
STIX & Semantic Equivalence 

Background 
One of the issues that STIX sharing communities eventually face is the sharing of intelligence 
that is either identical or very similar to intelligence that has already been shared within the 
community. While detecting purely identical intelligence is simple and can be accomplished 
through basic string comparison, detecting intelligence that has the same or similar underlying 
meaning and is therefore semantically equivalent to other intelligence is a more challenging 
proposition. Thus, the concept of detecting semantically equivalent STIX content is based 
around understanding the semantics of individual STIX Domain Objects (SDOs) – each object 
has its own unique set of properties that need to be considered when determining semantic 
equivalence. 
  
As an illustration of this problem, consider the following two Indicators: 

 
  
On the face of it, these Indicators are not identical, as they don’t share any properties besides a 
common indicator_types property value. However, if one were to look at closely at their 
pattern values, which represents the actual malicious cyber activity that they’re looking for, 
you’ll see that they are in fact semantically equivalent as the “/31” CIDR block in Indicator 1 is 
equivalent to the two IP addresses OR’d together in Indicator 2. 

Scope 
Semantic equivalence in the context of STIX is a multi-faceted topic and this paper represents 
an initial attempt at covering some key aspects of this process. Accordingly, this paper is 
focused exclusively on the calculation of semantic equivalence between identical types of STIX 
SDOs, and does not cover or take into account equivalence between STIX Relationship Objects 
(SROs), equivalence between non-identical types of STIX SDOs, or the broader topic of 
graph-based equivalence. 

 



Calculating Semantic Equivalence 
The following section discusses the overarching concept and algorithm for calculating pair-wise 
semantic equivalence between STIX 2.x SDOs. 

High-level Process 
At a high-level, the process for calculating semantic equivalence between STIX SDOs is as 
follows: 
  
1.     Determine the “key” properties of primary semantic importance (i.e., those that are critical 
to the underlying meaning of the object) for each STIX Domain Object. 

a.     Equivalence must be calculated differently for each type of STIX Domain Object. 
2.     Determine the set of properties for each STIX SDO that are not important with respect to its 
semantics and should be ignored. For example, the following common properties are not likely 
to be useful as they have no bearing on the overall semantics of an SDO: 

a.     id 
b.     created_by_ref 
c.     created/modified 
d.     description 

3.     For each pair of SDOs, calculate semantic equivalence by comparing only the values of 
the “key” properties found between the two SDOs and ignoring the rest. 
  
Each of these steps are discussed in detail in the following sections. 

Key SDO Properties 
Captured below in Table 1 are the "key" properties of various STIX 2.1 SDOs, which play a 
significant role in capturing the underlying meaning of the object. Note that this concept is 
specific to semantic equivalence as outlined in this paper - the STIX specification has no notion 
of "key" properties in this sense Properties that are defined as required in the STIX specification 
for each SDO are highlighted in bold. 
  

STIX SDO (2.1 CSD01) Key Properties 

Indicator indicator_types 
pattern 

valid_from 

Malware name 
malware_types 

 



Tool name 
tool_types 

Attack Pattern name 
external_references 

Vulnerability name 
external_references 

Campaign name 
aliases 

Threat Actor name 
threat_actor_types 

aliases 

Location latitude 
longitude 

region 
country 

Identity name 
identity_class 

sectors 

Table 1: Key STIX 2.1 SDO Properties 

Base Algorithm 
The base algorithm for calculating semantic equivalence between a pair of STIX SDOs of the 
same type is as follows, where prop1 … propn refer to the union of key properties found on the 
pair of SDOs being compared (representing the properties that will be evaluated for 
equivalence), the percent matching is a floating point value from 0 to 1.0 (thus supporting partial 
matches), and the weight is an integer value from 0 to 100: 

  
It is necessary to weight each key property, as every property does not represent the same level 
of importance with regards to the semantic equivalence calculation for each SDO. For example, 

 



on the Indicator SDO, the pattern property is of utmost importance and should be weighted 
accordingly. 
 
It’s also important to note that because the key properties for each object (as defined in this 
paper) are not always required in the STIX specification, the sum of the weights in each 
comparison is not always 100. For example, take the case of comparing two Location SDOs 
(see table below), with each having a region and country - the sum of these weights in this 
case is 66. 

Equivalence Score 
The above algorithm calculates the percent equivalence between two SDOs. Thus, this score 
can fall into thresholds such as the following, with the corresponding implications. Note that this 
is just an example meant to illustrate how such scoring thresholds may be used, and in practice 
is something that is dictated by the requirements of the consumer of this data. 
  

● 0%-10%: there’s no overlap between the key properties of the two SDOs, which implies 
that they have no semantic relationship. 

● 10%-50%: there’s some overlap between the key properties of the two SDOs, which 
implies that they may be related but are unlikely to be semantically equivalent. 

● 50%-90%: there’s significant overlap between the key properties of the two SDOs, which 
implies that they may be semantically equivalent. 

● 100%: there is complete overlap between the key properties of the two SDOs, which 
implies that they’re highly likely to be semantically equivalent. 

Example 1 
As an illustration of the score generated by this algorithm, take for example the two Indicators 
we’ve previously discussed. For this example, let’s assume we have the following weights for 
their key properties: 
  

● indicator_types: 15 
● pattern: 80 
● valid_from: 5 

  
In addition, there are the following property values: 

Property Indicator 1 Value Indicator 2 Value 

indicator_types ["malicious-activity"] ["malicious-activity"] 

pattern [ipv4-addr:value = 

'203.0.113.2/31'] 

[ipv4-addr:value = 

'203.0.113.2' OR 

ipv4-addr:value = 

'203.0.113.3'] 

 



valid_from 2016-01-01T00:00:00Z 2016-02-01T00:00:00Z 

  
With these weights and property values, we can now calculate the respective property match 
scores: 
 

● indicator_types: 1.0 (perfect match) * 15 (weight) = 15 
● pattern: 1.0 (perfect match) * 80 (weight) = 80 
● valid_from: 0 (no match) * 5 (weight) = 0 

  
Thus, the overall semantic equivalence percentage between these two Indicators is: 

  
Note that although all of the property matches in this example result in scores of 1.0 (perfect 
match) or 0 (no match), it is possible to have partial matches across the indicator_types and 
pattern properties. 
 
Example 2 
As an another example, consider two Location objects, with the following key properties and 
weights: 
  

● latitude/longitude: 34 
● region: 33 
● country: 33 

  
In addition, there are the following property values: 

Property Location 1 Value Location 2 Value 

latitude/longitude n/a n/a 

region australia-new-zealand australia-new-zealand 

country AU NZ 

  
As seen above, neither of these SDOs contains the latitude/longitude property; accordingly, 
because this property is optional, we can exclude it and its corresponding weight from the 
equivalence calculation. We can now calculate the respective property match scores: 
 

● region: 1.0 (perfect match) * 33 (weight) = 33 
● country: 0 (no match) * 33 (weight) = 0 

  

 



Thus, the overall semantic equivalence percentage between these two Indicators is: 
 

 

Types of Matches 
Depending on the key SDO property that is being compared, different types of matches must be 
calculated. For example, certain properties such as timestamp values can only match if both 
values are exactly the same. Other properties, such as lists of strings, can have partial matching 
results if there is any intersection between the list entries. The types of matches we have 
considered for this initial draft are outlined below in Table 2. 
  

Match Type Description Possible Resulting Values 

Exact Exact match between two property 
values. 

Boolean: 0 (no match) or 1 
(match) 

Partial (list-based) Partial match, based on the 
intersection of the two lists (normalized 
on the size of the largest of the lists). 
 
For example, the following two lists 
would have a matching value of 0.50: 
 
List 1: ["foo", "bar", "foobar", "f00"] 
List 2: ["foo", "bar"] 
 
Matching value = 2 (number of 
intersecting values)/4 (size of the 
largest list) = 0.50 

Float: 0.0 (no intersection) – 1.0 
(complete intersection) 

Partial (string-based) Partial match, using the Jaro-Winkler 
algorithm  to calculate the distance 1

between the two strings. 
 
Note that this approach does not 
account for synonyms or alternate 
spellings of the same word. 

Float: 0.0 (no match) - 1.0 (perfect 
match) 

1 https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance 
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Partial 
(timestamp-based) 

Partial match, based on the 
intersection of the timestamps. 
 
Algorithm: convert date timestamps to 
seconds from the epoch (T1 and T2 
respectively) and compare to the 
number of seconds in a day.  
 
Matching value =  1 – min( (abs(T1 – 
T2)  / 86400), 1) 
 
For example, the following two 
timestamps would have a matching 
value of 0.459 
 
T1: Wednesday, October 31, 2018 
12:25:40 PM 
 
T2: Thursday, November 1, 2018 
1:25:23 AM 
 
Matching value = 1 - 
min((abs(1540988740-1541035523)/8
6400,1) = 1 - min(46783/86400,1) = 1 - 
0.541 = 0.459 

Float: 0.0 (no match) - 1.0 (exact 
match) 

Partial 
(external-reference) 

A special class of partial matching on 
external references (see section 
below). 

Float: 0.0 (no match) - 1.0 (perfect 
match) 

Custom Custom type of match, depending on 
the property. 

0 – 1 (depends on the property) 

Table 2: Types of Matches for Calculating Equivalence 

External Reference Matching 
When matching on external references, if the source_name property of one of the external 
references on each SDO has a value that refers to a type defined in STIX (i.e., “capec”, 
“mitre-attack”, or “cve”) and if one of its external_id or url properties match the value in the 
external reference of the other SDO being compared, then it should be considered a perfect 
match, and the other external references on the SDO can be ignored. 
For example, the following two external references would be considered a perfect match (1.0): 

 



 

 
For matching on external references that don’t include a STIX-defined source_name value, 
standard list-based matching should take place, with the source_name, external_id, and url 
properties being compared. 

Specific Object Equivalence 
The following section delves into the details of calculating semantic equivalence between 
specific types of STIX 2.x SDOs, including their key properties, weights, matching types, and 
associated corner cases. 

Indicator 

Key Property Proposed 
Weight 

Matching Type Comments 

indicator_types 15 Partial (list-based) Straightforward list-based 
matching. Custom values are 
ignored. 

pattern 80 Custom Lots of corner cases and open 
questions, see below. 

valid_from 5 Partial 
(timestamp-based) 

n/a 

  
The most difficult aspect of calculating semantic equivalence for Indicators is with respect to the 
pattern property, as this involves parsing the actual pattern expression, extracting and 
performing pair-wise comparisons across each of the Comparison Expressions within. 
Notionally, each pair of Comparison Expressions (e.g., url:value = 
'http://example.com/foo'  and url:value = 'http://example.com/bar' ) must 
be compared in the context of an exact match, and with basic pattern expressions that don’t 
make use of patterning features such as Observation Expression Qualifiers this is a fairly simple 
task.  
 
However, there are also a number of corner cases that must be accounted for: 
  

 



● As in the previous examples used in this paper, when comparing Comparison 
Expressions with a base object of type ipv4-addr or ipv6-addr, CIDR blocks need to be 
accounted for in terms of the IP range that they represent 

● When comparing Comparison Expressions with a base object of type file, any 
intersection across the hashes property must be considered a full match. 

○ E.g., if one Comparison Expression includes only an MD5 hash and another 
includes both an MD5 and a SHA-256 hash, the two Expressions can be 
considered a perfect match if the MD5 hash is the same in both. 

● When comparing Comparison Expressions that represent object references (i.e., those 
properties ending in _ref or _refs), the references must point to the same type of object 
in order to be considered a match. 

● When comparing Comparison Expressions with a base object of type 
windows-registry-key, any comparisons across the key and values/name properties 
must be case insensitive. 

○ E.g., HKEY_LOCAL_MACHINE/FOO/BAR and hkey_local_machine/foo/bar 
should be considered to be the same value. 

 
In addition to the above corner cases, there are a number of open questions on dealing with 
other pattern constructs with respect to semantic equivalence: 
 

● How should Observation Expression Qualifiers such as REPEATS or WITHIN be 
handled with respect to pattern comparison? 

○ For example, if two patterns share a Comparison Expression but have different 
Qualifiers, should they be considered matching at all? What if they both contain 
the same Observation Expression Qualifier but with different values (e.g., 
WITHIN 5 SECONDS vs. WITHIN 30 SECONDS). 

● How should Observation Operators such as AND and FOLLOWEDBY be handled? 
○ For example, if two patterns share the same Comparison Expressions but have 

different Observation Operators (e.g., two IP addresses that are AND’d in one 
pattern and are OR’d together in another), should they be considered matching at 
all? 

● How should object references be taken into account when calculating a match across 
two patterns? 

○ For example, if two patterns share a set of Comparison Expressions, but also 
have references to different objects as part of their patterns, should they be 
considered matching at all? 

○  E.g., if one pattern has an AND between a File and a Registry Key, and another 
pattern has an AND between a File and a Process – if the two Files are the 
same, should this still constitute a match at all, since the other parts of the two 
patterns are completely different? 
 

 



Note that the above lists are not exhaustive, and that there are likely to be other corner cases 
and open questions. That said, there are a few rules that can be used to simplify the 
comparison of patterns: 

● Pair-wise comparisons only make sense to do across the same type of base object, 
which should limit the number of comparisons that are made. 

○ E.g., an ipv4-addr cannot be compared with a process 
● If there is no overlap between the Cyber Observable Objects in the patterns, no match 

can be made and thus the resulting value for the match can automatically be set to 0. 
○ E.g., if one pattern contains only file expressions and the other contains only 

domain-name, no match can be made. 

Malware 

Key Property Proposed 
Weight 

Matching Type Comments 

malware_types 20 Partial (list-based) Straightforward list-based 
matching. Custom values are 
ignored. 

name 80 Partial 
(string-based) 

n/a 

  
The key properties for Malware in its current state are malware_types (the “type” of malware) 
and name (what the producer calls the malware). 

Tool 

Key Property Proposed 
Weight 

Matching Type Comments 

tool_types 20 Partial (list-based) Straightforward list-based 
matching. Custom values are 
ignored. 

name 80 Partial 
(string-based) 

n/a 

  
The key properties for Tool in its current state are tool_types (the “type” of tool) and name 
(what the producer calls the tool). 

Attack Pattern 

 



Key Property Proposed 
Weight 

Matching Type Comments 

name 30 Partial (string-based) n/a 

external_references 70 Partial 
(external-reference) 

Special form of list-based 
matching for external 
references. 

  
The key properties for Attack Pattern in its current state are name (what the producer calls the 
Attack Pattern) and external_references (any external references to the Attack Pattern, such 
as to an existing threat framework). 

Vulnerability 

Key Property Proposed 
Weight 

Matching Type Comments 

name 30 Exact n/a 

external_references 70 Partial 
(external-reference) 

Special form of list-based 
matching for external 
references. 

  
The key properties for Vulnerability in its current state are name (what the producer calls the 
Vulnerability) and external_references (any external references to the Attack Pattern, such as 
to an existing vulnerability database). 

Campaign 

Key Property Proposed 
Weight 

Matching Type Comments 

name 60 Partial 
(string-based) 

String values should be 
normalized to exclude common 
terms (see list below). 
  
Cross-compare with aliases – 
see below. 

aliases 40 Partial (list-based) Cross-compare with name – see 
below. 

  

 



The key properties for Campaign in its current state are name (what the producer calls the 
Campaign) and aliases (what other sources may call the Campaign). 
  
Values of the name property should be normalized to exclude the following common terms 
(case insensitive) before comparison (otherwise, values such as “Campaign Foo” and 
“Campaign Bar” would be considered substantial matches): 

● campaign 
● operation 

  
Additionally, since they both capture a name (or variant thereof), name and aliases should be 
“cross-compared” – that is, values from one property should be compared directly against 
values of the other. For example, the following two Campaigns would be identified as being 
identical using this technique: 
 

 
One open question around Campaign is whether to incorporate matching against the 
external_references property as well – this could be useful as an additional means of 
deduplicating Campaign data, as multiple Campaigns may have different producer assigned 
names but could share one or more external references (e.g., to threat reports that describe the 
Campaign). 

Threat Actor 

Key Property Proposed 
Weight 

Matching Type Comments 

name 60 Partial 
(string-based) 

String values should be 
normalized to exclude common 
terms (see list below). 
  
Cross-compare with aliases – 
see below. 

threat_actor_types 20 Partial (list-based) Straightforward list-based 
matching. Custom values are 
ignored. 

 



aliases 20 Partial (list-based) Cross-compare with name – 
see below. 

  
The key properties for Threat Actor in its current state are name (what the producer calls the 
Threat Actor), threat_actor_types (the “type” of Threat Actor), and aliases (what other sources 
may call the Threat Actor). 
  
Values of the name property should be normalized to exclude the following common terms 
(case insensitive) before comparison (otherwise, values such as “APT26” and “APT24” would be 
considered substantial matches): 

● APT 
● group 
● threat group 

  
Additionally, since they both capture a name (or variant thereof), name and aliases should be 
“cross-compared” – that is, values from one property should be compared directly against 
values of the other. For example, the following two Threat Actors would be identified as being 
identical using this technique: 
 

 
As with Campaign, another open question around Threat Actor is whether to incorporate 
matching against the external_references property – this could be useful as an additional 
means of deduplicating Threat Actor data, as multiple Threat Actors may have different 
producer assigned names but could share one or more external references (e.g., to threat 
reports that describe the Threat Actor). 

Location 

Key Property Proposed 
Weight 

Matching 
Type 

Comments 

latitude/longitude 34 Custom See comments below. 

region 33 Exact Custom values should be ignored. 

country 33 Exact n/a 

  

 



The key properties for Location in its current state are latitude, longitude, region (the 
geographic region that the location belongs to), and country. This SDO is unique because 
unlike the others described here, it has no required properties and instead requires one of either 
latitude and longitude, region, or country. Accordingly, because latitude and longitude must 
be present together, we’ve assigned them weights that are roughly half of the weights of the 
other key properties. 
  
Matching on latitude and longitude is defined as a custom type because it’s possible to 
calculate distances between these coordinates. Accordingly, distances between non-equivalent 
latitude and longitude coordinates should be calculated, in kilometers, using the Haversine 
formula  and factored into the following calculation for determining the matching score: 2

 
Accordingly, as an example, this will yield the following scores: 
 

Distance (km) Matching Score 

0 1.00 

100 0.90 

300 0.70 

500 0.50 

700 0.30 

1000 0.00 

 Identity 

Key Property Proposed 
Weight 

Matching Type Comments 

name 60 Exact n/a 

identity_class 20 Exact n/a 

2 http://www.movable-type.co.uk/scripts/latlong.html 
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sectors 20 Partial (list-based) Custom values should be 
ignored. 

  
The key properties for Identity in its current state are name, identity_class (the “class” of 
identity), and sectors (the industry sectors the identity belongs to). 

Use Cases  
This section discusses the applications of semantic equivalence, particularly with respect to the 
sharing of STIX data in one or more communities. 

Definitions 

The following concepts with respect to management of STIX SDOs are referred to throughout 
the use cases section, and so are defined for quick reference below. 

● Merge: the action of combining two or more SDOs into a single representation by 
creating a new SDO that contains a union of their properties. 

● Delete/deprecate: the action of deleting an SDO from a repository or data store. 
● Deduplication: the action of iterating through the SDOs stored in a repository or data 

store and deleting any duplicates (i.e., keeping only a single unique copy of each SDO). 

Echo Detection 
When a STIX content producer consumes STIX data from external threat feeds and other 
sources, there is always the possibility that this may include data that is duplicative with respect 
to the content previously created by the producer. Thus, the problem of echo detection in this 
case revolves around understanding whether the STIX content that one is receiving is an 
independently submitted version of content that the consumer has previously created. 
  

 

 



This problem can be addressed by STIX content producers by attempting to detect semantically 
equivalent data upon ingest or through a “garbage collection” process that runs periodically. 
Content that is determined to have a high level of equivalence (e.g., >=70%, depending on the 
type of SDO) with respect to data previously created by the producer could be handled 
automatically (i.e., deleted or merged into a new SDO that represents the union of the various 
properties in the content). 
  
However, the challenge here (and with any similar use cases) is how to handle content that is 
determined to be similar but not completely equivalent (e.g., content that is determined to be 
40-60% equivalent). One possibility is to mark this content and place it in a queue for human 
review; however, this approach is unlikely to scale given the potential volume of STIX content 
and is also unlikely to be a good use of an analyst’s time. Another approach is to simply reject 
such content, which means that any additional value it may provide would be lost. Clearly, 
neither approach is ideal, so some further thought on this topic is warranted. 

Common Object Detection 
With certain STIX SDOs, there is a higher likelihood that duplicate or near-duplicate versions of 
these SDOs will exist in threat feeds or sharing communities. This is particularly true of SDOs 
used primarily to provide supporting evidence or context that will be commonly created by STIX 
content producers, including the Attack Pattern, Vulnerability, and Location SDOs. 
  
Detecting semantically equivalent STIX data can help address this problem through the 
identification of identical or nearly identical versions of such content. For example, consider the 
following scenario of three different versions of the same Vulnerability being shared: 
 

 
  
Although each of these vulnerabilities has a different name, they all share the same external 
reference (to a CVE entry). Accordingly, using the semantic equivalence algorithm and weights 
previously outlined, these vulnerabilities would be calculated as being 70% equivalent. Using 
this calculation, a STIX content consumer could infer that these are in fact referencing the same 
vulnerability and use this knowledge to store and reference only a single variant of this object. 
  

 



This use case can also be extended to searching across STIX content repositories for variants 
of the same object (assuming that the repositories don’t do any merging or deduplication of 
such data). For instance, in the vein of the above example, one could search for variants of the 
same Vulnerability SDO in order to determine if there is any additional information available on 
the vulnerability. 

Managing & Sharing Semantically Equivalent Data 
STIX threat feeds, content aggregators, and other data feed providers that incorporate data 
from various sources will face issues and questions similar to those outlined for STIX content 
producers in the context of echo detection. Namely, how can they detect similar STIX data in 
order to keep the quality of their feed high, and what do they do with this data once detected. 
The mechanism (algorithm and key properties/weights) for detecting semantically equivalent 
STIX data has been discussed previously, so the larger question here is with regards to what 
such feed providers should do once they’ve detected some set of such data as being 
semantically equivalent. 
  
One possibility is to simply capture this fact using a STIX relationship object and a custom 
relationship value such as “semantically-equivalent”, and thereby include information about 
semantically SDOs in their data feed. This would also allow the capture of the actual 
equivalence score between semantically equivalent data, either as a custom property or through 
the use of the existing confidence property. 
  
However, this approach raises the question of what value this provides to consumers – what do 
they gain by knowing that some set of objects in the data feed are semantically equivalent? On 
one hand, it offloads this decision process to the consumer, so that those who have the ability to 
do more interesting things with this data (e.g., merge together all semantically equivalent 
objects) can take advantage of it. On the other hand, this could just end up being extra noise 
that consumers will have to deal with, in terms of the extra relationships and data that they’ll 
have to parse. 
 
One practical approach is to send feedback of semantic equivalence only to the original content 
submitter. In theory they could potentially receive feedback with the ID of the equivalent 
indicator, which will allow data submitters to receive feedback on their submissions and curate 
their data in a way that makes it more relevant for sharing. This also provides the means for 
submitters to remove content that they understand is duplicate and not relevant.  
 
Another possibility is for threat feeds to “garbage collect” semantically identical content by 
periodically checking for similarities amongst the STIX data in their collection and then either 
merging, deleting any copies of objects that have a high degree of similarity, or (primarily for 
cases of low similarity) simply keeping the objects as-is. As with echo detection, this process is 
highly dependent on the level of similarity found, with high and low levels of similarity being 
easier to deal with. For example, if two SDOs are highly similar, it may not make sense to keep 

 



both in the data feed; conversely, SDOs that have a low level of similarity should likely both be 
kept. However, deciding what to do with SDOs that show some middle level of similarity is tricky; 
one option is to attempt to automatically merge them. The problem is that there are likely to be 
many corner cases with such a process, including what to do with properties that are contained 
in multiple SDOs but are not identical across all of the them. Again, it’s clear that this warrants 
further investigation. 
  
An additional possibility is for the threat feed to store all of their semantically equivalent content 
in a separate repository that can be queried by users as a means of data enrichment. For 
instance, if a user wishes to see if there exists any additional data on an SDO that they already 
possess, they could query this special repository to find any SDOs that may be semantically 
equivalent and use this information to enrich their existing data or just gain additional context. 

Material Change Detection 
Another usage of semantic equivalence is around the automated detection of material changes 
when versioning STIX SDOs. The STIX specification defines material change as a “change to 
the meaning of the object”; this is an important concept in the context of versioning because any 
changes to an SDO that are material in nature suggest that a new SDO should be created 
instead of updating the old one. Accordingly, when versioning an object, semantic equivalence 
can used as a means of detecting whether material changes have been made in the new 
version – if the new version and the previous version of an SDO are not highly equivalent 
(~>80%), then this is likely to be a strong indicator that material changes have been made and a 
new SDO should instead be created. 

Practical Use of Semantic Equivalence 
An important fact to keep in mind when discussing semantic equivalence, especially in the 
context of sharing platforms like AIS, is that most STIX 2.x content in the near future will be 
relatively simplistic and thus straightforward to calculate semantic equivalence for. This is 
particularly true for Indicators, where many of the corner cases and questions that we’ve 
outlined will not be applicable. For example, the majority of Indicators today consist of “facts” 
such as domain names or IP addresses, which result in very basic Indicator patterns that should 
be easy to compare in terms of semantic equivalence. In addition, the basic semantic 
equivalence algorithm is easy to apply as it operates directly on the facts that are exchanged in 
STIX data. 
  
Accordingly, it would be prudent to employ at most a basic form of semantic equivalence in the 
near future for the purposes of producer-based echo detection and basic garbage collection in 
threat feeds (i.e., detecting and deprecating data that is highly equivalent). Other use cases and 
corner cases associated with semantic equivalence can be addressed in conjunction with the 
increase in complexity of the STIX 2.x content in the wild, especially when considering the shift 

 



from exchange of more basic data such as indicators/observables to more 
complex/analysis-based data such as campaigns and TTPs. 
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