

An OASIS White Paper

DITA 1.2 Feature Overview: Domain and topic integration

Marc Speyer

12 November 2009

2

OASIS (Organization for the Advancement of Structured Information Standards) is a not-for-profit, international

consortium that drives the development, convergence, and adoption of e-business standards. Members themselves set

the OASIS technical agenda, using a lightweight, open process expressly designed to promote industry consensus and

unite disparate efforts. The consortium produces open standards for Web services, security, e-business, and

standardization efforts in the public sector and for application-specific markets. OASIS was founded in 1993. More

information can be found on the OASIS website at http://www.oasis-open.org.

The OASIS DITA Adoption Technical Committee members collaborate to provide expertise and resources to educate

the marketplace on the value of the DITA OASIS standard. By raising awareness of the benefits offered by DITA, the

DITA Adoption Technical Committee expects the demand for, and availability of, DITA conforming products and

services to increase, resulting in a greater choice of tools and platforms and an expanded DITA community of users,

suppliers, and consultants.

DISCLAIMER: All examples presented in this article were produced using one or more tools chosen at the author's

discretion and in no way reflect endorsement of the tools by the OASIS DITA Adoption Technical Committee.

3

Table of contents

Domain and topic integration ..4
Overview ...4

Example 1: Specialized topic and domain in DITA 1.1 ...5
Relaxation of the inheritance restriction in DITA 1.2 ..6

Example 2: A specialized domain extension whose substructure includes a preexisting
domain element...6
Example 2: A specialized topic whose substructure includes a preexisting domain
element ...8
Example 3: A specialized topic whose substructure specializes a preexisting domain
element ...9
Example 4: A domain with extension and substructure elements that specialize different
domains ...10
Example 5: A specialized topic whose substructure requires a domain that extends the
substructure of the base topic ...11

Summary ..12

4

Domain and topic integration
In DITA 1.2 the integration of domains and topics has been unified to improve design flexibility
and to simplify the DITA specialization constructs. By relaxing the restriction from what modules
may inherit from, vocabulary elements can now be shared between different kinds of modules.

Overview
Specialization is an important feature of the Darwin Information Typing Architecture (DITA) that
has many benefits such as the ability to quickly define more appropriate information types, better
interoperability, increased consistency and reduced learning time for users. Specialization can be
achieved at two levels:

 Structural specialization defines new types of structured information, such as new topic
types or new map types.

 Domain specialization creates new markup for use in structural types, such as new kinds
of keywords, tables, or lists, or new attributes such as conditional processing attributes

Until DITA 1.2 only single inheritance was allowed: topic elements could be specialized off
elements in their parent topic and domain elements could be specialized off elements in their
parent domain or elements in the common base module. Put in another way

1
:

When you define new types of topics or domain elements, remember that the hierarchies for topic
specialization and domain specialization must be distinct. A specialized topic cannot use a
domain element in a content model. Similarly, a domain element can specialize only from an
element in the base topic or in another domain. That is, a topic and domain cannot have
dependencies. To combine topics and domains, use a shell DTD.

The following table summarizes the inheritance architecture in DITA 1.1.

1
 See Specializing domains in DITA, Eric Hennum, September 2005, IBM developerWorks

Inheritance diagram Level Scope

base topic
and topic
domains

global

specialized
topics and
domains

local to
topic

topic elements

domain
elements

domain
elements

domain
elements

common base module elements
base topic
elements

domain
elements

Legend

Module DTD or schema

Inheritance (Generalization) relationship through class attribute of elements in module

http://www.ibm.com/developerworks/xml/library/x-dita5/
cgoolsby
Highlight

cgoolsby
Note
This is a confusing sentence. Reword to something like "The restrictions on module inheritance have been relaxed enabling vocabulary elements to be shared between different types of modules."

cgoolsby
Inserted Text
.

cgoolsby
Cross-Out

cgoolsby
Replacement Text
It

cgoolsby
Note
It might be useful to clarify that the markup in domains is intended to be a set of markup that serves some common purpose, such as user interface elements and so forth.

5

Example 1: Specialized topic and domain in DITA 1.1
Suppose we have identified a need for a new task model that will instruct users how to perform a
task using a special specific user interface. Let’s call this task: <uiTask>. The user interface has a
special type of widget and it is important to proper distinguish it from other user interface
elements. After examining what is available in the User Interface domain of the DITA standard we
decide that the <uicontrol> is the most appropriate element to use as a basis for our domain
specialization. The situation is given in the following figure.

The process of creating a new document type in DITA is called integration. Briefly when In the
case of a DTD the steps involved are:

For inheritance (class attribute)

1. Set the class attribute of the <uiTask> element in the uiTask to
"- topic/topic task/task uiTask/uiTask"

2. Set the class attribute of <widget> element in the widgets domain module to
"+ topic/ph ui-d/uicontrol widgets-d/widget"

For domain inclusion

1. Set the domains attribute of the <uiTask> element in the uiTask module to
"&included-domains;"

2. Define the element extension entities in the widgets domain entity file
<!ENTITY widgets-d-uicontrol "widget">
<!ENTITY widgets-d-ph "widget">

3. Define the domain identification entity in the widgets domain entity file
<!ENTITY widgets-d-att "(topic ui-d widgets-d)">

Inheritance diagram Example

uiTask
topic

ui
domain

widgets
domain

common base module elements
topic
(root)

task
topic

cgoolsby
Note
What does this line of black boxes in the figure mean?

cgoolsby
Cross-Out

cgoolsby
Inserted Text
,

cgoolsby
Note
This is not the process of creating a new document type, or it is just a subset of that process. There is no real mention of developing the uiTask specialization, outside of setting the class attribute and adding in the new domain. I'd suggest some more lead-in text for this example setting the bounds of it more clearly.

cgoolsby
Note
Why do you need to extend ph? For this example, all you are doing is extending uicontrol, right? Does that require also extending the base element for uicontrol, ph?

6

4. Add the domain extensions elements
<!ENTITY % uicontrol "uicontrol | widget-d-uicontrol;”>

5. Make the following declaration in the uiTask document type shell
<!ENTITY included-domains "&widgets-d-att">

Relaxation of the inheritance restriction in DITA 1.2
DITA 1.2 relaxation of the inheritance restrictions addresses sharing limitations between
vocabulary elements. What limitations are removed and how it works is best be explained by the
examples later in this section, but first we need to introduce some terminology.
.
Extension element
An extension element is an element that - under the control of a document type shell - can appear
as an alternative or replacement for its base element in contexts where its base element can
appear.

A specialization of <topic> is always an extension element. For instance, an information architect
can allow the <reference> to appear instead of <topic> in all <topic> contexts including the top
context in a document as well as nested contexts in the content models for the <dita> and <topic>
elements.

Domain modules always provide one or more extension elements. For instance, the programming
domain supplies the <apiname>, <codeblock>, <codeph>, <option>, <parml>, <parmname>,
<synph>, and <syntaxdiagram> extensions of the base <dl>, <fig>, <keyword>, <ph>, and <pre>
elements.

Substructure element
A substructure element can only appear within an extension element.

For instance, the <properties> element from the reference vocabulary module can appear only in
the <refbody> under the <reference> extension element. Similarly, the <plentry> element from
the programming domain can appear only as a sub-element of the <parml> extension element.

Example 2: A specialized domain extension whose substructure
includes a preexisting domain element
Suppose that in example 1 of the previous section actions invoked by widgets can also be
invoked by commands. After examining the standard DITA domains we find the <cmdname>
element of the Software domain to be the most appropriate. Previous to DITA 1.2 we could only
specialize from a single domain inheritance path (see the domain identification entity in example
1) and therefore we must define a new element in the widgets domain with the same content
model as the <cmdname> element and call it something like <widgetCmdname> (element names
must be unique).

In DITA 1.2 the substructure of a specialized element in a domain may use another domain. This
is illustrated in the following figure.

cgoolsby
Cross-Out

cgoolsby
Note
Cancelled set by cgoolsby

cgoolsby
Note
None set by cgoolsby

7

The architectural attribute declarations (omitting class attributes of <uiTask>) are:

uiTask/@domains: (topic ui-d+sw-d widgets-d)
widget/@class: “+ topic/ph ui-d/uicontrol widgets-d/widget “
cmdname/@class: “+ topic/keyword sw-d/cmdname “

Instances of <uiTask> generalize to any of the following combinations of modules:

 topic and UI and software

 topic and software

 topic and UI

 topic

Notes:

 Parenthetical expressions are used for both the domains and class attributes which is a
recommendation in DITA.1.2.

 The domains attribute could imply that some elements from the User Interface and
Software domain will not be part of the uiTask, but these elements will be declared any
way since the domain must be referenced the shell document type.

Inheritance diagram Example

uiTask
topic

uidomain

widgets
domain

common base module elements
topic
(root)

task
topic

software
domain

Legend

Module DTD or schema

Inheritance relationship

Usage of domain, inclusion in domain identification entity

cgoolsby
Inserted Text
by

cgoolsby
Note
The boxes mean there are more domains that are not shown?

cgoolsby
Note
You've lost me here. I've done a domain specialization in 1.1, but am not really grasping what you've done here. The cmdname element is now included in the widgets-d domain? Or is all of the sw-d domain now included? If just cmdname, then how is cmdname included in widgets-d?

8

Example 2: A specialized topic whose substructure includes a
preexisting domain element
Suppose that we want to explain a programming technique and have identified that the concept
topic satisfies our need for topic specialization and that <codeblock> from the programming fits
the requirements for code listings. Let’s call the topic <codeConcept>. The body of this topic
<codeConceptBody> lists a <codeblock> from the programming domain which is possible in DITA
1.2. This is illustrated in the following figure.

The architectural attribute declarations:

codeConcept/@domains: (topic concept+pr-d codeConcept)
codeConcept/@class: "- topic/topic concept/concept codeConcept/codeConcept "
codeConBody/@class: "- topic/body concept/conbody codeConcept/codeConBody "
codeblock/@class: "+ topic/pre pr-d/codeblock "

Instances of <codeConcept> generalize to any of the following combinations of modules:

 topic and concept and programming

 topic and concept

 topic and programming

 topic

Inheritance diagram Example

codeConcept
topic

common base module elements
topic
(root)

concept
topic

programming
domain

Legend

Module DTD or schema

Inheritance relationship

Usage of domain, inclusion in domain identification entity

cgoolsby
Inserted Text
 domain

cgoolsby
Note
Okay, I get that you can now use the "+" in the domains attribute to put multiple sources of elements into an extension. But I'm still not getting how that lets you just put the codeblock element in codeConBody.

9

Example 3: A specialized topic whose substructure specializes a
preexisting domain element
Suppose that the <uiTask> topic specializes the task topic and has <uiTaskBody> and
<uiContext> substructure. In the <uiContext> we want to identify the menu item for the task. This
can be achieved by a <uiMenuContext> element as a specialization of <menucascade> of the
User Interface domain (which is not allowed in DITA 1.1 because elements in a structural
specialization cannot be specialized from domain elements). This is illustrated in the following
figure.

The architectural attribute declarations are:

uiTask/@domains: (topic task+ui-d uiTask)
uiTask/@class: "- topic/topic task/task uiTask/uiTask "
uiTaskBody/@class: "- topic/body task/taskbody uiTask/uiTaskBody "
uiContext/@class: "- topic/section task/context uiTask/uiContext "
uiMenuContext/@class: "+ topic/ph ui-d/menucascade uiTask/uiMenuContext "

Instances of <uiTask> generalize to any of the following combinations of modules:

 topic and task and UI

 topic and task

 topic and UI

 topic

Inheritance diagram Example

uiTask
topic

uidomain

common base module elements
topic
(root)

task
topic

Legend

Module DTD or schema

Inheritance relationship

Usage of domain, inclusion in domain identification entity

cgoolsby
Note
So maybe you put uiMenuContext in the right context in your uiTask.mod file and then just set the class attribute? Again, I'm grasping the concept but could use a few more details.

10

Example 4: A domain with extension and substructure elements
that specialize different domains
Suppose that we want to create a library of UI controls and their associated class names using
<uiReference> topics. We can use <widget> element which specializes <uicontrol> from the UI
domain and has the <widgetName> specialization of the <apiname> extension element from the
programming domain that identifies the control. This would require a specialization from two
different domains as illustrated in the following figure.

The architectural attribute declarations:

uiReference/@domains: (topic ui-d+pr-d widgets-d)
widget/@class: "+ topic/ph ui-d/uicontrol widgets-d/widget "
widgetName/@class: "+ topic/keyword pr-d/apiname widgets-d/widgetName "

Instances of <uiReference> generalize to any of the following combinations of modules:

 topic and UI and programming

 topic and UI

 topic and programming

 topic

Inheritance diagram Example

uiReference
topic

common base module elements
topic
(root)

reference
topic

programming
domain

Legend

Module DTD or schema

Inheritance relationship

software
domain

widgets
domain

cgoolsby
Inserted Text
the

11

Example 5: A specialized topic whose substructure requires a
domain that extends the substructure of the base topic
Suppose that we want to markup the parameters as part of the reference for a command,
function, or statement using <commandRef> topics. We find that the <properties> is the most
suitable and introduce a <parameters> extension element that specializes <properties> from the
reference topic and contains the <paramtype> and <paramdesc> specializations of <proptype>
and <propdesc>.This means that we have to create a domain that specializes a topic which is
possible in DITA 1.2 This is illustrated in the following figure.

The architectural attribute declarations:
commandref/@domains: (topic reference paramref-d)
 (topic reference+paramref-d commandref)
commandref/@class: "- topic/topic reference/reference commandref/commandref "
commandBody/@class: "- topic/body reference/refbody commandref/commandBody "
parameters/@class: "+ topic/simpletable reference/properties paramref-d/parameters "
paramtype/@class: "+ topic/stentry reference/propvalue paramref-d/paramtype "
paramdesc/@class: "+ topic/stentry reference/propdesc paramref-d/paramdesc "

Instances of parReference generalize to any of the following combinations of modules:

 topic and reference and paramref

 topic and reference

 topic

Inheritance diagram Example

commandRef
topic

common base module elements
topic
(root)

reference
topic

Legend

Module DTD or schema

Inheritance relationship

paramref
domain

uidomain
software
domain

12

Summary
DITA 1.2 allows much more flexibility for combining vocabularies. This is achieved through
relaxation of the inheritance restrictions from previous versions. This new architecture will let
designers create new document types from domains and specialized topic types that extend or
reuse elements from single or multiple domains and topics. The methods for determining
compatibility for generalization and conref are described in the DITA 1.2 Architectural
Specification.

cgoolsby
Note
I like the multiple examples and this looks like a nice expansion of the specialization capability in DITA. As mentioned above, I could use more details on how we get from integrating the topic/domain into a specialization to how we get the individual elements we want from that integration into the specialization.

