

TAXII™ Version 2.1.
Working Draft 09

17 October 2019

Technical Committee:
OASIS Cyber Threat Intelligence (CTI) TC

Chairs:
Richard Struse (rjs@mitre.org), MITRE Corporation
Trey Darley (trey.darley@cert.be), CCB/CERT.be

Editors:
Bret Jordan (bret_jordan@symantec.com), Symantec Corp.
Drew Varner (drew.varner@ninefx.com), NineFX, Inc.

Related work:
This specification replaces or supersedes:
● TAXII™ Version 2.0. Edited by John Wunder, Mark Davidson, and Bret Jordan. Latest

version: http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html.
● TAXII™ Version 1.1.1. Part 1: Overview. Edited by Mark Davidson, Charles Schmidt, and

Bret Jordan. Latest version:
http://docs.oasis-open.org/cti/taxii/v1.1.1/taxii-v1.1.1-part1-overview.html.

This specification is related to:
● STIX™ Version 2.1. Edited by Bret Jordan, Rich Piazza, and Trey Darley. Latest version:

http://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html

Abstract:
TAXII™ is an application layer protocol for the communication of cyber threat information in a
simple and scalable manner. This specification defines the TAXII RESTful API and its resources
along with the requirements for TAXII Client and Server implementations.

Status:
This Working Draft (WD) has been produced by one or more TC Members; it has not yet been
voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a
Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote
to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and
re-approve it any number of times as a Committee Draft.
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode
chosen when the Technical Committee was established. For information on whether any patents
have been disclosed that may be essential to implementing this specification, and any offers of
patent licensing terms, please refer to the Intellectual Property Rights section of the TC’s web
page (https://www.oasis-open.org/committees/cti/ipr.php).
Note that any machine-readable content (Computer Language Definitions) declared Normative for
this Work Product is provided in separate plain text files. In the event of a discrepancy between
any such plain text file and display content in the Work Product's prose narrative document(s), the
content in the separate plain text file prevails.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 1 of 78

https://www.oasis-open.org/committees/cti/
mailto:rjs@mitre.org
https://www.mitre.org/
mailto:trey.darley@cert.be
https://cert.be/
mailto:bret_jordan@symantec.com
https://www.symantec.com/
mailto:drew.varner@ninefx.com
https://www.ninefx.com/
http://docs.oasis-open.org/cti/taxii/v2.0/taxii-v2.0.html
http://docs.oasis-open.org/cti/taxii/v1.1.1/taxii-v1.1.1-part1-overview.html
http://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html
https://www.oasis-open.org/policies-guidelines/tc-process#dWorkingDraft
https://www.oasis-open.org/policies-guidelines/tc-process#committeeDraft
https://www.oasis-open.org/policies-guidelines/tc-process#standApprovProcess
https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/cti/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process#wpComponentsCompLang

URI patterns:
Initial publication URI:
http://docs.oasis-open.org/cti/taxii/v2.1/csd04/taxii-v2.1-csd04.docx
Permanent “Latest version” URI:
http://docs.oasis-open.org/cti/taxii/v2.1/taxii-v2.1.docx
(Managed by OASIS TC Administration; please don’t modify.)

Copyright © OASIS Open 2019. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 2 of 78

https://www.oasis-open.org/policies-guidelines/ipr

Table of Contents

1 Introduction 6
1.1 IPR Policy 6
1.2 Terminology 6
1.3 Normative References 6
1.4 Non-Normative References 8
1.5 Document Conventions 9

1.5.1 Naming Conventions 9
1.5.2 Font Colors and Style 10

1.6 Overview 10
1.6.1 Discovery 10
1.6.2 API Roots 11
1.6.3 Endpoints 12
1.6.4 Collections 12
1.6.5 Channels 12
1.6.6 Transport 13
1.6.7 Serialization 13
1.6.8 Content Negotiation 13

1.6.8.1 Media Types 14
1.6.8.2 Version Parameter 14

1.6.9 Authentication and Authorization 14
1.6.10 STIX and Other Content 15
1.6.11 Object Lifecycle 15

1.7 Changes from Earlier Versions 16
1.7.1 TAXII 2.1 Major Changes and Additions 16

2 Data Types 17

3 TAXII™ - Core Concepts 19
3.1 Endpoints 19
3.2 HTTP Headers 20
3.3 Sorting 22
3.4 Filtering 22

3.4.1 Supported Fields for Match 23
3.5 Pagination 25
3.6 Errors 26

3.6.1 Error Message 26
3.7 Envelope Resource 27
3.8 Property Names 28
3.9 DNS SRV Names 29

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 3 of 78

4 TAXII™ API - Server Information 30
4.1 Server Discovery 30

4.1.1 Discovery Resource 31
4.2 Get API Root Information 32

4.2.1 API Root Resource 34
4.3 Get Status 35

4.3.1 Status Resource 37

5 TAXII™ API - Collections 39
5.1 Get Collections 39

5.1.1 Collections Resource 41
5.2 Get a Collection 41

5.2.1 Collection Resource 43
5.3 Get Object Manifests 44

5.3.1 Manifest Resource 46
5.4 Get Objects 47
5.5 Add Objects 50
5.6 Get an Object 52
5.7 Delete an Object 54
5.8 Get Object Versions 56

5.8.1 Versions Resource 58

6 TAXII™ API - Channels 59

7 Customizing TAXII Resources 60
7.1 Custom Properties 60

7.1.1 Requirements 60

8 Conformance 62
8.1 TAXII™ Servers 62

8.1.1 TAXII™ 2.1 Server 62
8.1.2 TAXII™ 2.1 Collections Server 62

8.2 Mandatory Server Features 62
8.2.1 TAXII Server Core Requirements 62
8.2.2 HTTPS and Authentication Server Requirements 62

8.3 Optional Server Features 63
8.3.1 Client Certificate Verification 63

8.4 TAXII™ Clients 63
8.4.1 TAXII™ 2.1 Client 63
8.4.2 TAXII™ 2.1 Collections Client 63

8.5 Mandatory Client Features 64
8.5.1 HTTPS and Authentication Client Requirements 64
8.5.2 Server Certificate Verification 64

Appendix A. Glossary 65

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 4 of 78

Appendix B. IANA Considerations 66

Appendix C. Acknowledgments 71

Appendix D. Revision History 77

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 5 of 78

1 Introduction
TAXII™ is an application layer protocol for the communication of cyber threat information in a simple and
scalable manner. This specification defines the TAXII RESTful API and its resources along with the
requirements for TAXII Client and Server implementations.

1.1 IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen
when the Technical Committee was established. For information on whether any patents have been
disclosed that may be essential to implementing this specification, and any offers of patent licensing
terms, please refer to the Intellectual Property Rights section of the TC’s web page
(https://www.oasis-open.org/committees/cti/ipr.php).

1.2 Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

All text is normative except for examples, the overview (section 1.6), and any text marked non-normative.

1.3 Normative References
[HTTP Auth] IANA, “Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry”, March

2017, [Online]. Available:
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

[ISO10646] “ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set

(UCS)”, 2014. [Online]. Available:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_201
4.zip

[RFC0020] Cerf, V., "ASCII format for network interchange", STD 80, RFC 20, DOI

10.17487/RFC0020, October 1969, http://www.rfc-editor.org/info/rfc20.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,

RFC 2119, DOI 10.17487/RFC2119, March 1997,
http://www.rfc-editor.org/info/rfc2119.

[RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the location of

services (DNS SRV)", RFC 2782, DOI 10.17487/RFC2782, February 2000,
http://www.rfc-editor.org/info/rfc2782.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 6 of 78

https://www.oasis-open.org/policies-guidelines/ipr#Non-Assertion-Mode
https://www.oasis-open.org/policies-guidelines/ipr
https://www.oasis-open.org/committees/cti/ipr.php
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://www.rfc-editor.org/info/rfc20
http://www.rfc-editor.org/info/rfc20
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2782

[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339,

DOI 10.17487/RFC3339, July 2002, http://www.rfc-editor.org/info/rfc3339.

[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security

Introduction and Requirements", RFC 4033, DOI 10.17487/RFC4033, March 2005,
http://www.rfc-editor.org/info/rfc4033.

[RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN

Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005,
http://www.rfc-editor.org/info/rfc4122.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2",

RFC 5246, DOI 10.17487/RFC5246, August 2008,
http://www.rfc-editor.org/info/rfc5246.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
http://www.rfc-editor.org/info/rfc5280.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based

Application Service Identity within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer Security (TLS)", RFC 6125, DOI
10.17487/RFC6125, March 2011, http://www.rfc-editor.org/info/rfc6125.

[RFC6818] Yee, P., "Updates to the Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile", RFC 6818, DOI 10.17487/RFC6818,
January 2013, http://www.rfc-editor.org/info/rfc6818.

[RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration

Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013,
https://www.rfc-editor.org/info/rfc6838.

[RFC7230] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
http://www.rfc-editor.org/info/rfc7230.

[RFC7231] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):

Semantics and Content", RFC 7231, DOI 10.17487/RFC7231, June 2014,
http://www.rfc-editor.org/info/rfc7231.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 7 of 78

http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc4033
http://www.rfc-editor.org/info/rfc4122
http://www.rfc-editor.org/info/rfc5246
http://www.rfc-editor.org/info/rfc5280
http://www.rfc-editor.org/info/rfc6125
http://www.rfc-editor.org/info/rfc6818
https://www.rfc-editor.org/info/rfc6838
http://www.rfc-editor.org/info/rfc7230
http://www.rfc-editor.org/info/rfc7231

[RFC7233] Fielding, R., Ed., Y. Lafon, Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol
(HTTP/1.1): Range Requests", RFC 7233, 10.17487/RFC7233, June 2014,
http://www.rfc-editor.org/info/rfc7233.

[RFC7235] Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):

Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014,
http://www.rfc-editor.org/info/rfc7235.

[RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493,

March 2015, https://www.rfc-editor.org/info/rfc7493.

[RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext Transfer Protocol Version 2

(HTTP/2)", RFC 7540, DOI 10.17487/RFC7540, May 2015,
http://www.rfc-editor.org/info/rfc7540.

[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI

10.17487/RFC7617, September 2015, http://www.rfc-editor.org/info/rfc7617.

[RFC7671] Dukhovni, V. and W. Hardaker, "The DNS-Based Authentication of Named Entities

(DANE) Protocol: Updates and Operational Guidance", RFC 7671, DOI
10.17487/RFC7671, October 2015, http://www.rfc-editor.org/info/rfc7671.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14,

RFC 8174, DOI 10.17487/RFC8174, May 2017,
https://www.rfc-editor.org/info/rfc8174.

[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD

90, RFC 8259, DOI 10.17487/RFC8259, December 2017,
https://www.rfc-editor.org/info/rfc8259.

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446,

DOI 10.17487/RFC8446, August 2018, https://tools.ietf.org/html/rfc8446.

1.4 Non-Normative References
[RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform Resource Locators (URL)",

RFC 1738, DOI 10.17487/RFC1738, December 1994,
https://www.rfc-editor.org/info/rfc1738.

[RFC6545] Moriarty, K., "Real-time Inter-network Defense (RID)", RFC 6545, DOI

10.17487/RFC6545, April 2012, https://www.rfc-editor.org/info/rfc6545.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI

10.17487/RFC6749, October 2012, https://www.rfc-editor.org/info/rfc6749.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 8 of 78

http://www.rfc-editor.org/info/rfc7233
http://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7493
http://www.rfc-editor.org/info/rfc7540
http://www.rfc-editor.org/info/rfc7617
http://www.rfc-editor.org/info/rfc7671
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://tools.ietf.org/html/rfc8446
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc6545
https://www.rfc-editor.org/info/rfc6749

[RFC7486] Farrell, S., Hoffman, P., and M. Thomas, "HTTP Origin-Bound Authentication
(HOBA)", RFC 7486, DOI 10.17487/RFC7486, March 2015,
https://www.rfc-editor.org/info/rfc7486.

[RFC7804] Melnikov, A., "Salted Challenge Response HTTP Authentication Mechanism", RFC

7804, DOI 10.17487/RFC7804, March 2016, https://www.rfc-editor.org/info/rfc7804.

[RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515,

DOI 10.17487/RFC7515, May 2015, https://www.rfc-editor.org/info/rfc7515.

[RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI

10.17487/RFC7516, May 2015, https://www.rfc-editor.org/info/rfc7516.

[RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP Digest Access

Authentication", RFC 7616, DOI 10.17487/RFC7616, September 2015,
https://www.rfc-editor.org/info/rfc7616.

[RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme", RFC 7617, DOI

10.17487/RFC7617, September 2015, https://www.rfc-editor.org/info/rfc7617.

[RFC7797] Jones, M., "JSON Web Signature (JWS) Unencoded Payload Option", RFC 7797, DOI

10.17487/RFC7797, February 2016, https://www.rfc-editor.org/info/rfc7797.

[RFC8322] Field, J., Banghart, S., and D. Waltermire, "Resource-Oriented Lightweight Information

Exchange (ROLIE)", RFC 8322, DOI 10.17487/RFC8322, February 2018,
https://www.rfc-editor.org/info/rfc8322.

[IANA AUTH] IANA, "Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry",

February 2014,
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml.

[NIST RBAC] NIST Computer Security Resource Center (CSRC), "Role Based Access Control

(RBAC)", November 2016, https://csrc.nist.gov/projects/role-based-access-control.

[UNICODE] Davis, M. and Suignard, M., "UNICODE Security Considerations", Unicode Technical

Report #36, September 2014, https://www.rfc-editor.org/info/rfc8322.

1.5 Document Conventions

1.5.1 Naming Conventions
All type names, property names and literals are in lowercase. Words in property names are separated
with an underscore (_), while words in type names and string enumerations are separated with a hyphen
(Unicode hyphen-minus, U+002D, ‘-‘). All type names, property names, object names, and vocabulary
terms are between three and 250 characters long.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 9 of 78

https://www.rfc-editor.org/info/rfc7486
https://www.rfc-editor.org/info/rfc7804
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7616
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7797
https://www.rfc-editor.org/info/rfc8322
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://csrc.nist.gov/projects/role-based-access-control
https://www.rfc-editor.org/info/rfc8322

1.5.2 Font Colors and Style
The following color, font and font style conventions are used in this document:

● The Consolas font is used for all type names, property names and literals.
○ resource and type names are in red with a light red background – collection
○ property names are in bold style – description
○ parameter names in URLs are stylized with angled brackets - {api-root}
○ literals (values) are in blue with a blue background – complete

● All examples in this document are expressed in Consolas 9-point font, with straight quotes, black
text, 2-space indentation, and sometimes in a light grey background. JSON examples in this
document are representations of JSON Objects. They should not be interpreted as string literals.
The ordering of object keys is insignificant. Whitespace before or after JSON structural characters
in the examples are insignificant [RFC8259].

● Parts of the example may be omitted for conciseness and clarity. These omitted parts are
denoted with ellipses (...).

1.6 Overview
Trusted Automated Exchange of Intelligence Information (TAXII) is an application layer protocol used to
exchange cyber threat intelligence (CTI) over HTTPS. TAXII enables organizations to share CTI by
defining an API that aligns with common sharing models. Specifically, TAXII defines two primary services,
Collections and Channels, to support a variety of commonly-used sharing models. Collections allow a
producer to host a set of CTI data that can be requested by consumers. Channels allow producers to
push data to many consumers; and allow consumers to receive data from many producers. Collections
and Channels can be organized by grouping them into an API Root to support the needs of a particular
trust group or to organize them in some other way. Note: This version of the TAXII specification reserves
the keywords required for Channels but does not specify Channel services. Channels and their services
will be defined in a subsequent version of this specification.

TAXII is specifically designed to support the exchange of CTI represented in STIX. As such, the examples
and some features in the specification are intended to align with STIX. This does not mean TAXII cannot
be used to share data in other formats; it is designed for STIX but is not limited to STIX.

1.6.1 Discovery
This specification defines two discovery methods. The first is a network level discovery that uses a DNS
SRV record [RFC2782]. This DNS SRV record can be used to advertise the location of a TAXII Server
within a network (e.g., so that TAXII-enabled security infrastructure can automatically locate an
organization's internal TAXII Server) or to the general Internet. See section 3.9 for complete information
on advertising TAXII Servers in DNS.

The second discovery method is a Discovery Endpoint (this specification uses the term Endpoint to
identify a URL and an HTTP method with a defined request and response) that enables authorized clients

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 10 of 78

to obtain information about a TAXII Server and get a list of API Roots. See section 4.1 for complete
information on the Discovery Endpoint.

1.6.2 API Roots
API Roots are logical groupings of TAXII Collections, Channels, and related functionality. A TAXII server
instance can support one or more API Roots. API Roots can be thought of as instances of the TAXII API
available at different URLs, where each API Root is the "root" URL of that particular instance of the TAXII
API. Organizing the Collections and Channels into API Roots allows for a division of content and access
control by trust group or any other logical grouping. For example, a single TAXII Server could host
multiple API Roots - one API Root for Collections and Channels used by Sharing Group A and another
API Root for Collections and Channels used by Sharing Group B.

Each API Root contains a set of Endpoints that a TAXII Client contacts in order to interact with the TAXII
Server. This interaction can take several forms:

● Server Discovery, as described above, can be used to learn about the API Roots hosted by a
TAXII Server.

● Each API Root might support zero or more Collections. Interactions with Collections include
discovering the type of CTI contained in that Collection, pushing new CTI to that Collection,
and/or retrieving CTI from that Collection. Each piece of CTI content in a Collection is referred to
as an Object.

● Each API Root might host zero or more Channels.
● Each API Root also allows TAXII Clients to check on the Status of certain types of requests to the

TAXII Server. For example, if a TAXII Client submitted new CTI, a Status request can allow the
Client to check on whether the new CTI was accepted.

Figure 1.1 summarizes the relationships between the components of an API Root.

Example API Root URLs
https://example.com/

https://api1.example.com/

https://example.com/api1/

https://example.com/api2/

https://example.org/trustgroup1/

https://example.org/taxii2/api1/

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 11 of 78

Figure 1.1

1.6.3 Endpoints
An Endpoint consists of a specific URL and HTTP Method on a TAXII Server that a TAXII Client can
contact to engage in one specific type of TAXII exchange. For example, each Collection on a TAXII
Server has an Endpoint that can be used to get information about it; TAXII Clients can contact the
Collection’s Endpoint to request a description of that Collection. A separate Endpoint is used for the TAXII
Client to collect a manifest of that Collection’s Content. Yet another Endpoint is used to get objects from
the Collection and, at the same URL, a POST can be used to add objects to the collection. The Endpoints
supported by a TAXII Server are summarized in section 3.1 and fully defined in sections 4, 5, and 6.

1.6.4 Collections
A TAXII Collection is an interface to a logical repository of CTI objects provided by a TAXII Server and is
used by TAXII Clients to send information to the TAXII Server or request information from the TAXII
Server. A TAXII Server can host multiple Collections per API Root, and Collections are used to exchange
information in a request–response manner.

Figure 1.2 below illustrates how Collection based communications are used when a single TAXII Client
makes a request to a TAXII Server and the TAXII Server fulfills that request with information available to
the TAXII Server (nominally from a database).

1.6.5 Channels
A TAXII Channel is maintained by a TAXII Server and enables TAXII Clients to exchange information with
other TAXII Clients in a publish-subscribe model. TAXII Clients can publish messages to Channels and

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 12 of 78

subscribe to Channels to receive published messages. A TAXII Server may host multiple Channels per
API Root.

Figure 1.3 below illustrates how Channel communications are used when a single authorized TAXII Client
sends a message to the TAXII Server, and that TAXII Server then distributes the message to all
authorized TAXII Clients that are connected to the Channel. The arrows in the following diagrams
represent data flow.

 Figure 1.2 Figure 1.3

1.6.6 Transport
The TAXII protocol defined in this specification uses HTTPS (HTTP over TLS) as the transport for all
communications.

1.6.7 Serialization
This specification uses UTF-8 encoded JSON as defined in [RFC7493] and [RFC8259] for the
serialization of all TAXII resources.

1.6.8 Content Negotiation
This specification uses media types (section 3.1.1.1 of [RFC7231]) and an optional "version" parameter in
the HTTP Accept header (section 5.3.2 of [RFC7231]) and Content-Type header (section 3.1.1.5 of
[RFC7231]) to perform HTTP content negotiation as defined in [RFC7231]. It is important that TAXII
Clients and Servers use correct Accept and Content-Type headers to negotiate TAXII versions.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 13 of 78

1.6.8.1 Media Types
The TAXII media types used in this specification are summarized in the following table and are used for
both requests and responses. Appendix B contains the official IANA registration information for the TAXII
media type.

Type Subtype Example

application taxii+json application/taxii+json

1.6.8.2 Version Parameter
This section defines the optional version parameter that can be used with content negotiation. The
version parameter is defined per the guidelines in section 4.3 of [RFC6838] and the value is of the form
'n.m', where n is the major version and m the minor version, both unsigned integer values.

The value for the version parameter that represents the final contents of this specification is "2.1".

Media Type with Optional Version Parameter Description

application/taxii+json;version=2.1 TAXII version 2.1 in JSON

application/taxii+json Latest version of TAXII that the server supports

1.6.9 Authentication and Authorization
Access control to an instance of the TAXII API is specific to the sharing community, vendor, or product
and is not defined by this specification.

Authentication and Authorization in TAXII is implemented as defined in [RFC7235], using the
WWW-Authenticate and Authorization HTTP headers.

HTTP Basic authentication, as defined in [RFC7617] is the suggested authentication scheme in TAXII. As
specified in sections 8.2.2 and 8.5.1, TAXII Servers are encouraged to implement support for HTTP Basic
and Clients are required to implement support for HTTP Basic, though other authentication schemes can
also be supported. Implementers can allow operators to disable the use of HTTP Basic in their
operations.

If the TAXII Server receives a request for any Endpoint that requires authentication, regardless of HTTP
method, and either an acceptable Authorization header that grants the client access to that object is
not sent with the request or the TAXII Server does not determine via alternate means that the client is
authorized to access the resource, then the TAXII Server will respond with an HTTP 401 (Unauthorized)
status code and a WWW-Authenticate HTTP header.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 14 of 78

The WWW-Authenticate header contains one or more challenges, which define which authentication
schemes are supported by the TAXII Server. The format of the WWW-Authenticate HTTP header and any
challenges are defined in [RFC7235]. To ensure compatibility, it is recommended that any authentication
schemes used in challenges be registered in the IANA Hypertext Transfer Protocol (HTTP) Authentication
Scheme Registry [HTTP Auth] .

A TAXII Server may omit objects, information, or optional properties from any response if the
authenticated client is not authorized to receive them, so long as that omission does not violate this
specification.

1.6.10 STIX and Other Content
TAXII is designed with STIX in mind and to support the exchanging of STIX 2 [STIX™ Version 2.1]
content. While additional content types are not prohibited, all specific requirements throughout the
document are designed for STIX. See section 3.7 for more details.

1.6.11 Object Lifecycle
There are no requirements defined in this specification for how long a TAXII server needs to store a
specific object on the server or within a collection after it has been successfully posted to a TAXII
collection. If the TAXII server chooses to remove an entire object or any number of versions of the object
from the server or collection that is entirely up to the software, its deployment, and the use cases it
supports.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 15 of 78

1.7 Changes from Earlier Versions
This section lists all of the major changes from the previous 2.0 version of TAXII.

1.7.1 TAXII 2.1 Major Changes and Additions
TAXII 2.1 differs from TAXII 2.0 in the following ways:

1. The DNS SRV record was changed from taxii to taxii2
2. The discovery URL was changed from /taxii/ to /taxii2/
3. The Manifest Resource was changed to represent individual versions of an object, instead of an

object with all of its versions
4. Item based pagination was removed from this version of the specification
5. The section on content negotiation was updated
6. The media types were changed throughout the document
7. Clarification was added to say that API Roots can be relative paths as well as absolute paths
8. Changed version value in API Roots to match media type
9. Changed status resource to allow status on success and pending
10. Add TAXII media type as Accept type in 5.4 and 5.6 since a TAXII error message could be

returned
11. HTTP Basic is now a SHOULD implement for the Server
12. Added a DELETE object by ID endpoint
13. Added a versions endpoint for object by ID.
14. Added section on Server Implementation Considerations
15. Added a limit URL parameter
16. Added a next URL parameter
17. Added a spec_versions match filter parameter
18. Removed STIX media types and STIX Bundle and replaced with TAXII Envelope
19. Added clarifying text around TAXII timestamps needing millisecond precision
20. Cleaned up and deemphasized text around support for content other than STIX
21. Added user-agent HTTP header description

Please see Appendix C for a list GitHub issues that were resolved for this release.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 16 of 78

2 Data Types
This section defines the names and permitted values of common types used throughout this specification.
These types are referenced by the “Type” column in other sections. This table does not, however, define
the meaning of any properties using these types. These types may be further restricted elsewhere in the
document.

Type Description

api-root An API Root Resource, see section 4.2.1.

boolean A boolean is a value of either true or false. Properties with this type MUST have a
literal (unquoted) value of true or false.

collection A Collection Resource, see section 5.2.1.

collections A Collections Resource, see section 5.1.1.

dictionary A dictionary is a JSON object that captures an arbitrary set of key/value pairs.

discovery A Discovery Resource, see section 4.1.1.

envelope A TAXII Envelope, see section 3.7.

error An Error Message, see section 3.6.1.

identifier An identifier is an RFC 4122-compliant Version 4 UUID. The UUID MUST be
generated according to the algorithm(s) defined in RFC 4122, section 4.4 (Version
4 UUID) [RFC4122].

integer The integer data type represents a whole number. Unless otherwise specified, all
integers MUST be capable of being represented as a signed 54-bit value
([-(2**53)+1, (2**53)-1]) as defined in [RFC7493]. Additional restrictions MAY be
placed on the type where it is used.

list The list type defines a sequence of values ordered based on how they appear in
the list. The phrasing “list of type <type>” is used to indicate that all values
within the list MUST conform to the specified type. For instance, list of type
integer means that all values of the list must be of the integer type.

This specification does not specify the maximum number of allowed values in a
list, however every instance of a list MUST have at least one value. Specific
TAXII resource properties may define more restrictive upper and/or lower bounds
for the length of the list.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 17 of 78

Empty lists are prohibited in TAXII and MUST NOT be used as a substitute for
omitting optional properties. If the property is required, the list MUST be present
and MUST have at least one value.

The JSON MTI serialization uses the JSON array type [RFC8259], which is an
ordered list of values.

manifest A Manifest Resource, see section 5.3.1.

object An Object Resource, see section 3.7.

status A Status Resource, see section 4.3.1.

string The string data type represents a finite-length string of valid characters from the
Unicode coded character set [ISO10646] that are encoded in UTF-8. Unicode
incorporates ASCII [RFC0020] and the characters of many other international
character sets.

timestamp The timestamp type defines how timestamps are represented in TAXII and is
represented in serialization as a string.

● The timestamp type MUST be a valid RFC 3339-formatted timestamp
[RFC3339] using the format YYYY-MM-DDTHH:MM:SS.ssssssZ Unlike the
STIX timestamp type, the TAXII timestamp MUST have microsecond
precision.

● The timestamp MUST be represented in the UTC timezone and MUST
use the “Z” designation to indicate this.

versions A Versions Resource, see section 5.8.1.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 18 of 78

3 TAXII™ - Core Concepts
The TAXII API is described as sets of Endpoints. Each Endpoint is identified by the URL that it is
accessible at and the HTTP method that is used to make the request. For example, the "Get Collections"
Endpoint is requested by issuing a GET to `{api-root}/collections/`. Each Endpoint identifies its URL,
which parameters it accepts (including both path parameters and standard parameters), which features it
supports (e.g. filtering), and which content types it defines for request and response. It also identifies
common error conditions and provides guidance on how to use the Endpoint.

This section defines behavior that applies across Endpoints, such as normative requirements to support
each Endpoint, sorting, filtering, and error handling.

3.1 Endpoints
Sections 4, 5 and 6 define the set of TAXII Endpoints used in the TAXII API. The following normative
requirements apply to each Endpoint:

● The endpoint path in a requests to a TAXII server MUST end in a trailing slash "/". For example:
○ A request for a resource without any filter parameters

/{api-root}/collections/{id}/objects/{object-id}/
○ A request for a resource with some filter parameters.

/{api-root}/collections/{id}/objects/{object-id}/?match[type]=indicator
● TAXII responses with an HTTP success code (200 series) that permit a response body MUST

include the appropriate response body for the specified content type as identified in the definition
of that Endpoint.

● TAXII responses with an HTTP error code (400-series and 500-series status codes, defined by
sections 6.5 and 6.6 of [RFC7231]) that permit a response body (i.e. are not in response to a
HEAD request) MAY contain an error message (see section 3.6.1) in the response body.

● All TAXII requests MUST include a media range in the Accept header and MUST include at least
one TAXII media range. Requests for TAXII content MUST use the values from section 1.6.8 and
SHOULD include the optional version parameter defined in that section.

● All TAXII responses MUST include the appropriate media type and version parameter in the
Content-Type header as defined for that Endpoint.

● TAXII responses SHOULD be the highest version of content that the server supports if the
version parameter in the Accept header is omitted during content negotiation.

● Requests with media types in the Accept headers that are defined for that Endpoint MUST NOT
result in an HTTP 406 (Not Acceptable) response.

● Requests with a media type in the Content-Type header that is defined for that Endpoint MUST
NOT result in an HTTP 415 (Unacceptable Media Type) response.

● Requests with media types in the Accept headers that are not defined for that Endpoint MAY be
satisfied with the appropriate content or MAY result in an HTTP 406 (Not Acceptable) response.

● Requests with a media type in the Content-Type header that is not defined for that Endpoint
MAY be satisfied with the appropriate content or MAY result in an HTTP 415 (Unacceptable
Media Type) response.

● All TAXII POST requests MUST include a valid Accept and Content-Type header.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 19 of 78

● TAXII responses to Endpoints that support filtering MUST filter results per the requirements in
section 3.4.

● The endpoint definition information in the tables found in sections 4 and 5 is normative.

The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII
and the Resources they operate on.

URL Methods Resource Type

Core Concepts (section 4)

/taxii2/ GET discovery

{api-root}/ GET api

{api-root}/status/{status-id}/ GET status

Collections (section 5)

{api-root}/collections/ GET collections

{api-root}/collections/{id}/ GET collection

{api-root}/collections/{id}/manifest/ GET manifest

{api-root}/collections/{id}/objects/ GET, POST envelope

{api-root}/collections/{id}/objects/{object-id}/ GET, DELETE envelope

{api-root}/collections/{id}/objects/{object-id}/versions/ GET versions

Channels (section 6)

TBD in a future version

3.2 HTTP Headers
This section summarizes the HTTP headers and defines custom headers used by this specification.

Type Description

Standard Headers

Accept The Accept header is used by HTTP Requests to specify which
Content-Types are acceptable in response. TAXII defines a media
type and an optional version parameter that can be used in the
Accept header. See section 5.3.2 of [RFC7231].

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 20 of 78

Authorization The Authorization header is used by HTTP Requests to specify
authentication credentials. See section 4.2 of [RFC7235].

Content-Type The Content-Type header is used by HTTP to identify the format of
HTTP Requests and HTTP Responses. TAXII defines a media type
and an optional version parameter that can be used in the
Content-Type header. See section 3.1.1.5 of [RFC7231].

User-Agent The User-Agent header is used by HTTP to identify the TAXII Client
software name and version. TAXII Clients SHOULD use the
User-Agent header in requests to a TAXII Server as defined in
section 5.5.3 of [RFC7231].

WWW-Authenticate The WWW-Authenticate header is used by HTTP Responses to
indicate that authentication is required and to specify the
authentication schemes and parameters that are supported. See
section 4.1 of [RFC7235].

Custom Headers

X-TAXII-Date-Added-First The X-TAXII-Date-Added-First header is an extension header. It
indicates the date_added timestamp of the first object of the
response.

The value of this header MUST be a timestamp. All HTTP 200
series responses to the following endpoints MUST include the
X-TAXII-Date-Added-First header:

● GET {api-root}/collections/{id}/manifest/
● GET {api-root}/collections/{id}/objects/
● GET {api-root}/collections/{id}/objects/{object-id}/
● GET {api-root}/collections/{id}/objects/{object-id}/versions/

Behaviour of this header on any other endpoint, is not defined.

X-TAXII-Date-Added-Last The X-TAXII-Date-Added-Last header is an extension header. It
indicates the date_added timestamp of the last object of the
response.

The value of this header MUST be a timestamp. All HTTP 200
series responses to the following endpoints MUST include the
X-TAXII-Date-Added-Last header:

● GET {api-root}/collections/{id}/manifest/
● GET {api-root}/collections/{id}/objects/
● GET {api-root}/collections/{id}/objects/{object-id}/
● GET {api-root}/collections/{id}/objects/{object-id}/versions/

Behaviour of this header on any other endpoint, is not defined.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 21 of 78

3.3 Sorting
For Object and Manifest Endpoints, objects returned MUST be sorted in ascending order by the date it
was added. Meaning, the most recently added object is last in the list.

The Collections Endpoint MUST return Collection Resources in a consistent sort order across multiple
requests.

3.4 Filtering
This section defines the URL query parameters used for matching and filtering content. A TAXII Client
can request specific content from a TAXII Server by specifying a set of filters included in the request to
the server. The URL query parameters listed below specifies what to include in the response from the
TAXII Server. If no URL query parameter is specified then the TAXII Client is requesting that all content
be returned for that Endpoint, subject to any default behaviors as listed below.

If any of the URL query parameters are malformed, the TAXII Server MUST return an HTTP 400 (Bad
Request) status code.

URL Query
Parameters

Description

added_after A single timestamp that filters objects to only include those objects added after the
specified timestamp. The value of this parameter is a timestamp.

A request MUST NOT have more than one instance of this URL query parameter.
If this parameter is provided it MUST contain only a single timestamp.

If no added_after URL query parameter is provided, the server MUST return the
oldest objects matching the request first. For example, if a server has 100 objects
(0-99) and limits requests to 10 objects at a time and a client makes a request
without an added_after URL query parameter, the server would start at record 0
looking for a match and work its way up from oldest to newest finding 10 objects
that matched the request.

The added_after parameter is not in any way related to dates or times in a STIX
object or any other CTI object.

Note: The HTTP Date header can be used to identify and correct any time skew
between client and server.

limit A single integer value that indicates the maximum number of objects that the client
would like to receive in a single response.

● The value of the limit MUST be a positive integer greater than zero.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 22 of 78

● Responses to requests where the client provided a limit MUST NOT
contain more objects than requested.

● If the number of objects available for the response is less than or equal to
both the client requested and server-imposed limit, then all objects MUST
be included in the response.

● A response to a request with a defined client limit that is greater than the
number of objects that the server is willing or able to provide MAY result in
a response with fewer objects than what was requested.

● If more objects are available either because the client requested that they
be limited via the limit parameter or the server limited them, then the
response envelope MUST have a value of true in the more property and
MAY have an appropriate value in the next property.

next A single string value that indicates the next record or set of records in the dataset
that the client is requesting. A client would get this value from the TAXII Envelope
and would use this value along with the original query/filter parameters to paginate
through additional records. This value is opaque to clients and may vary between
server implementations.

match[<field>] The match parameter defines filtering on the specified <field>. The list of fields
that MUST be supported is defined per Endpoint as defined in sections 4, 5, and 6.
The match parameter can be specified any number of times, where each match
instance specifies an additional filter to be applied to the resulting data and each
<field> MUST NOT occur more than once in a request. Said another way, all
match fields are ANDed together.

All <field> parameters are defined in the following table. Requests MAY use a
<field> not defined in this specification, and servers MAY ignore fields they do
not understand.

Each field MAY contain one or more values. Multiple values are separated by a
comma (U+002C COMMA, “,”) without any spaces. If multiple values are present,
the match is treated as a logical OR. For instance,
?match[type]=incident,malware specifies a filter for objects that are of type
incident OR malware.

Examples
?match[type]=campaign,malware,threat-actor

?match[type]=incident&match[version]=2016-01-01T01:01:01.000Z

3.4.1 Supported Fields for Match

Match Field Description

id The identifier of the object(s) that are being requested. When searching for a
STIX Object, this is a STIX ID.

Examples

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 23 of 78

?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb
?match[id]=indicator--3600ad1b-fff1-4c98-bcc9-4de3bc2e2ffb,sighting--4
600ad1b-fff1-4c58-bcc9-4de3bc5e2ffd

spec_version The specification version(s) of the STIX object that are being requested. A
response to a request with the spec_version match MUST NOT include any
specification versions that are not included in this parameter. If no
spec_version parameter is provided, the server MUST return only the latest
specification version that it can provide for each object matching the remainder
of the request.

Examples
?match[spec_version]=2.0
?match[spec_version]=2.0,2.1

type The type of the object(s) that are being requested. Only the types listed in this
parameter are permitted in the response.

Requests for types defined in [STIX™ Version 2.1] MUST NOT result in an
error due to an invalid type.

Requests for other types not defined in [STIX™ Version 2.1] MAY be fulfilled.

Examples
?match[type]=indicator
?match[type]=indicator,sighting

version The version(s) of the object(s) that are being requested from either an object or
manifest endpoint. If no version parameter is provided, the server MUST
return only the latest version for each object matching the remainder of the
request.

If a STIX object is not versioned (and therefore does not have a modified
timestamp) then this version parameter MUST use the created timestamp. If
an object does not have a created or modified timestamp or any other
version information that can be used, then the server should use a value for
the version that is consistent to the server.

Requests MUST NOT contain any duplicate version parameters, meaning,
each keyword (all, first, and last) and any specific version (<value>)
MUST NOT occur more than once in a request. However, multiple different
specific versions MAY be specified in the same request.

Valid values for the version parameter are:

● last - requests the latest version of an object. This is the default
parameter value if no other version parameter is provided.

● first - requests the earliest version of an object.
● all - requests all versions of an object. The all keyword MUST NOT

be used with any other version parameter.
● <value> - requests a specific version of an object.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 24 of 78

○ For STIX objects, this filter option requests objects whose
modified time matches exactly the provided value and the
value MUST follow the rules for timestamp as defined in
[STIX™ Version 2.1].

○ For example: "2016-01-01T01:01:01.000Z" tells the server to
return the exact STIX object(s) that matched the modified time
of "2016-01-01T01:01:01.000Z".

○ For non-STIX objects this value MAY, be any string that
represents the version of that object type. If the target format
does not support object versions, this parameter MUST be
ignored.

Examples
?match[version]=all
?match[version]=last,first
?match[version]=first,2018-03-02T01:01:01.123Z,last
?match[version]=2016-03-23T01:01:01.000Z,2018-03-02T01:01:01.123Z

3.5 Pagination
TAXII 2.1 supports pagination of large result sets on certain endpoints. These endpoints return results
sorted in ascending order by the date they were added to the collection (see section 3.3). The server may
limit the number of responses in response to a query, either as the result of a server-specified limit or in
response to a limit parameter passed by the client as part of a query (see section 3.4).

If more objects are available, either because the client requested that they be limited via the limit
parameter or the server limited them, then the response envelope MUST have a value of true in the
more property and MAY have an appropriate value in the next property.

If the more property is set to true and the next property is populated then the client can paginate through
the remaining records using the next URL parameter along with the same original query options.

If the more property is set to true and the next property is empty then the client may paginate through
the remaining records by using the added_after URL parameter with the date/time value from the
X-TAXII-Date-Added-Last header along with the same original query options.

It is possible for the server to return "more": true in a response, yet present no additional objects in the
follow-on query. This can occur when the additional objects are deleted from a collection between
requests.

Example:

● Collection High-Value-Indicators has 1000 records in it.
● The client or server has limited all responses to 100 records at a time.
● A client will make a request and the server will respond with the first 100 records.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 25 of 78

○ The server will also populate the two X headers for TAXII, X-TAXII-Date-Added-First
and X-TAXII-Date-Added-Last. These headers will contain the date/time value of when
the first and last records of the 100 returned records were added to the TAXII server.

○ The server will also set the more property to a value of true and may set the next
property to an appropriate value on the TAXII envelope.

● When a client wants to obtain the next 100 records, the client will do either:
○ Provided the same query/filter parameters that it originally used along with populating the

next URL parameter with the value from the next property on the previous TAXII
envelope response.

○ Or provide the same query/filter parameters that it originally used along with the date/time
value from the X-TAXII-Date-Added-Last in the added_after URL parameter

3.6 Errors
TAXII primarily relies on the standard HTTP error semantics (400-series and 500-series status codes,
defined by sections 6.5 and 6.6 of [RFC7231]) to allow TAXII Servers to indicate when an error has
occurred. For example, an HTTP 404 (Not Found) status code in response to a request to get information
about a Collection means that the Collection could not be found. The tables defining the Endpoints in
sections 4 and 5 identify common errors and which response should be used, but are not exhaustive and
do not describe all possible errors.

In addition to this, TAXII defines an error message structure that is provided in the response body when
an error status is being returned. It does not, however, define any error codes or error conditions beyond
those defined by HTTP.

3.6.1 Error Message
Message Type: error

The error message is provided by TAXII Servers in the response body when returning an HTTP error
status and contains more information describing the error, including a human-readable title and
description, an error_code and error_id, and a details structure to capture further structured
information about the error. All of the properties are application-specific, and clients shouldn't assume
consistent meaning across TAXII Servers even if the codes, IDs, or titles are the same.

Property Name Type Description

title (required) string A human readable plain text title for this error.

description (optional) string A human readable plain text description that gives
details about the error or problem that was
encountered by the application.

error_id (optional) string An identifier for this particular error instance. A TAXII
Server might choose to assign each error occurrence
its own identifier in order to facilitate debugging.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 26 of 78

error_code (optional) string The error code for this error type. A TAXII Server
might choose to assign a common error code to all
errors of the same type. Error codes are
application-specific and not intended to be meaningful
across different TAXII Servers.

http_status (optional) string The HTTP status code applicable to this error. If this
property is provided it MUST match the HTTP status
code found in the HTTP header.

external_details (optional) string A URL that points to additional details. For example,
this could be a URL pointing to a knowledge base
article describing the error code. Absence of this
property indicates that there are no additional details.

details (optional) dictionary The details property captures additional
server-specific details about the error. The keys and
values are determined by the TAXII Server and MAY
be any valid JSON object structure.

Examples
{
 "title": "Error condition XYZ",
 "description": "This error is caused when the application tries to access data...",
 "error_id": "1234",
 "error_code": "581234",
 "http_status": "409",
 "external_details": "http://example.com/ticketnumber1/errorid-1234",
 "details": {
 "somekey1": "somevalue",
 "somekey2": "some other value"
 }
}

3.7 Envelope Resource
Resource Name: envelope
The envelope is a simple wrapper for STIX 2 content. When returning STIX 2 content in a TAXII response
the HTTP root object payload MUST be an envelope. This specification does not define any other form of
content wrapper for objects outside of STIX content.

For example:

● A single indicator in response to a request for an indicator by ID is enclosed in the objects
property list inside of an envelope.

● A list of campaigns returned from a Collection is enclosed in the objects property list inside of an
envelope.

● An empty response with no objects property inside the envelope.

Property Name Type Description

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 27 of 78

more (optional) boolean This property identifies if there is more content
available based on the search criteria. The
absence of this property means the value is
false.

next (optional) string This property identifies the server provided value
of the next record or set of records in the
paginated data set. This property MAY be
populated if the more property is set to true.

This value is opaque to the client and represents
something that the server knows how to deal
with and process.

For example, for a relational database this could
be the index autoID, for elastic search it could be
the Scroll ID, for other systems it could be a
cursor ID, or it could be any string (or int
represented as a string) depending on the
requirements of the server and what it is doing in
the background.

objects (optional) list of type
<STIX Object>

This property contains one or more STIX
Objects. Objects in this list MUST be a STIX
Object (e.g., SDO, SCO, SRO, Language
Content object, or a Marking Definition object).

Examples
{
 "more": true,
 "next": "123456789",
 "objects": [
 {
 "type": "indicator",
 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",
 ...
 }
]
}

3.8 Property Names
● All property names and string literals MUST be exactly the same, including case, as the names

listed in the property tables in this specification.
○ For example, the discovery resource has a property called api_roots and it MUST

result in the JSON key name "api_roots".
● Properties marked required in the property tables MUST be present in the JSON serialization of

that resource.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 28 of 78

3.9 DNS SRV Names
Organizations that choose to implement a DNS SRV record in their DNS server to advertise the location
of their TAXII Server MUST use the service name taxii2. As defined in [RFC2782], the service name is
defined without an underscore, and an underscore is added to construct the correct name in the actual
DNS SRV record. The protocol for this DNS SRV record MUST be tcp.

Examples
The following example is for a DNS SRV record advertising a TAXII Server for the domain “example.com”
located at taxii-hub-1.example.com:443:
_taxii2._tcp.example.com. 86400 IN SRV 0 5 443 taxii-hub-1.example.com

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 29 of 78

4 TAXII™ API - Server Information
The following table provides a summary of the Server Information Endpoints (URLs and HTTP Methods)
defined by TAXII and the Resources they operate on.

URL Methods Resource Type

/taxii2/ GET discovery

{api-root}/ GET api-root

{api-root}/status/{status-id}/ GET status

4.1 Server Discovery
This Endpoint provides general information about a TAXII Server, including the advertised API Roots. It's
a common entry point for TAXII Clients into the data and services provided by a TAXII Server. For
example, clients auto-discovering TAXII Servers via the DNS SRV record defined in section 1.6.1 will be
able to automatically retrieve a discovery response for that server by requesting the /taxii2/ path on
that domain.

Discovery API responses MAY advertise any TAXII API Root that they have permission to advertise,
included those hosted on other servers.

GET /taxii2/

Implementation Notes

Get information about the TAXII Server and any advertised API Roots

Requests

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 30 of 78

discovery

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The Discovery service is not found, or the client does not have access
to the resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /taxii2/ HTTP/1.1
Host: example.com
Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK
Content-Type: application/taxii+json;version=2.1

{
 "title": "Some TAXII Server",
 "description": "This TAXII Server contains a listing of...",
 "contact": "string containing contact information",
 "default": "https://example.com/api2/",
 "api_roots": [
 "https://example.com/api1/",
 "https://example.com/api2/",
 "https://example.net/trustgroup1/"
]
}

4.1.1 Discovery Resource
Resource Name: discovery
The discovery resource contains information about a TAXII Server, such as a human-readable title,
description, and contact information, as well as a list of API Roots that it is advertising. It also has an
indication of which API Root it considers the default, or the one to use in the absence of another
information/user choice.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 31 of 78

Property Name Type Description

title (required) string A human readable plain text name used to identify this
server.

description (optional) string A human readable plain text description for this server.

contact (optional) string The human readable plain text contact information for
this server and/or the administrator of this server.

default (optional) string The default API Root that a TAXII Client MAY use.
Absence of this property indicates that there is no
default API Root. The default API Root MUST be an
item in api_roots.

api_roots (optional) list of type
string

A list of URLs that identify known API Roots. This list
MAY be filtered on a per-client basis.

API Root URLs MUST be HTTPS absolute URLs or
relative URLs. API Root relative URLs MUST begin with
a single `/` character and MUST NOT begin with `//` or
'../". API Root URLs MUST NOT contain a URL query
component.

Examples - Valid
https://taxii.example.com:443/
https://someserver.example.net/apiroot1/
/someapiroot/

Examples -Invalid
//someserver.example.com/apiroot1
../someapiroot/
https://foo.edu/bar?baz

4.2 Get API Root Information
This Endpoint provides general information about an API Root, which can be used to help users and
clients decide whether and how they want to interact with it. Multiple API Roots MAY be hosted on a
single TAXII Server. Often, an API Root represents a single trust group.

● Each API Root MUST have a unique URL.
● Each API Root MAY have different authentication and authorization schemes.

GET /{api-root}/

Implementation Notes

Get information about a specific API Root

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 32 of 78

Requests

URL Parameters
{api-root} - the base URL of the API Root

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
api-root

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The API Root is not found, or the client does not have access to the
resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 33 of 78

{

 "title": "Malware Research Group",

 "description": "A trust group setup for malware researchers",

 "versions": ["application/taxii+json;version=2.1"],

 "max_content_length": 104857600

}

4.2.1 API Root Resource
Resource Name: api-root
The api-root resource contains general information about the API Root, such as a human-readable
title and description, the TAXII versions it supports, and the maximum size (max_content_length)
of the content body it will accept in a PUT or POST request.

Property Name Type Description

title (required) string A human readable plain text name used to identify this
API instance.

description (optional) string A human readable plain text description for this API
Root.

versions (required) list of type
string

The list of TAXII versions that this API Root is
compatible with. The values listed in this property MUST
match the media types defined in Section 1.6.8.1 and
MUST include the optional version parameter. A value of
"application/taxii+json;version=2.1" MUST be
included in this list to indicate conformance with this
specification.

max_content_length
(required)

integer The maximum size of the request body in octets (8-bit
bytes) that the server can support. The value of the
max_content_length MUST be a positive integer
greater than zero. This applies to requests only and is
determined by the server. Requests with total body
length values smaller than this value MUST NOT result
in an HTTP 413 (Request Entity Too Large) response. If
for example, the server supported 100 MB of data, the
value for this property would be determined by
100*1024*1024 which equals 104,857,600. This property
contains useful information for the client when it POSTs
requests to the Add Objects endpoint.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 34 of 78

4.3 Get Status
This Endpoint provides information about the status of a previous request. In TAXII 2.1, the only request
that can be monitored is one to add objects to a Collection (see section 5.5). It is typically used by TAXII
Clients to monitor a POST request that they made in order to take action when it is complete.

TAXII Servers SHOULD accept queries for a given status ID for at least 24 hours after the server has
finished processing the request. Once a TAXII client receives a status resource where the status value
is complete for a given status ID it SHOULD never pull for that status ID again. If the TAXII Server
receives a request on the status endpoint for a status ID that is no longer available, the server MUST
return an HTTP status of 404 (Not Found).

GET /{api-root}/status/{status-id}/

Implementation Notes

Get status information for a specific status ID

Requests

URL Parameters
{api-root} - the base URL of the API Root
{status-id} - the identifier of the status message being requested

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
status

Failure Responses

Response Codes
401 - The client needs to authenticate
403 - The client does not have access to this resource
404 - The API Root or Status ID are not found, or the client does not have
access to the resource

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 35 of 78

406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/status/2d086da7-4bdc-4f91-900e-d77486753710/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

{

 "id": "2d086da7-4bdc-4f91-900e-d77486753710",

 "status": "pending",

 "request_timestamp": "2016-11-02T12:34:34.12345Z",

 "total_count": 4,

 "success_count": 1,

 "successes": [

 {

 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf" ,

 "version": "2018-05-27T12:02:41.312Z"

 }

],

 "failure_count": 1,

 "failures": [

 {

 "id": "malware--664fa29d-bf65-4f28-a667-bdb76f29ec98",

 "version": "2018-05-28T14:03:42.543Z",

 "message": "Unable to process object"

 }

],

 "pending_count": 2,

 "pendings": [

 {

 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",

 "version": "2018-05-18T20:16:21.148Z"

 },

 {

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 36 of 78

 "id": "relationship--045585ad-a22f-4333-af33-bfd503a683b5",

 "version": "2018-05-15T10:13:32.579Z"

 }

]

}

4.3.1 Status Resource
Resource Name: status
The status resource represents information about a request to add objects to a Collection. It contains
information about the status of the request, such as whether or not it's completed (status) and MAY
contain the status of individual objects within the request (i.e. whether they are still pending, completed
and failed, or completed and succeeded).

The status resource is returned in two places: as a response to the initial POST request (see section 5.5)
and in response to a get status request (see section 4.3), which can be made after the initial request to
continuously monitor its status.

The list of objects that failed to be added, are still pending, or have been successfully added is a simple
type, named status-details, that contains the identifier of the object (e.g., for STIX objects, their id),
its version, and an optional message indicating additional details.

Property Name Type Description

id (required) identifier The identifier of this Status resource.

status (required) string The overall status of a previous POST request
where an HTTP 202 (Accept) was returned. The
value of this property MUST be one of complete
or pending. A value of complete indicates that
this resource will not be updated further, and
MAY be removed in the future. A status of
pending indicates that this resource MAY be
updated in the future.

request_timestamp
(optional)

timestamp The datetime of the request that this status
resource is monitoring.

total_count (required) integer The total number of objects that were in the
request, which would be the number of objects in
the envelope. The value of the total_count
MUST be a positive integer greater than or
equal to zero. If this property has a value of 0,
then the TAXII Server has not yet started
processing the request.

success_count (required) integer The number of objects that were successfully
created. The value of the success_count MUST

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 37 of 78

be a positive integer greater than or equal to
zero.

successes (optional) list of type
status-details

A list of objects that was successfully processed.

failure_count (required) integer The number of objects that failed to be created.
The value of the failure_count MUST be a
positive integer greater than or equal to zero.

failures (optional) list of type
status-details

A list of objects that was not successfully
processed.

pending_count (required) integer The number of objects that have yet to be
processed. The value of the pending_count
MUST be a positive integer greater than or
equal to zero.

pendings (optional) list of type
status-details

A list of objects that have yet to be processed.

Type Name: status-details
This type represents an object that was added, is pending, or not added to the Collection. It contains the
id and version of the object along with a message describing any details about its status.

Property Name Type Description

id (required) string The identifier of the object that succeed, is
pending, or failed to be created. For STIX
objects the id MUST be the STIX Object id. For
object types that do not have their own identifier,
the server MAY use any value as the id.

version (required) string The version of the object that succeeded, is
pending, or failed to be created. For STIX
objects the version MUST be the STIX modified
timestamp Property. If a STIX object is not
versioned (and therefore does not have a
modified timestamp), the server MUST use the
created timestamp.

message (optional) string A message indicating more information about
the object being created, its pending state, or
why the object failed to be created.

Status URL Examples
https://example.com/api1/status/2d086da7-4bdc-4f91-900e-d77486753710/
https://example.com/api2/status/88dc8293-827e-44f0-a592-4b5302fbe9d3/
https://example.org/trustgroup1/status/5d26743b-4ade-4b7d-8fea-f68119d4f909/

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 38 of 78

5 TAXII™ API - Collections
A TAXII Collection is a logical grouping of threat intelligence that enables the exchange of information
between a TAXII Client and a TAXII Server in a request-response manner. Collections are hosted in the
context of an API Root. Each API Root MAY have zero or more Collections. As with other TAXII
Endpoints, the ability of TAXII Clients to read from and write to Collections can be restricted depending on
their permissions level.

This section defines the TAXII API Collection Endpoints (URLs and methods), valid media types, and
responses.

The following table provides a summary of the Endpoints (URLs and HTTP Methods) defined by TAXII
and the Resources they operate on.

URL Methods Resource Type

{api-root}/collections/ GET collections

{api-root}/collections/{id}/ GET collection

{api-root}/collections/{id}/manifest/ GET manifest

{api-root}/collections/{id}/objects/ GET, POST envelope

{api-root}/collections/{id}/objects/{object-id}/ GET, DELETE envelope

{api-root}/collections/{id}/objects/{object-id}/versions/ GET versions

5.1 Get Collections
This Endpoint provides information about the Collections hosted under this API Root. This is similar to the
response to get a Collection (see section 5.2), but rather than providing information about one Collection
it provides information about all of the Collections. Most importantly, it provides the Collection's id, which
is used to request objects or manifest entries from the Collection.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

GET /{api-root}/collections/

Implementation Notes

Get information about all collections

Requests

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 39 of 78

URL Parameters
{api-root} - the base URL of the API Root

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
collections

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to this collections resource
404 - The API Root is not found, or the client does not have access to the
collections resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

{

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 40 of 78

 "collections": [

 {

 "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",

 "title": "High Value Indicator Collection",

 "description": "This data collection contains high value IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/stix+json;version=2.1"

]

 },

 {

 "id": "52892447-4d7e-4f70-b94d-d7f22742ff63",

 "title": "Indicators from the past 24-hours",

 "description": "This data collection is for collecting current IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/stix+json;version=2.1"

]

 }

]

}

5.1.1 Collections Resource
Resource Name: collections
The collections resource is a simple wrapper around a list of collection resources.

Property Name Type Description

collections (optional) list of type
collection

A list of Collections. If there are no Collections in the
list, this key MUST be omitted, and the response is an
empty object. The collection resource is defined in
section 5.2.1.

5.2 Get a Collection
This Endpoint provides general information about a Collection, which can be used to help users and
clients decide whether and how they want to interact with it. For example, it will tell clients what it's called
and what permissions they have to it.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 41 of 78

GET /{api-root}/collections/{id}/

Implementation Notes

Get information about a specific collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
collection

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to this collection resource
404 - The API Root or Collection ID are not found, or the client does not
have access to the collection resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 42 of 78

GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

{

 "id": "91a7b528-80eb-42ed-a74d-c6fbd5a26116",

 "title": "High Value Indicator Collection",

 "description": "This data collection contains high value IOCs",

 "can_read": true,

 "can_write": false,

 "media_types": [

 "application/stix+json;version=2.1"

]

}

5.2.1 Collection Resource
Resource Name: collection
The collection resource contains general information about a Collection, such as its id, a
human-readable title and description, an optional list of supported media_types (representing the
media type of objects can be requested from or added to it), and whether the TAXII Client, as
authenticated, can get objects from the Collection and/or add objects to it.

Property Name Type Description

id (required) identifier The id property universally and uniquely identifies this
Collection. It is used in the Get Collection Endpoint
(see section 5.2) as the {id} parameter to retrieve the
Collection.

title (required) string A human readable plain text title used to identify this
Collection.

description (optional) string A human readable plain text description for this
Collection.

alias (optional) string A human readable collection name that can be used on
systems to alias a collection ID. This could be used by
organizations that want to preconfigure a known
collection of data, regardless of the underlying
collection ID that is configured on a specific
implementations.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 43 of 78

If defined, the alias MUST be unique within a single
api-root on a single TAXII server. There is no
guarantee that an alias is globally unique across
api-roots or TAXII server instances.

Example:
/{api-root}/collections/critical-high-value-indicators/

can_read (required) boolean Indicates if the requester can read (i.e., GET) objects
from this Collection. If true, users are allowed to
access the Get Objects, Get an Object, or Get Object
Manifests endpoints for this Collection. If false, users
are not allowed to access these endpoints.

can_write (required) boolean Indicates if the requester can write (i.e., POST) objects
to this Collection. If true, users are allowed to access
the Add Objects endpoint for this Collection. If false,
users are not allowed to access this endpoint.

media_types (optional) list of type
string

A list of supported media types for Objects in this
Collection. Absence of this property is equivalent to a
single-value list containing
"application/stix+json". This list MUST describe
all media types that the Collection can store.

5.3 Get Object Manifests
This Endpoint retrieves a manifest about the objects in a Collection. It supports filtering identical to the get
objects Endpoint (see section 5.4) but rather than returning the object itself it returns metadata about the
object. It can be used to retrieve metadata to decide whether it's worth retrieving the actual objects.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP
HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

Filtering is applied against the source object rather than the manifest entry for an object. Thus, searching
the manifest for a type of indicator will return the manifest entries for objects with a type of indicator,
even though the manifest doesn't have a type property.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

GET /{api-root}/collections/{id}/manifest/

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 44 of 78

Implementation Notes
Get manifest information about the contents of a specific collection.

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested

URL Filtering Parameters
added_after - a single timestamp (e.g., ?added_after=...)
limit - a single integer (e.g., ?limit=...)
next - a single string (e.g., ?next=...)
id - an id(s) of an object (e.g., ?match[id]=...)
type - the type(s) of an object (e.g., ?match[type]=...)
version - the version(s) of an object (e.g., ?match[version]=...)
spec_version - the specification version(s) (e.g., ?match[spec_version]=...)

Filtering is based on properties of the objects that the manifest entries
represent. For example, filtering by type=indicator will return manifest
entries for objects with a type of indicator.

Required Headers
Accept: application/taxii+json;version=2.1,application/stix+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

Payload
manifest

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this manifest resource
404 - The API Root or Collection ID are not found, or the client does not
have access to the manifest resource
406 - The media type provided in the Accept header is invalid

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 45 of 78

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/manifest/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

{

 "objects": [

 {

 "id": "indicator--29aba82c-5393-42a8-9edb-6a2cb1df070b",

 "date_added": "2016-11-04T03:04:051Z",

 "version": "2016-11-03T12:30:59.000Z",

 "media_type": "application/stix+json;version=2.1"

 },

 {

 "id": "indicator--ef0b28e1-308c-4a30-8770-9b4851b260a5",

 "date_added": "2016-11-04T10:29:061Z",

 "version": "2016-11-03T12:35:10.000Z",

 "media_type": "application/stix+json;version=2.1"

 }

]

}

5.3.1 Manifest Resource
Resource Name: manifest
The manifest resource is a simple wrapper around a list of manifest-record items.

Property Name Type Description

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 46 of 78

more (optional) boolean This property identifies if there is more content
available based on the search criteria. The
absence of this property means the value is
false.

objects (optional) list of type
manifest-record

The list of manifest entries for objects returned
by the request. If there are no manifest-record
items in the list, this key MUST be omitted, and
the response is an empty object.

Type Name: manifest-record
The manifest-record type captures metadata about a single version of an object, indicated by the id
property. The metadata includes information such as when that version of the object was added to the
Collection, the version of the object itself, and the media type that this specific version of the object is
available in.

Property Name Type Description

id (required) string The identifier of the object that this manifest
entry describes. For STIX objects the id MUST
be the STIX Object id. For object types that do
not have their own identifier, the server MAY use
any value as the id.

date_added (required) timestamp The date and time this object was added.

version (required) string The version of this object.

For objects in STIX format, the STIX modified
property is the version. If a STIX object is not
versioned (and therefore does not have a
modified timestamp), the server MUST use the
created timestamp.

media_type (optional) string The media type that this specific version of the
object can be requested in. This value MUST be
one of the media types listed on the collection
resource.

5.4 Get Objects
This Endpoint retrieves objects from a Collection. Clients can search for objects in the Collection, retrieve
all objects in a Collection, or paginate through objects in the Collection. Pagination is supported by the
limit URL query parameter (see section 3.4) and the more property of the envelope (see section 3.7).

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 47 of 78

If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP
HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

To support searching the Collection, this Endpoint supports filtering as defined in section 3.4. Clients can
provide one or more filter parameters to get objects with a specific ID, of a specific type, or with a specific
version. Future versions of TAXII will add more advanced filtering capabilities.

When requesting STIX 2 content, that content will always be delivered in a TAXII envelope even if there
only one object returned. If no STIX objects are returned, the response MUST include an empty
envelope. An envelope is returned even when requesting a specific object ID, as there may be multiple
versions of that object that are returned.

GET /{api-root}/collections/{id}/objects/

Implementation Notes

Get all objects from a collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested

URL Filtering Parameters
added_after - a single timestamp (e.g., ?added_after=...)
limit - a single integer (e.g., ?limit=...)
next - a single string (e.g., ?next=...)
id - an id(s) of an object (e.g., ?match[id]=...)
type - the type(s) of an object (e.g., ?match[type]=...)
version - the version(s) of an object (e.g., ?match[version]=...)
spec_version - the specification version(s) (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 48 of 78

Payload
envelope

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this objects resource
404 - The API Root or Collection ID are not found, or the client does not
have access to the objects resource
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

{

 "objects": [

 {

 "type": "indicator",

 ...

 }

]

}

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 49 of 78

5.5 Add Objects
This Endpoint adds objects to a Collection.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

If the Collection specifies can_write as false for a particular client, this Endpoint MUST return an HTTP
HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

Successful responses to this Endpoint will contain a status resource describing the status of the request.
The status resource contains an id, which can be used to make requests to the get status Endpoint (see
section 4.3), a status flag to indicate whether the request is completed or still being processed, and
information about the status of the particular objects in the request. If a client publishes an exact duplicate
of an Object already present in the Collection, the server MUST not return an error for that Object.

If the request is marked pending in the status property, the client SHOULD periodically poll the get
status Endpoint to get an updated status until such a time that the status property returns a value of
complete. At that point, the request can be considered complete.

When adding STIX 2 content, clients MUST deliver all objects in a TAXII envelope.

POST /{api-root}/collections/{id}/objects/

Implementation Notes

Add a new object to a specific collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection where objects are being added

Required Headers
Accept: application/taxii+json;version=2.1

Content-Type: application/taxii+json;version=2.1

Payload
envelope

Successful Responses

Response Codes
202 - The request was successful accepted

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 50 of 78

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
status

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client does not have access to write to this objects resource
404 - The API Root or Collection ID are not found, or the client can not
write to this objects resource
406 - The media type provided in the Accept header is invalid
413 - The POSTed payload exceeds the max_content_length of the API Root
415 - The client attempted to POST a payload with a content type the server
does not support
422 - The object type or version is not supported or could not be processed.
This can happen, for example, when sending a version of STIX that this TAXII
Server does not support and cannot process, when sending a malformed body,
or other unprocessable content

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

POST Request
POST /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/objects/

HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

Content-Type: application/taxii+json;version=2.1

{

 "objects": [

 {

 "type": "indicator",

 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf",

 ...

 }

]

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 51 of 78

}

POST Response
HTTP/1.1 202 Accepted

Content-Type: application/taxii+json;version=2.1

{

 "id": "2d086da7-4bdc-4f91-900e-d77486753710",

 "status": "pending",

 "request_timestamp": "2016-11-02T12:34:34.12345Z",

 "total_count": 4,

 "success_count": 1,

 "successes": [

 {

 "id": "indicator--c410e480-e42b-47d1-9476-85307c12bcbf"

 }

],

 "failure_count": 0,

 "pending_count": 3

}

5.6 Get an Object
This Endpoint gets an object from a Collection by its id. It can be thought of as a search where the
match[id] parameter is set to the {object-id} in the path. For STIX 2 objects, the {object-id} MUST
be the STIX id.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP
HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

To support getting a particular version of an object, this Endpoint supports filtering as defined in section
3.4. The only valid match parameter is version.

When requesting STIX 2 content, that content will always be delivered in a TAXII envelope even if there
only one object returned. If no STIX objects are returned, the response MUST include an empty
envelope. An envelope is returned even when requesting a specific object ID, as there may be multiple
versions of that object that are returned.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 52 of 78

GET /{api-root}/collections/{id}/objects/{object-id}/

Implementation Notes

Get a specific object from a collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested
{object-id} - the ID of the object being requested

URL Filtering Parameters
added_after - a single timestamp (e.g., ?added_after=...)
limit - a single integer (e.g., ?limit=...)
next - a single string (e.g., ?next=...)
version - the version(s) of an object (e.g., ?match[version]=...)
spec_version - the specification version(s) (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

Payload
envelope

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this object resource
404 - The API Root, Collection ID and/or Object ID are not found, or the
client does not have access to the object resource
406 - The media type provided in the Accept header is invalid

Required Headers

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 53 of 78

Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/

indicator--252c7c11-daf2-42bd-843b-be65edca9f61/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

{

 "objects": [

 {

 "type": "indicator",

 "id": "indicator--252c7c11-daf2-42bd-843b-be65edca9f61",

 ...,

 }

]

}

5.7 Delete an Object
This Endpoint deletes an object from a Collection by its id. For STIX 2 objects, the {object-id} MUST
be the STIX id.

To support removing a particular version of an object, this Endpoint supports filtering as defined in section
3.4. The only valid match parameter is version.

When a TAXII Server returns a successful response code of 200 to a DELETE, any subsequent attempts
to fetch that object/version from the collection by an authorized client using the Get Objects Endpoint
MUST return an HTTP 404 (Not Found) response. Furthermore, any subsequent attempts to fetch the
collection manifest or its contents MUST NOT return the object in the result. Subsequent attempts to fetch
the object from other collections present on the TAXII server MAY also return an HTTP 404 (Not Found)
response, and subsequent attempts to fetch the collection manifest or its contents of other collections
which contained the object MAY not return the object in the result.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 54 of 78

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

The following table defines the conditions and error codes that can be returned once a client has
successfully authenticated to this endpoint. If the collection specifies the following permissions for the
authenticated client and the client attempts to delete an object at this endpoint, then this endpoint MUST
return the error codes as defined in the following table.

NOTE, the DELETE endpoint is only supported for collections where both can_read is true and
can_write is true.

Client
can_read

Client
can_write

Mandatory Responses

false false HTTP 404 (Not Found)

true false HTTP 403 (Forbidden)

false true HTTP 403 (Forbidden)

true true < See the Successful and Failure Response sections below >

DELETE /{api-root}/collections/{id}/objects/{object-id}/

Implementation Notes

Delete a specific object from a collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested
{object-id} - the ID of the object being deleted

URL Filtering Parameters
version - the version(s) of an object (e.g., ?match[version]=...)
spec_version - the specification version(s) (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 55 of 78

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
n/a

Failure Responses

Response Codes
400 - The server did not understand the request
401 - The client needs to authenticate
403 - The client has access to the object, but not to delete it
404 - The API Root, Collection ID and/or Object ID are not found, or the
client does not have access to the object
406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

DELETE Request
DELETE /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/

indicator--252c7c11-daf2-42bd-843b-be65edca9f61/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

DELETE Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

5.8 Get Object Versions
This Endpoint retrieves a list of one or more versions of an object in a Collection. This list can be used to
decide whether it's worth retrieving the actual objects, or if new versions have been added. If a STIX
object is not versioned (and therefore does not have a modified timestamp), the server MUST use
created timestamp.

If a client fails authentication then this endpoint MUST return either an HTTP 401 (Unauthorized) or an
HTTP 404 (Not Found).

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 56 of 78

If the Collection specifies can_read as false for a particular client, this Endpoint MUST return an HTTP
HTTP 403 (Forbidden) or HTTP 404 (Not Found) error.

GET /{api-root}/collections/{id}/objects/{object-id}/
 versions/

Implementation Notes

Get a list of object versions from a collection

Requests

URL Parameters
{api-root} - the base URL of the API Root
{id} - the identifier of the Collection being requested
{object-id} - the ID of the object being requested

URL Filtering Parameters
added_after - a single timestamp (e.g., ?added_after=...)
limit - a single integer (e.g., ?limit=...)
next - a single string (e.g., ?next=...)
spec_version - the specification version(s) (e.g., ?match[spec_version]=...)

Required Headers
Accept: application/taxii+json;version=2.1

Successful Responses

Response Codes
200 - The request was successful

Required Headers
Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

Payload
versions

Failure Responses

Response Codes
400 - The server did not understand the request or filter parameters
401 - The client needs to authenticate
403 - The client does not have access to this versions resource
404 - The API Root, Collection ID and/or Object ID are not found, or the
client does not have access to the versions resource

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 57 of 78

406 - The media type provided in the Accept header is invalid

Required Headers
Content-Type: application/taxii+json;version=2.1

Payload
error

Example

GET Request
GET /api1/collections/91a7b528-80eb-42ed-a74d-c6fbd5a26116/object/

indicator--252c7c11-daf2-42bd-843b-be65edca9f61/versions/ HTTP/1.1

Host: example.com

Accept: application/taxii+json;version=2.1

GET Response
HTTP/1.1 200 OK

Content-Type: application/taxii+json;version=2.1

X-TAXII-Date-Added-First: timestamp
X-TAXII-Date-Added-Last: timestamp

{

 "versions": [

 "2016-11-03T12:30:59.000Z",

 "2016-11-03T12:31:00.000Z"

]

}

5.8.1 Versions Resource
Resource Name: versions
The versions resource is a simple wrapper around a list of versions.

Property Name Type Description

more (optional) boolean This property identifies if there is more content
available based on the search criteria. The
absence of this property means the value is
false.

versions (optional) list of type
string

The list of object versions returned by the
request. If there are no versions returned, this
key MUST be omitted, and the response is an
empty object.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 58 of 78

6 TAXII™ API - Channels
RESERVED

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 59 of 78

7 Customizing TAXII Resources
This section defines how to extend TAXII in an interoperable manner.

7.1 Custom Properties
It is understood that there will be cases where certain information exchanges can be improved by adding
properties that are not specified nor reserved in this document; these properties are called Custom
Properties. This section provides guidance and requirements for how TAXII Servers and Clients should
use and interpret Custom Properties in order to extend TAXII in an interoperable manner.

Note: The presence of Custom Properties may introduce variability of behavior depending on whether or
not the TAXII Server or Client understands the Custom Properties. A reasonable strategy to minimize
unwanted variations in behavior is to provide well defined and consistent rules for processing Custom
Properties to any TAXII Server or Client that would be reasonably expected to parse them.

7.1.1 Requirements
● A TAXII resource MAY have any number of Custom Properties.
● Custom Property names MUST be in ASCII and MUST only contain the characters a–z

(lowercase ASCII), 0–9, and underscore (_).
● Custom Property names SHOULD start with “x_” followed by a source unique identifier (such as a

domain name with dots replaced by underscores), an underscore and then the name. For
example, x_example_com_customfield.

● Custom Property names MUST have a minimum length of 3 ASCII characters.
● Custom Property names MUST be no longer than 250 ASCII characters in length.
● Custom Property names that are not prefixed with “x_” may be used in a future version of the

specification for a different meaning. If compatibility with future versions of this specification is
required, the “x_” prefix MUST be used.

● Custom Properties SHOULD only be used when there are no existing properties defined by the
TAXII specification that fulfill that need.

TAXII Servers that receive a TAXII Resource with one or more Custom Properties it does not understand
MAY respond in one of two ways:

1. Either refuse to process the content further and respond to the message with an HTTP 422
(Unprocessable Entity) status code,

2. or silently ignore non-understood properties and continue processing the message.

TAXII Clients that receive a TAXII Resource with one or more Custom Properties it does not understand
MAY silently ignore non-understood properties and continue processing the message.

The reporting and logging of errors originating from the processing of Custom Properties depends on the
TAXII Server and Client implementations and is therefore not covered in this specification.

Examples
{
 ...,

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 60 of 78

 "x_acmeinc_scoring": {
 "impact": "high",
 "probability": "low"
 },
 ...
}

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 61 of 78

8 Conformance

8.1 TAXII™ Servers
This section describes the types of TAXII Servers that can be implemented and which normative
requirements those types of servers must conform to.

8.1.1 TAXII™ 2.1 Server
A "TAXII 2.1 Server" is any software that conforms to the following normative requirements:

1. It MUST support all requirements for a TAXII Collections Server as defined in section 8.1.2.

8.1.2 TAXII™ 2.1 Collections Server
A "TAXII 2.1 Collections Server" is any software that conforms to the following normative requirements:

1. It MUST support all requirements as defined in section 3, section 4 and section 5.
2. It MUST include all required properties within TAXII Resources, as defined in section 4 and

section 5.
3. It MUST support all features listed in section 8.2, Mandatory Server Features.
4. It MAY support any features listed in section 8.3, Optional Server Features. Software supporting

an optional feature MUST comply with the normative requirements of that feature.

8.2 Mandatory Server Features
This section defines the mandatory features that all TAXII Servers must implement.

8.2.1 TAXII Server Core Requirements
1. It MUST define the URL of the Discovery API to be /taxii2/ and it MUST be located at the root of

the server, e.g., https://example.com/taxii2/
2. It MUST support at least one API Root.
3. It MAY support multiple API Roots.
4. It MAY implement other HTTP Methods, Content Types, and/or URLs beyond those defined in

this specification.
5. It MUST be capable of sending HTTP responses for features that it supports whose content is

valid TAXII as defined in sections 3, 4, 5, and 6 or STIX as defined in [STIX™ Version 2.1].
6. All properties MUST conform to the data type and normative requirements for that property.
7. It SHOULD NOT reject a valid request that is missing the client User-Agent header.

8.2.2 HTTPS and Authentication Server Requirements
1. It MUST accept TAXII 2.1 requests using HTTPS [RFC7230].
2. It MUST accept connections using TLS version 1.2 [RFC5246] and SHOULD accept connections

using TLS version 1.3 [RFC8446] or higher.
3. It MUST NOT use the 0-RTT feature of TLS 1.3 [RFC8446].

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 62 of 78

4. It SHOULD NOT accept any TLS 1.2 connections that use any of the cipher suites that are listed
in the cipher suite blacklist in Appendix A of [RFC7540].

5. It SHOULD implement the HTTP Basic authentication scheme per [RFC 7617].
6. It MAY permit configurations that enable and/or disable all authentication schemes, including

HTTP Basic authentication.
7. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see

section 1.6.9.
8. It MAY restrict access to clients by omitting specific objects, information, or optional properties

from any TAXII response.
9. It MAY permit operators to disable all authentication.
10. It MAY choose to not respond to (a.k.a. silently ignore) unauthorized requests.

8.3 Optional Server Features
This section defines the optional features that a TAXII Server MAY implement.

8.3.1 Client Certificate Verification
TAXII 2.1 servers MAY choose to verify a client’s certificate and use it for authentication. TAXII Servers
supporting client certificate verification and authentication MUST follow the normative requirements listed
in this section.

● The default strategy for TAXII Servers authenticating and verifying certificates SHOULD be PKIX
as defined in [RFC5280], [RFC6818], [RFC6125] et al.

● It MAY support other certificate verification policies such as Certificate Pinning.

8.4 TAXII™ Clients
This section describes the types of TAXII Clients that can be implemented and which normative
requirements those types of clients must conform to.

8.4.1 TAXII™ 2.1 Client
A "TAXII 2.1 Client" is any software that conforms to the following normative requirements:

1. It MUST support all requirements for a TAXII Collections Client as defined in section 8.4.2.
2. It SHOULD use an HTTP User-Agent string to correctly identify the software name and version as

defined in section 5.5.3 of [RFC7231].

8.4.2 TAXII™ 2.1 Collections Client
A "TAXII 2.1 Collections Client" is any software that exchanges CTI data with a TAXII 2.1 Collections
Server or a TAXII 2.1 Server. A TAXII 2.1 Collections Client conforms to the following normative
requirements:

1. It SHOULD be capable of looking up and using the TAXII SRV record from DNS.
2. It MUST support parsing all properties for resources defined in section 4 and section 5.
3. It MUST support all features listed in section 8.5, Mandatory Client Features.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 63 of 78

8.5 Mandatory Client Features
This section defines the mandatory features that all TAXII Clients MUST support.

8.5.1 HTTPS and Authentication Client Requirements
1. It MUST initiate TAXII 2.1 requests to a TAXII 2.1 Server using HTTPS [RFC7230].
2. It MUST support TLS 1.2 and SHOULD use TLS version 1.3 [RFC8446] or higher
3. It SHOULD NOT use TLS 1.2 with any of the cipher suites that are listed in the cipher suite

blacklist in Appendix A of [RFC7540].
4. It MUST implement the HTTP Basic authentication scheme as a client per [RFC 7617].
5. It MAY implement additional authentication and authorization schemes beyond HTTP Basic, see

section 1.6.9.

8.5.2 Server Certificate Verification
● The default strategy for TAXII Clients authenticating and verifying the server's TLS certificate

SHOULD be PKIX as defined in [RFC5280], [RFC6818], [RFC6125] et al.
● TAXII Clients MAY support other certification verification policies such as:

○ Certificate Pinning: A single or limited set of either hard-coded or physically distributed
pinned certificate authorities or end-entity certificates.

○ DANE: DNS-based Authentication of Named Entities [RFC7671]. Systems implementing
DANE SHOULD also implement DNSSEC [RFC4033].

○ Note that Self-Signed Certificates (like other certificates which cannot be verified by
PKIX) MAY be supported via Certificate Pinning and/or DANE as noted above.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 64 of 78

Appendix A. Glossary

API Root - A grouping of TAXII Channels, Collections, and related functionality.
Channel - A publish-subscribe communications method where messages are exchanged.
CTI - Cyber Threat Intelligence
Collection - A logical group of CTI objects.
Endpoint - A combination of a URL and HTTP method with defined behavior in TAXII.
STIX - Structured Threat Information Expression (STIX™) is a language and serialization format used to
exchange cyber threat intelligence (CTI).
STIX Content - STIX documents, including STIX Objects, grouped as STIX Bundles.
STIX Object - A STIX Domain Object (SDO) or STIX Relationship Object (SRO).
TAXII - Trusted Automated eXchange of Intelligence Information (TAXII™) is an application layer protocol
for the communication of cyber threat intelligence (CTI).
TAXII Client - A software package that connects to a TAXII Server and supports the exchange of CTI.
TAXII Server - A software package that supports the exchange of CTI.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 65 of 78

Appendix B. IANA Considerations

This appendix contains the required information to register the TAXII media type with IANA. While some
of the information here is only for IANA, implementers of TAXII should pay close attention to the security
considerations and privacy considerations outlined in this appendix.

This document defines the "application/taxii+json" media type

Media type name: application

Media subtype name: taxii+json

Required parameters: None

Optional parameters: version

This parameter is used to designate the specification version of TAXII that is being used during
HTTP content negotiation. Example: "application/taxii+json;version=2.1". The parameter value is
of the form 'n.m', where n is the major version and m the minor version, both unsigned integer
values.

Encoding considerations: binary

Encoding considerations are identical to those specified for the "application/json" media type. See
[RFC8259].

Security considerations:

These considerations are, in part, derived from Section 9 of the Resource-Oriented Lightweight
Information Exchange [RFC8322].

This document defines a resource-oriented approach for exchanging cyber threat intelligence
using HTTP [RFC7230] over TLS [RFC5246] and the JSON [RFC8259] Format. As such,
implementers must understand the security considerations described in those specifications.

Security considerations relating to the generation and consumption of TAXII messages are similar
to application/json and are discussed in Section 12 of [RFC8259].

The discovery API contains one or multiple URLs, therefor the security considerations stated in
Section 6 of [RFC1738] should be consulted especially in regard to parsing relative URLs and
attempts of path traversal.

Documents of "application/taxii+json" are simply request and response messages for an RPC like
mechanism for searching, uploading and downloading Cyber Threat Intelligence (CTI)
documents, most commonly STIX. The documents only contain metadata about the TAXII server,
such as descriptions, versions of CTI or status response of the request. Documents do not
contain active or executable content.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 66 of 78

Unicode is used to represent text such as descriptions in the format. The considerations
documented by Unicode Technical Report #36: Unicode Security Considerations [UNICODE]
should be taken into account.

To protect the confidentiality of a given resource provided by a TAXII implementation, requests
for retrieval of a resource need to be authenticated to prevent unauthorized users from accessing
the resource. It can also be useful to log and audit access to sensitive resources to verify that
proper access controls remain in place over time.

Access control to content made available using TAXII should use mechanisms that are
appropriate to the sensitivity of the information. While the primitive authentication mechanism of
HTTP Basic Authentication [RFC7617] is mandatory to implement for base level interoperability it
is rarely appropriate for sensitive information. A number of authentication schemes are defined in
the "HTTP Authentication Schemes" registry at IANA [IANA AUTH]. Of these, HTTP
Origin-Bound Authentication (HOBA) [RFC7486] and SCRAM-SHA-256 [RFC7804] ("SCRAM"
stands for "Salted Challenge Response Authentication Mechanism") provide improved security
properties over HTTP Basic [RFC7617] and Digest [RFC7616] authentication schemes. However,
sharing communities that are engaged in sensitive collaborative analysis and/or operational
response for indicators and incidents targeting high-value information systems should adopt a
suitably stronger user authentication solution, such as a risk-based or multi-factor approach.

Collaborating consortiums may benefit from the adoption of a federated identity solution, such as
those based upon OAuth [RFC6749] with the JSON Web Token (JWT) [RFC7797], or SAML-core
[SAML-core] ("SAML" stands for "Security Assertion Markup Language"), SAML-bind
[SAML-bind], and SAML-prof [SAML-prof] for web-based authentication and cross-organizational
single sign-on. Dependency on a trusted third-party identity provider implies that appropriate care
must be exercised to sufficiently secure the identity provider. Any attacks on the federated
identity system would present a risk to the consortium, as a relying party. Potential mitigations
include deployment of a federation-aware identity provider that is under the control of the
information-sharing consortium, with suitably stringent technical and management controls.

It is recommended that all TAXII servers authenticate and authorize access to all collection data
on a per-client basis using robust security methods. While this specification defines HTTP Basic
as a minimum suggested authentication mechanism, more advanced security authentication
methods are recommended when products or deployments require stronger authentication and
authorization frameworks for accessing or posting data to the TAXII server.

Authorization of resource representations is the responsibility of the source system, i.e., based on
the authenticated user identity associated with an HTTP(S) request. The required authorization
policies that are to be enforced must therefore be managed by the security administrators of the
source system. Various authorization architectures would be suitable for this purpose, such as
Role-Based Access Control (RBAC) [NIST RBAC] and/or Attribute-Based Access Control
(ABAC), as embodied in the eXtensible Access Control Markup Language (XACML) [XACML]. In
particular, implementers adopting XACML may benefit from the capability to represent their
authorization policies in a standardized, interoperable format. Note that implementers are free to
choose any suitable authorization mechanism that is capable of fulfilling the policy enforcement
requirements relevant to their consortium and/or organization.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 67 of 78

While the authentication and confidentiality for the TAXII session is done at a lower level via the
transport mechanism (HTTPS), this does not obviate the consumer (server or client) from
validating the format and contents of the documents sent in a session. This validation should
includes checking various limits, such as document size limits, to limit the risk of the other party
attempting to attack the service.

Additional security requirements such as enforcing message-level security at the destination
system could supplement the security enforcements performed at the source system; however,
these destination-provided policy enforcements are out of scope for this specification.
Implementers requiring this capability should consider leveraging, for example, the <RIDPolicy>
element in the RID schema. Refer to Section 9 of [RFC6545] for more information. Additionally,
the underlying JSON serialization used in the representation can offer encryption and message
authentication capabilities. For example, JSON Web Encryption [RFC7516] and JSON Web
Signature [RFC7515], can provide such mechanisms.

TAXII Servers may manage response volume in different ways. Implementers should be aware
that a search request may return more objects than is prudent to return in a single HTTP
Response. To mitigate this, TAXII servers should consider implementing restrictions on the
number of objects it will return in a single HTTP response.

TAXII provides clients a rich set of filtering and query options to return specific results from
repositories of CTI data. As such, TAXII servers should implement protections against queries
that can potentially consume a significant amount of resources and prevent the server from
functioning in a normal way.

TAXII defines an optional error message that may contain sensitive application data.
Implementers should ensure that they do not leak descriptive text or application return codes for
things that a user may not have access to, for example leak info about existence of something,
implementation of something, vs. just not having access.

Note: Despite TAXII searching and returning STIX objects, this format does not encapsulate any
CTI content. It is expected that CTI documents will be sent with the appropriate mime-type. For
these, consult their own security consideration sections.

As the next URL parameter is a client provided property, care must be taken that it is not blindly
trusted as the same value that the server returned as part of the TAXII Envelope. This means it
MUST NOT be implicitly trusted, and the value MUST be reevaluated in the context of the
provided query such that incorrect data (data that the client is not authorized to have or not part of
the query set) is not returned.

Privacy considerations
These considerations are, in part, derived from Section 10 of the Resource-Oriented Lightweight
Information Exchange [RFC8322].

The documents contain various descriptions and other text. There is no expectation that these will
contain private information, but as some may be user provided, there is no guarantee that a user
will not inadvertently include private data. It is expected that the client or server authenticate the
other party through the transport mechanism before sending any possible private data. As the

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 68 of 78

protocol is about sharing data, it is expected that the parties understand their obligations in
keeping relevant data private.

Adoption of the information-sharing approach described in this document will enable users to
more easily perform correlations across separate, and potentially unrelated, cybersecurity
information providers. A client may succeed in assembling a data set that would not have been
permitted within the context of the authorization policies of either provider when considered
individually. Thus, providers may face a risk of an attacker obtaining an access that constitutes
an undetected separation of duties (SOD) violation. It is important to note that this risk is not
unique to this specification, and a similar potential for abuse exists with any other cybersecurity
information-sharing protocol. However, the wide availability of tools for HTTP clients implies that
the resources and technical skills required for a successful exploit may be less than it was
previously. This risk can be best mitigated through appropriate vetting of the client at the time of
account provisioning. In addition, any increase in the risk of this type of abuse should be offset
by the corresponding increase in effectiveness that this specification affords to the defenders.

Overall, privacy concerns in TAXII can be mitigated by following security considerations and by
the careful use of the content exchanged via TAXII.

Interoperability considerations:

The TAXII specification specifies the format of conforming messages and the interpretation
thereof. In addition, the OASIS Cyber Threat Intelligence (CTI) Technical Committee has defined
interoperability tests to ensure conforming products and solutions can exchange TAXII
documents.

Published specification:

TAXII Version 2.1 OASIS Committee Specification 01
http://docs.oasis-open.org/cti/taxii/v2.1/cs01/taxii-v2.1-cs01.html
Cited in the "OASIS Standards" document:
https://www.oasis-open.org/standards#oasiscommiteespecs, from
https://www.oasis-open.org/standards#taxii2.1

Applications which use this media:

TAXII is an application layer protocol for the communication of cyber threat information including
STIX in a simple and scalable manner.

Fragment identifier considerations: None

Restrictions on usage: None

Additional information:

1. Deprecated alias names for this type: application/vnd.oasis.taxii+json
2. Magic number(s): n/a [RFC8259]
3. File extension(s): None
4. Macintosh file type code: TEXT [RFC8259]
5. Object Identifiers: None

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 69 of 78

Person and email to contact for further information: Chet Ensign (chet.ensign@oasis-open.org)

Intended usage: COMMON

Author:

OASIS Cyber Threat Intelligence (CTI) Technical Committee;
URI reference: http://www.oasis-open.org/committees/cti/.

Change controller: OASIS

Provisional registration: No

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 70 of 78

Appendix C. Acknowledgments
TAXII Subcommittee Chair:

Bret Jordan, Symantec Corp.

Special Thanks:
Substantial contributions to this specification from the following individuals are gratefully acknowledged:

Terry MacDonald, Cosive
Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
Sergey Polzunov, EclecticIQ
Iain Brown, GDS
Eric Burger, Georgetown University
Jason Keirstead, IBM
Allan Thomson, LookingGlass Cyber
Rich Piazza, MITRE Corporation
Charles Schmidt, MITRE Corporation
Richard Struse, MITRE Corporation
John Wunder, MITRE Corporation
Mark Davidson, NC4
John-Mark Gurney, New Context Services, Inc.
Drew Varner, NineFX, Inc.
Dave Cridland, Surevine
Bret Jordan, Symantec Corp.

Participants:
The following individuals were members of the OASIS CTI Technical Committee during the creation of
this specification and their contributions are gratefully acknowledged:

Qian Yin, 360 Enterprise Security Group
Xinhua Zheng, 360 Enterprise Security Group
Robert Coderre, Accenture
Kyle Maxwell, Accenture
David Crawford, Aetna
Marcos Orallo, Airbus Group SAS
Roman Fiedler, AIT Austrian Institute of Technology
Florian Skopik, AIT Austrian Institute of Technology
Ryan Clough, Anomali
Nicholas Hayden, Anomali
Wei Huang, Anomali
Angela Nichols, Anomali
Hugh Njemanze, Anomali
Katie Pelusi, Anomali
Dean Thompson, Australia and New Zealand Banking Group (ANZ Bank)
Alexander Foley, Bank of America
Radu Marian, Bank of America
Sounil Yu, Bank of America

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 71 of 78

Vicky Laurens, Bank of Montreal
Alexandre Dulaunoy, CIRCL
Andras Iklody, CIRCL
Christian Studer, CIRCL
RaphaÎl Vinot, CIRCL
Syam Appala, Cisco Systems
Ted Bedwell, Cisco Systems
David McGrew, Cisco Systems
Pavan Reddy, Cisco Systems
Omar Santos, Cisco Systems
Sam Taghavi Zargar, Cisco Systems
Jyoti Verma, Cisco Systems
Jart Armin, Cyber Threat Intelligence Network, Inc. (CTIN)
Doug DePeppe, Cyber Threat Intelligence Network, Inc. (CTIN)
Jane Ginn, Cyber Threat Intelligence Network, Inc. (CTIN)
Ben Ottoman, Cyber Threat Intelligence Network, Inc. (CTIN)
David Powell, Cyber Threat Intelligence Network, Inc. (CTIN)
Andreas Sfakianakis, Cyber Threat Intelligence Network, Inc. (CTIN)
Andrew Byrne, Dell
Jeff Odom, Dell
Sreejith Padmajadevi, Dell
Ravi Sharda, Dell
Will Urbanski, Dell
Evette Maynard-Noel, DHS Office of Cybersecurity and Communications (CS&C)
Sean Sobieraj, DHS Office of Cybersecurity and Communications (CS&C)
Marlon Taylor, DHS Office of Cybersecurity and Communications (CS&C)
Preston Werntz, DHS Office of Cybersecurity and Communications (CS&C)
Wouter Bolsterlee, EclecticIQ
Adam Bradbury, EclecticIQ
Marko Dragoljevic, EclecticIQ
Oliver Gheorghe, EclecticIQ
Joep Gommers, EclecticIQ
Christopher O'Brien, EclecticIQ
Sergey Polzunov, EclecticIQ
Rutger Prins, EclecticIQ
Andrei SÓrghi, EclecticIQ
Raymon van der Velde, EclecticIQ
Tom Vaughan, EclecticIQ
Ben Sooter, Electric Power Research Institute (EPRI)
Chris Ricard, Financial Services Information Sharing and Analysis Center (FS-ISAC)
Sean Barnum, FireEye, Inc.
Phillip Boles, FireEye, Inc.
Prasad Gaikwad, FireEye, Inc.
Will Green, FireEye, Inc.
Rajeev Jha, FireEye, Inc.
Anuj Kumar, FireEye, Inc.
James Meck, FireEye, Inc.
Shyamal Pandya, FireEye, Inc.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 72 of 78

Paul Patrick, FireEye, Inc.
Remko Weterings, FireEye, Inc.
Tim Jones, ForeScout
Gavin Chow, Fortinet Inc.
Steve Fossen, Fortinet Inc.
Kenichi Terashita, Fortinet Inc.
Ryusuke Masuoka, Fujitsu Limited
Daisuke Murabayashi, Fujitsu Limited
Derek Northrope, Fujitsu Limited
Toshitaka Satomi, Fujitsu Limited
Koji Yamada, Fujitsu Limited
Kunihiko Yoshimura, Fujitsu Limited
David Lemire, G2
Iain Brown, GDS
Adam Cooper, GDS
James Penman, GDS
Howard Staple, GDS
Chris Taylor, GDS
Laurie Thomson, GDS
Alastair Treharne, GDS
Julian White, GDS
Robert van Engelen, Genivia
Eric Burger, Georgetown University
Allison Miller, Google Inc.
Mark Risher, Google Inc.
Yoshihide Kawada, Hitachi, Ltd.
Jun Nakanishi, Hitachi, Ltd.
Kazuo Noguchi, Hitachi, Ltd.
Akihito Sawada, Hitachi, Ltd.
Yutaka Takami, Hitachi, Ltd.
Masato Terada, Hitachi, Ltd.
Adrian Bishop, Huntsman Security
Eldan Ben-Haim, IBM
Allen Hadden, IBM
Sandra Hernandez, IBM
Jason Keirstead, IBM
Chenta Lee, IBM
John Morris, IBM
Devesh Parekh, IBM
Nick Rossmann, IBM
Laura Rusu, IBM
Ron Williams, IBM
Paul Martini, iboss, Inc.
Vasileios Mavroeidis, IFI
Joerg Eschweiler, Individual
Stefan Hagen, Individual
Elysa Jones, Individual
Terry MacDonald, Individual

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 73 of 78

Tim Casey, Intel Corporation
Julie Modlin, Johns Hopkins University Applied Physics Laboratory
Mark Moss, Johns Hopkins University Applied Physics Laboratory
Mark Munoz, Johns Hopkins University Applied Physics Laboratory
Nathan Reller, Johns Hopkins University Applied Physics Laboratory
Pamela Smith, Johns Hopkins University Applied Physics Laboratory
Subodh Kumar, JPMorgan Chase Bank, N.A.
David Laurance, JPMorgan Chase Bank, N.A.
Russell Culpepper, Kaiser Permanente
Beth Pumo, Kaiser Permanente
Michael Slavick, Kaiser Permanente
Gus Creedon, Logistics Management Institute
Wesley Brown, LookingGlass
Jamison Day, LookingGlass
Dennis Hostetler, LookingGlass
Himanshu Kesar, LookingGlass
Allan Thomson, LookingGlass
Ian Truslove, LookingGlass
Chris Wood, LookingGlass
Kent Landfield, McAfee
Greg Back, Mitre Corporation
Jonathan Baker, Mitre Corporation
Desiree Beck, Mitre Corporation
Michael Chisholm, Mitre Corporation
Sam Cornwell, Mitre Corporation
Sarah Kelley, Mitre Corporation
Ivan Kirillov, Mitre Corporation
Michael Kouremetis, Mitre Corporation
Chris Lenk, Mitre Corporation
Nicole Parrish, Mitre Corporation
Richard Piazza, Mitre Corporation
Larry Rodrigues, Mitre Corporation
Jon Salwen, Mitre Corporation
Charles Schmidt, Mitre Corporation
Richard Struse, Mitre Corporation
Alex Tweed, Mitre Corporation
Emmanuelle Vargas-Gonzalez, Mitre Corporation
John Wunder, Mitre Corporation
James Cabral, MTG Management Consultants, LLC.
Scott Algeier, National Council of ISACs (NCI)
Denise Anderson, National Council of ISACs (NCI)
Josh Poster, National Council of ISACs (NCI)
Mike Boyle, National Security Agency
Jessica Fitzgerald-McKay, National Security Agency
David Kemp, National Security Agency
Shaun McCullough, National Security Agency
Jason Romano, National Security Agency
John Anderson, NC4

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 74 of 78

Michael Butt, NC4
Mark Davidson, NC4
Daniel Dye, NC4
Michael Pepin, NC4
Natalie Suarez, NC4
Benjamin Yates, NC4
Sarah Brown, NCI Agency
Oscar Serrano, NCI Agency
Daichi Hasumi, NEC Corporation
Takahiro Kakumaru, NEC Corporation
Lauri Korts-P‰rn, NEC Corporation
Trey Darley, New Context Services, Inc.
John-Mark Gurney, New Context Services, Inc.
Christian Hunt, New Context Services, Inc.
Danny Purcell, New Context Services, Inc.
Daniel Riedel, New Context Services, Inc.
Andrew Storms, New Context Services, Inc.
Drew Varner, NineFX, Inc.
Stephen Banghart, NIST
David Darnell, North American Energy Standards Board
James Crossland, Northrop Grumman
Robert Van Dyk, Northrop Grumman
Cheolho Lee, NSRI
Cory Casanave, Object Management Group
Vishaal Hariprasad, Palo Alto Networks
Aharon Chernin, Perch
Dave Eilken, Perch
John Tolbert, Queralt Inc.
Jay Heidecker, Seekintoo
Joseph Brand, Semper Fortis Solutions
Duncan Sparrell, sFractal Consulting LLC
Thomas Schreck, Siemens AG
Rob Roel, Southern California Edison
Armen Tashjian, Southern California Edison
Cedric LeRoux, Splunk Inc.
Brian Luger, Splunk Inc.
Philip Royer, Splunk Inc.
Sourabh Satish, Splunk Inc.
Bret Jordan, Symantec Corp.
Robert Keith, Symantec Corp.
Curtis Kostrosky, Symantec Corp.
Chris Larsen, Symantec Corp.
Michael Mauch, Symantec Corp.
Aubrey Merchant, Symantec Corp.
Efrain Ortiz, Symantec Corp.
Mingliang Pei, Symantec Corp.
Kenneth Schneider, Symantec Corp.
Arnaud Taddei, Symantec Corp.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 75 of 78

Brian Witten, Symantec Corp.
Greg Reaume, TELUS
Alan Steer, TELUS
Crystal Hayes, The Boeing Company
Andrew Gidwani, ThreatConnect, Inc.
Cole Iliff, ThreatConnect, Inc.
Andrew Pendergast, ThreatConnect, Inc.
Jason Spies, ThreatConnect, Inc.
Ryan Trost, ThreatQuotient, Inc.
Nir Yosha, ThreatQuotient, Inc.
Kris Anderson, Trend Micro
David Girard, Trend Micro
Eric Shulze, Trend Micro
Patrick Coughlin, TruSTAR Technology
Chris Roblee, TruSTAR Technology
Mark Angel, U.S. Bank
Brian Fay, U.S. Bank
Joseph Frazier, U.S. Bank
Mark Heidrick, U.S. Bank
Richard Shok, U.S. Bank
James Bohling, US Department of Defense (DoD)
Gary Katz, US Department of Defense (DoD)
Jeffrey Mates, US Department of Defense (DoD)
Evette Maynard-Noel, US Department of Homeland Security
Lee Chieffalo, Viasat
Wilson Figueroa, Viasat
Andrew May, Viasat
Ales Cernivec, XLAB
Anthony Rutkowski, Yanna Technologies LLC

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 76 of 78

Appendix D. Revision History

Revision Date Editor(s) Changes Made

01 2018-04-10 Bret Jordan
Drew Varner

Initial Version

GitHub Issues: 1, 8, 9, 10, 11, 12, 17, 18,
19, 20, 21, 23, 25, 26, 28, 29, 30, 31, 34,
35, 36, 39, 41, 43, 48, 49, 51, 53, 54, 56,
57, 62, 63

02 2018-05-18 Bret Jordan
Drew Varner

Fix typos, add clarifying text in some
cases, changed DNS SRV record name,
changed status resource, and made other
minor changes.

GitHub Issues: 47, 65, 66, 67, 70, 73, 74,
75

03 2018-07-12 Bret Jordan
Drew Varner

Reformatted the endpoint definitions,
added an endpoint to DELETE an object,
and added a versions endpoint to object
by ID. Added IANA Considerations
Appendix. Changed angle brackets "<>"
in the URL parameters to be curly
brackets "{}" to better align with API
documentation best practices. Added
non-normative references section.

GitHub Issues: 37, 38, 58, 76, 78, 79, 80,
82, 84

04 2018-11-16 Bret Jordan
Drew Varner

Renamed resource subtype
manifest-entry to manifest-record. Added
clarifying text for each endpoint on error
codes to be returned. Removed the STIX
media type and STIX Bundle and
replaced it with a TAXII Envelope. Added
a limit URL parameter and a
spec_versions match filter parameter.
Added clarifying text around TAXII
timestamps needing microsecond
precision. Cleaned up text and
deemphasized content other than STIX.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 77 of 78

GitHub Issues: 52, 87, 88, 89, 90, 91, 92,
93, 94

05 2018-12-03 Bret Jordan
Drew Varner

Minor editorial change form WD04 and
added User-Agent text.

GitHub Issues: 86

06 2019-01-24 Bret Jordan
Drew Varner

Changed envelope to contain a list of
objects instead of containing a STIX
Bundle. Fixed some text around the new
spec version filter and made sure the
filters and pagination elements are on all
appropriate endpoints.

GitHub Issues: 32, 42, 44, 50, 59, 60, 81,
83, 95, 96, 97, 98, 99, 103

07 2019-07-16 Bret Jordan
Drew Varner

Added language in 3.4.1 to support
objects with no version information.
Changes from "records" to "objects" in
section 3.4 and Appendix B.

08 2019-09-17 Bret Jordan
Drew Varner

Fixed broken links identified by OASIS
Admin and two typos. Added
informational and example text and put it
in section 3.5, moving the other sections
down and fixed all of the references.

09 2019-10-17 Bret Jordan
Drew Varner

Fix two grammar typos in the
conformance section. Added the concept
of a "next" value to pagination. This
impacted sections 3.4, 3.5, and 3.7.
Removed some references to the STIX
media type that we no longer use in
TAXII. Added some text to the security
considerations for handling the "next"
value in pagination. Add the "next" url
parameter to appropriate endpoints.

taxii-v2.1-wd09 Working Draft 09 17 October 2019
Standards Track Draft Copyright © OASIS Open 2019. All Rights Reserved. Page 78 of 78

