
	The URL location of the created item.

Type Name: failure-items
This type contains a list of success items by ID and location.
	Property Name
	Type
	Description

	id (required)
	string
	The identifier of the item that was created. For types that have an identifier, that identifier should be used here.

	message (optional)
	string
	A message indicating why the item failed to be created.

[bookmark: _5p0etrr85v8y]​10.​ Customizing TAXII Resources​10.​ Customizing TAXII Resources
[TODO add section description]
[bookmark: _cuhggiw0s7fa]​10.1.​ Custom Properties​10.1.​ Custom Properties
It is understood that there will be cases where certain information exchanges can be improved by adding properties that are not specified nor reserved in this document; these properties are called Custom Properties. This section provides guidance and requirements for how TAXII Servers can use Custom Properties and how TAXII Clients should interpret them in order to extend TAXII in an interoperable manner.
[bookmark: _3a2x3jdr23tq]​10.1.1.​ Requirements​10.1.1.​ Requirements
· A TAXII resource MAY have any number of Custom Properties.
· Custom Property names MUST be in ASCII and are limited to characters a-z (lowercase ASCII) and underscore (_).
· Custom Property names SHOULD start with “x_” followed by a source unique identifier (like a domain name), an underscore and then the name. For example: x_examplecom_customfield.
· Custom Property names SHOULD be no longer than 30 ASCII characters in length.
· Custom Property names MUST have a minimum length of 3 ASCII characters.
· Custom Property names MUST be no longer than 256 ASCII characters in length.
· Custom Property names that are not prefixed with “x_” may be used in a future version of the specification for a different meaning. If compatibility with future versions of this specification is required, the “x_” prefix MUST be used.
· Custom Property names SHOULD be unique when produced by the same source and SHOULD use a consistent namespace prefix (e.g., a domain name).
· Custom Properties SHOULD only be used when there is no existing properties defined by the TAXII specification that fulfills that need.

A TAXII Client that receives a TAXII message with one or more Custom Properties it does not understand MAY refuse to process the message further, or silently ignore non-understood properties and continue processing the message.

The reporting and logging of errors originating from the processing of Custom Properties depends heavily on the TAXII Server and Client implementations and is therefore not covered in this specification.

Non-Normative: TAXII Servers that produce messages that contain Custom Properties should be aware of the variability of TAXII Client behavior depending on whether or not the TAXII Client understands the Custom Properties present in a TAXII message. Rules for processing Custom Properties should be well defined and accessible to any TAXII Client that would be reasonably expected to parse them.
​
Examples
{
 ...,
 "x_acmeinc_scoring": {
 "impact": "high",
 "probability": "low"
 },
 ...
}

[bookmark: _a0iri07jww47]​11.​ Conformance​11.​ Conformance
[bookmark: _2c6m6fwix6p8]​11.1.​ 8.1 TAXII Servers​11.1.​ TAXII Servers
A "TAXII 2.0 Server" is any software that creates publishes CTI content and conforms to the following normative requirements:
1. It MUST communicate over HTTPS using at least TLS version 1.2.
2. It MUST be able to create content encoded as JSON.
3. All required properties MUST be present in the created content.
4. All properties MUST conform to the data type and normative requirements for that property.
5. It MUST support at least Collections or Channels.
6. It MUST support all features listed in Section 11.2, Mandatory Features.
7. It MAY support any features listed in Section 11.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.

A "TAXII 2.0 Client" is any software that consumes CTI content and conforms to the following normative requirements:
1. It MUST communicate over HTTPS using at least TLS version 1.2.
2. It MUST support parsing all required properties for the content that it consumes.
3. It MUST support all features listed in Section 8.2, Mandatory Features.
4. It MAY support any features listed in Section 8.3, Optional Features. Software supporting an optional feature MUST comply with the normative requirements of that feature.
[bookmark: _afah9h2pxi28]​11.2.​ 8.2 Mandatory Features​11.2.​ Mandatory Features
[bookmark: _gygtg7mt1jza]​11.2.1.​ TODO​11.2.1.​
A TAXII 2.0 Server or TAXII 2.0 Client MUST support X by following the normative requirements listed in Section X.
[bookmark: _vdnporb6fgle]​11.3.​ Optional Features
[bookmark: _ymvi1pwwcv6h]​11.3.1.​ TODO
A TAXII 2.0 Server or TAXII 2.0 Client MAY support X. Software claiming to support X MUST follow the normative requirements listed in Section X and X.
​11.3.2.​ Granular Data Markings
[bookmark: _qwt9kyfe5esq]​12.​ Appendix A. Acknowledgments
TAXII Subcommittee Chairs:
Bret Jordan (bret.jordan@bluecoat.com), Blue Coat Systems, Inc.
Mark Davidson (mdavidson@soltra.com), Soltra

Special Thanks:
The following individuals made substantial contributions to this specification in the form of normative text and proofing and their contributions are gratefully acknowledged:

· Bret Jordan, Blue Coat Systems, Inc.
· Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
· Eric Burger, Georgetown University
· Jason Keirstead, IBM
· Mark Davidson, Soltra
· Allan Thomson, LookingGlass Cyber
· John Wunder, MITRE Corporation
· John-Mark Gurney, New Context Services, Inc.

Contributors:
The following individuals were members of the OASIS CTI Technical Committee during the creation of this specification and their contributions are gratefully acknowledged:
<todo, make sure this is up to date>

[bookmark: _kvom18a55dqz]​13.​ Appendix B. Changes from TAXII 1.1
For the TAXII 2.x series of releases, TAXII is no longer an acronym; TAXII is now just “TAXII”. TAXII previously expanded to “The Trusted Automated eXchange of Indicator Information”. TAXII’s use has proven to be broader than indicators, and therefore the original name became artificially limiting.

Network level discovery is added through the definition of a DNS SRV record. Prior versions of TAXII did not have network level discovery.

HTTP Long Polling is explicitly defined in an attempt to reduce time-delay in server-push scenarios (with the understanding that HTTP is not well-suited to server pushes of information). TAXII 1.x was silent on HTTP Timeouts.

Authentication requirements are specified in an attempt to improve interoperability. Previous versions of TAXII were silent on authentication requirements.

The protocol and format are explicitly defined in one document (this document). Previous versions of TAXII used one document per protocol/format definition, resulting in multiple documents per TAXII release. This change is the result of removing a requirement that TAXII be implementable across any protocol and format combination.

TAXII is now explicitly JSON over HTTPS. Previous versions of TAXII were flexible regarding protocol and format.

While TAXII 2 maintains all the capabilities of previous releases, many capabilities have been transformed into their RESTful equivalents. Those changes are:
· TAXII Services have been removed as a concept. In their place are RESTful interactions (e.g., HTTP GET, HTTP POST).
· TAXII Data Sets have been formalized as containers of content. This specification calls them TAXII Collections.
· TAXII Data Feeds have been formalized as a Publish/Subscribe messaging pattern. This specification calls them TAXII Channels.

[bookmark: _36r8f5dnhpyt]​14.​ Appendix C - End to End Workflow

When this Discovery API is used with a DNS SRV record, clients auto-discover TAXII services as follows:

Step 1: Client uses DNS to retrieve a TAXII DNS Service Record, example:

_taxii._tcp.example.com. 86400 IN SRV 0 5 443 taxii.example.com

If no SRV record is present for the domain, the client assumes the TAXII service is available at the domain itself, and the default HTTPS port of 443.

Step 2: Client uses the TAXII information provided in the DNS Service Record to construct the Discovery API URL. Using the port (443) and the hostname (taxii.example.com) from the DNS SRV Record, the TAXII Discovery URL is constructed as follows:

https:// + hostname + : + port + /taxii/

Step 3: Client issues a request to the fully constructed TAXII Discovery URL:

https://taxii.example.com:443/taxii/

1. Discuss DNS discovery
2. Get Discovery
3. Follow default to API Root
4. List collections
5. Pick collection to interact with
6. List objects
7. Get an object
8. Create an object

[bookmark: _ldhi1g1rg5ug]​15.​ Appendix D - Security Considerations
This appendix should talk about security issues with DNS SRV Records. For TAXII Server the reference identifier expected in certificates SHALL be the original name, as per RFC 6125. The concern has to do with a DNS query to example.com and then getting back a result of taxii-hub-1.example.com and the client then making a followon request. Dave Cridland can give more details here. ​The problem we are trying to address is that if you do a DNS lookup for the domain example.com and it returns a SRV record for taxii.example.com, there is no way to verify that record without DNSSEC. 1) remove 2) just call out that you SHOULD use DNSSEC 3) talk about the end server needing a cert for all of the names aka example.com + foo.example.com
image01.png
Discovery

Collections

API Root Channels Messages

Status

image03.png
Consumer

Producer TAXII
Client
Request
Publish *
TAX e = AX| Subscribe TAXII
Client T " Consumer % Client
Server

TAXII

Client

